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DNA-encoded libraries are a prime technology for target-based small molecule screening.
Native DNA used as genetic compound barcode is chemically vulnerable under many
reaction conditions. DNA barcodes that are composed of pyrimidine nucleobases, 7-
deazaadenine, and 7-deaza-8-azaguanine have been investigated for their suitability for
encoded chemistry both experimentally and computationally. These four-letter barcodes
were readily ligated by T4 ligation, amplifiable by Taq polymerase, and the resultant
amplicons were correctly sequenced. Chemical stability profiling showed a superior
chemical stability compared to native DNA, though higher susceptibility to depurination
than a three-letter code based on pyrimidine DNA and 7-deazaadenine.
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1 INTRODUCTION

DNA-encoded compound libraries (DELs) have evolved to a prominent small molecule screening
technology for drug discovery projects (Flood et al., 2020; Gironda-Martínez et al., 2021; Satz et al., 2022).
Typically synthesized by split-and-pool combinatorial chemistry routes that go through cycles of iterative
DNA-tagging and compound synthesis steps, DELs give efficient access to unsurpassed numbers of
compounds for target-based screening (Figures 1A,B). DEL chemical space is biased by stringent
demands on chemistry for library design (Franzini and Randolph, 2016; Malone and Paegel, 2016;
Fitzgerald and Paegel, 2021): split-pool-compatible building blocks, and robust “click-chemistry”-like
reactions that tolerate moisture. Furthermore, the synthesis process demands any DEL reactions to be
compatible with the DNA barcode in order to obtain functional libraries that can be read out by
sequencing with high fidelity. Reaction conditions need to avoid DNA damage reactions such as
depurination (Figure 1C), nucleobase deamination, 8-oxopurine formation, nucleophile addition,
thymine dimerization, tautomerization e.g. from metal adducts, and oligomer fragmentation, to
name a few notorious reactions that render the barcode unreadable (Gates, 2009). Recently, we
demonstrated a compound barcoding strategy that was initiated with controlled pore glass-
connected chemically stabilized (cs)DNA barcodes (Potowski et al., 2021). These csDNA barcodes
were composed of the pyrimidine nucleobases T and C, and 7-deazaadenine (7De-dA) which replaced
the particularly vulnerable purine nucleobases A and G, as demonstrated earlier for encoded solid phase
peptide synthesis (Needels et al., 1993) (Figure 1D). The three-letter code was functional as a genetic
code, showed remarkable chemical stability to protic acids such as trifluoroacetic acid, as well as to a large
number of metal catalysts, and allowed for ready translation of more than a dozen reactions for diverse
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DEL design, including Boc-chemistry, the Pictet-Spengler reaction
and isocyanide multi-component reactions. Here, we investigated
expanding the three-letter barcode to a full four-letter barcode,
requiring a chemically stabilized 2′-deoxyguanosine analogue to
be added to the established dT, dC, 7De-dA-code. The functionality
of heavily modified DNA strands has been investigated by e.g. the
research groups of Famulok, Herdewijn, andHocek in the context of
aptamer design, synthetic biology, and nucleic acid sequencing,
inspiring our research (Jäger et al., 2005; Ondruš et al., 2020;
Kodr et al., 2021). We selected 7-deaza-8-aza-2′-deoxyguanine
(abbreviated 7De8a-dG) for our studies because the analogous
adenine derivative showed high chemical stability previously
(Potowski et al., 2021) (Figure 1E), while 7-deaza-2′-
deoxyguanine (7De-dG) was not considered for barcoding
chemistry because of its known potential to form oxidation
products (Yang and Thorp, 2001). The 7De8a-dG nucleoside is a
relatively understudied DNA modification, capable of forming
canonical DNA duplexes (Seela and Driller, 1988; Seela and
Driller, 1989), and stabilizing parallel DNA duplex strands (Seela
et al., 2000). It served to project dyes into themajor groove of a DNA
duplex via linker moieties that were installed in the 7-position (Seela
et al., 2009), and to investigate the structure-catalytic activity of the
8–17 DNAzyme (Liu et al., 2013). G-C-rich nucleic acid sequences
may formG-quadruplexes, a DNA tertiary structure that was shown
to produce sequencing artifacts. Owing to the missing nitrogen in
the 7-position, 7De8a-dG-containing DNA oligonucleotides did not
form such structures, (Seela and Kröschel, 2003), and were therefore
used as probes for single nucleotide polymorphism genotyping of
G-C-rich sequences (Belousov et al., 2004). The tolerance of the 5′-
triphosphate of 7De8a-dG as a substrate of DNA polymerases was
investigated by the Herdewijn group in primer extension assays
towards future applications e.g. for aptamer diversification, or in
synthetic biology. These revealed that the extension of a primer with
the 5′-triphosphate of 7De8a-dG gave the target DNA duplex with
very low efficiency, and PCR amplification of a template with a mix
of nucleoside triphosphates that included the 5′-triphosphate of
7De8a-dG gave hardly the desired amplicon product (Eremeeva
et al., 2017a; Eremeeva et al., 2017b). Thus, the utility of 7De8a-dG to
substitute the native dG in a compound-encoding DNA template
was unclear at the outset of our investigations. These included
ligation of barcodes by T4 ligase, amplification of a template
strand that contained this modification with Taq polymerase, and
sequencing of the amplicon, as well as chemical stability profiling,
and reaction translation.

MATERIALS AND METHODS

Please see Supporting information for on-DNA synthesis protocols,
and protocols for DNA ligation, PCR amplification, and sequencing.

RESULTS

Computational Analysis
The nucleobase tautomer stability was investigated here for guanine
derivatives, similar to our investigations of adenine derivatives

(Potowski et al., 2021) and the expanded Hachimoji genetic
alphabet (Eberlein et al., 2020), since it is a precondition for
unambiguously reading the DNA barcode. Applying the same
computational methodology as in Potowski et al., 2021, which is
a refined protocol compared to our earlier Hachimoji investigations
(Eberlein et al., 2020), on other guanine derivatives than presented in
this work, we calculated all possible tautomers of guanine Ia-c, 7-
deazaguanine IIa-c, 8-aza-7-deazaguanine IIIa-c and 8-azaguanine
IVa-c (Figure 2A, Supplementary Tables S1-S3) with respect to
their thermodynamic stability. According to this analysis, the
reaction free energy between the Watson-Crick tautomers (I-IVa)
and both alternate tautomers (I-IVb,c, Figure 2A, Supplementary
Tables S1-S3), which translates into tautomer populations, is
increased in II-IVb and reduced in II-IVc compared to natural
guanine. With the smallest energy difference of more than
5 kcalmol−1 being observed for the tautomer Ib of the natural
guanine, the resulting mismatching tautomer fractions are
negligible for all non-natural species as their free energies are
even larger. This is a remarkable result as the Hachimoji guanine
derivatives are by far less stable from the tautomer perspective
(Eberlein et al., 2020). Therefore, 7-deazaguanine, 8-aza-7-
deazaguanine or 8-azaguanine containing oligonucleotides should
be well suited for DNA encoding chemistry with Watson-Crick
tautomer fractions of at least 99.99%. Thus, the choice of a specific
nucleobase for encoding chemistry depends on (commercial)
nucleoside availability and chemical stability.

Investigations on Ligation, PCR and
Sequencing Using 7De8a-dG-Containing
DNA Sequences
Ligation of chemically modified 7De8a-dG-containing DNA
barcodes by T4 ligase and correct reading of the resulting DNA
template by polymerases are essential for DEL synthesis. We
performed test ligations with T4 ligase based on our previously
published coding strategy (Supplementry Figures S2B,S1) that uses
an adapter oligonucleotide composed of inosine and stable abasic
sites opposite the chemically stabilized code, followed by PCR
amplification and DNA sequencing. The sequences of all
oligonucleotides used in ligation and amplification experiments
are given in Supplementary Table S5. Agarose gel
electrophoresis using a 3% or 4% agarose gel was used to analyze
the ligation experiments (Supplementary Figure S2). Amplicon
sequencing of the fully encoded DNA-conjugates showed that the
Taq polymerase correctly copied the nucleotides (Figure 2C,
Supplementary Table S6). We then compared the amplification
efficiency of 7De8a-dG-containing ligation products with one native
DNA ligation product by qPCR (Figures 2D, Supplementary
Figures S3–S9). Compared to the native DNA, the chemically
modified template required a total of two to four cycles more to
reach the log-linear phase of amplification. Lower amplification
efficiency, especially prior reaching the log-linear phase, may at least
partially be explained by the use of a universal adapter sequence
opposite the chemically stabilized code. Previously, introduction of
abasic sites into DNA templates has been shown to lead to much
reduced amplification efficiency (Sikorsky et al., 2007).
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Chemical Stability Screen of Chemically
Modified and Native DNA Oligonucleotides

DNA stability under diverse reaction conditions is an essential
precondition for the synthesis of functional DELs. For that
reason, we recently investigated the stability profile of different
CPG-bound pyrimidine DNA oligonucleotides and mixed
pyrimidine/purine DNA oligonucleotides in the presence of

acidic solutions, diverse metal salts and organic reagents
(Table 1) (Potowski et al., 2019). Especially purine containing
sequence 3 revealed low stabilities under various conditions
e.g. acids or oxidants. Based on these findings and inspired
by an early account describing encoded solid-phase peptide
chemistry (Needels et al., 1993), we proposed that the
substitution of native purine nucleobases in a given sequence
by 7-deazaadenine would lead to a three-letter DNA barcode 4

FIGURE 1 |DNA-encoded libraries. (A) A DNA-encoded compound. (B) Split-and-pool DEL synthesis (C)DNA damage by depurination. (D) Previous work: Study
of a chemically stabilized code consisting of nucleobases T, C, and 7-deazaA 1. (E) This work: From a three-to a four-letter barcode. Investigation of 8a-7-deazaG 2; PG,
protective group: benzoyl (1) or DMF (2).
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with enhanced chemical stability. Indeed, exchanging 2′-
deoxyadenosine with 7De-dA 1 (oligonucleotide 4) led to a
much-improved stability profile which was comparable with
the stability of pyrimidine DNA sequences (Potowski et al.,
2021). Here, we aimed at going a step further to arrive at a
chemically stabilized four-letter DNA barcode 6. Therefore, we
kept the 7De-dA 1 and replaced in addition the native 2′-
deoxyguanosine by the modified 7De8a-dG 2. To our delight,
this chemically modified four-letter oligonucleotide 6 showed a
higher stability against the tested conditions as compared to the
native DNA 3, too, see Table 1 for the screening results.
Especially metal ions were much better tolerated by sequence

six than by the native DNA 3 (Table 1, entries 2,9,12). However,
with the modifications of the 2′-deoxyguanosine we did not reach
the same overall level of stability as observed with the previously
described 7De-dATC sequence 4. The stability screen on both
7De8a-dG-containing sequences 5 and 6 revealed that still some
DNA degradation occurred under acidic or oxidative conditions.
For instance, the incubation of these sequences with a 3.7%
aqueous hydrochloric acid solution for 22 h at room
temperature led to ca. 50% depurination, while 7De-dA-
containing DNA 4 was left completely intact under these
conditions, yet, native DNA 3 suffered almost complete
degradation by depurination (Table 1, entry 1).

FIGURE 2 | (A) Calculated standard reaction free energies ΔG (kcalmol−1) and populations for selected tautomeric forms of guanine derivatives I-IV relative to the
Watson-Crick tautomers [I-IVa] accompanied by uncertainties from averaging over a range of methodsc. See SI for computational details. a Eberlein, 2020: 6.6 ±
0.7 kcal mol−1, b Eberlein, 2020: 7.5 ± 1.5 kcal mol−1, c Note that the uncertainties provided in Eberlein, 2020 and Potowski, 2021 were erroneously reported to be too
small by a factor of 51/2 = 2.236. Uncertainties are here correct, and the corrected values are also given for reference calculations (Eberlein, 2020) on canonical
guanine Ia,b. This correction has no impact on energetic rankings and discussion of tautomer relevance. (B) Encoding strategy using stabilized DNA barcodes. (C)
Results of the T4 ligation and PCR amplification, ligation carried out with 100 pmol of each oligonucleotide, 600 units of T4 DNA Ligase, gel electrophoresis performed
with a 4% agarose gel. (D) Amplification efficiencies of a chemically stabilized DNA template and the corresponding native DNA template strand.
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Translation of Reactions to CPG-Bound
Chemically Stabilized ATGC-DNA-Starting
Materials
Encouraged by the above shown results regarding stability and
biological compatibility we started to transfer the previously
established reactions on CPG-bound DNA to the chemically
stabilized four-letter barcode containing 7De-dA as well as
7De8a-dG (Figure 3, Supplementary Table S7) (Potowski
et al., 2021). The first set of reactions belongs to the class of
isocyanide multi-component chemistries (Figure 3A). The Ugi
four-component reaction (U-4CR), the Ugi-azide four-

component reaction (UA-4CR), and the Groebke-Blackburn-
Bienaymé three-component reaction (GBB-3CR) were readily
performed on a CPG-bound 16mer 7De-dATC7De8a-dG-
DNA-encoded aldehyde 13, resulting in near-quantitative
product conversions to target conjugates 17, 20, and 22 with
less than 5% DNA degradation (Figure 3A). However,
translation of the Ugi-aza-Wittig four-component (U-4CR/
aza-Wittig) resulted in a high degree of DNA degradation
(44%) and a conversion of 53% to the desired product 26
(Figure 3A). Next, we explored protic acid-promoted
reactions like the (R)-(-)-BNDHP promoted Biginelli
reaction (Figure 3B). This reaction proceeded well with urea

TABLE 1 | Stability screening of DNA barcodes 5 and 6 in presence of protic acids, metal salts and organic reagents.a

a For each: 20 nmol DNA, aqueous acids or 200 equiv. transition metal salt or 200 equiv. organic reagent, 50 µL solvent, rt, 22 h b Poor solubility, added as suspension. c Experiment was
performed at 40 °C. AMA, aq. NH3/MeNH2, ACN, acetonitrile, MeOH, methanol.
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FIGURE 3 | Translation of reactions to CPG-bound DNA-starting materials. (A) IsocyanideMCR chemistries; a) MeOH, 50 °C, b) aq. NH3/MeNH2 (AMA), c) MeOH,
50 °C, d) 1% acetic acid/MeOH, 50 °C. (B) Protic acid-promoted reactions; e) (R)-(-)-BNDHP, EtOH 50 °C, f) (R)-(-)- BNDHP, EtOH/TEOF, 50 °C, g) 5% TFA, CH2Cl2, rt.
(C) Metal ion-promoted reactions; h) CuCl/bpy, DMF/TEOF, 50 °C, i) ZnCl2, ACN/TEOF, rt, j) aq. NH3, 50 °C, 6 h, k) Yb(OTf)3, CH2Cl2/TEOF, rt, l) Yb(PFO)3, toluene,
50 °C, m) AuI/AgSbF6, THF, rt, n) Ipr AuCl/AgOTf, ACN, 50 °C, o) AuI/AgOTf, glacial acetic acid, 60 °C. p) 10% TFA in H2O, 4 h.

a,bConversion and DNA degradation
determined by HPLC. cadditional 11% of undefined byproduct. dadditional 12% of undefined byproduct. eadditional 15% of undefined byproducts. fadditional 20% of
undefined byproducts. AuI=[Tris(2,4-di-tert-butylphenyl)phosphite]-gold chloride. Sequence of all DNA oligonucleotides used in the reactions: CT*C TCT 7De8a-dGTC
T7De8a-dGT 7De-dACC T.
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to the desired product 29 with a high conversion of 86% and no
detectable DNA degradation. Notably, also the more
challenging phenyl urea that requires higher amounts of the
acid worked smoothly without DNA damage (see SI). The (R)-
(-)-BNDHP promoted Povarov reaction led to the desired
product 32, too. However, in this case a low degree of DNA
degradation was observed. The trifluoroacetic acid-promoted
Pictet-Spengler reaction allowed for synthesis of the desired β-
carboline 35 from a DNA-tryptophane conjugate 33 with 85%
conversion. As expected after the stability screen, 40% of the
DNA were degraded during the reaction. The intact DNA-
Pictet-Spengler conjugate 34 could be isolated by preparative
RP-HPLC. Last, we investigated the usability of Lewis acid-
promoted reactions on the chemically stabilized barcode
(Figure 3C). The Cu(I)/bipyridine-promoted Petasis
reaction, the Zn(II)-promoted aza-Diels-Alder reaction as
well as the Yb(III)-promoted Castagnoli-Cushman reaction
worked smoothly without any DNA degradation and led to
the desired DNA-coupled products 39, 41 and 44 with
moderate to good conversions. The Yb(III)-mediated

pyrazole synthesis using aryl hydrazines resulted in the
desired product 45 with a conversion of 17% and DNA
degradation of 31% (Figure 3C). The Au(I)-promoted
pyrazoline containing spiroheterocycle 48 synthesis starting
from DNA-aldehyde conjugate 13 with alkynol 46 and
hydrazide 47 was successful with moderate conversion and
no detectable DNA damage. Also, the Au(I)-promoted
pyrazoline synthesis from 16mer 7De-dAT7De8a-dGC-
alkyne conjugate 49 with isobutyraldehyde 50 and hydrazide
47 led to the desired product 51 with an excellent conversion,
and without DNA degradation. However, the more demanding
Au(I)-promoted pyrazole synthesis in glacial acetic acid at 60 °C
resulted in a higher degree of DNA damage (32%). But still the
isolation of intact DNA-pyrazole conjugate 52 was possible by
preparative RP-HPLC.

Beside the synthesis of CPG-bound DNA conjugates, the
protective group removal in aqueous solution plays an important
role in DEL synthesis, too. Therefore, we explored the Boc
deprotection of an isolated 16mer 7De-dAT7De8a-dGC-
tetrahydroisoquinoline conjugate 32 with 10% TFA in water.

FIGURE 4 | Exemplary DNA-encoded library design based on the Petasis reaction. DEL synthesis is initiated with coupling of secondary amines to the stabilized
barcode. Petasis reaction on encoded amines gives for instance diverse N-substituted arylglycines. These are purified, encoded and substituted by amide bond
formation in the third reaction step giving a library of diverse N-substituted arylglycine amides.
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However, the reaction conditions led to DNA degradation by
exclusive depurination of the 7-deaza-8-aza-2′deoxyguanosine, as
analyzed by MALDI MS, while the 7-deazaadenine remained intact.
This clear-cut result was in line with the substantial amounts of
depurination already observed in the Pictet-Spengler reaction that
was performed with 5% of TFA for 20 h in an organic solvent on a
CPG-bound and fully nucleobase-protected oligonucleotide.

DISCUSSION

Here, we investigated the suitability of a chemically modified
G, namely 7-deaza-8-aza-2′deoxyguanosine for use in DNA-
encoded chemistry. Heavily modified DNA sequences that
contained two chemically modified nucleobases are
tautomerization-wise stable, could be ligated to other DNA
barcodes, and served as functional templates for PCR
amplification. Thus, they were suitable for encoded library
synthesis. Furthermore, they displayed much increased
resistance to chemical degradation by metal ions, and also
some level of stability to acid-promoted reaction conditions,
though the latter was much less pronounced, as compared to
the previously developed three-letter code (Potowski et al., 2021).
Synthesis of a pilot library as exemplified by Figure 4 will be
shown in due time.
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