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Abstract 34 

Multistable perceptual phenomena provide insights into the mind's dynamic states 35 

within a stable external environment and the neural underpinnings of these 36 

consciousness changes are often studied with binocular rivalry. Conventional methods 37 

to study binocular rivalry suffer from biases and assumptions that limit their ability to 38 

describe the continuous nature of this perceptual transitions and to discover what kind 39 

of percept was perceived across time. In this study, we propose a novel way to avoid 40 

those shortcomings by combining a continuous psychophysical method that estimates 41 

introspection during binocular rivalry with machine learning clustering and transition 42 

probability analysis. This combination of techniques reveals individual variability and 43 

complexity of perceptual experience in 28 normally sighted participants. Also, the 44 

analysis of transition probabilities between perceptual categories, i.e., exclusive and 45 

different kinds of mixed percepts, suggest that interocular perceptual competition, 46 

triggered by low-level stimuli, involves conflict between monocular and binocular 47 

neural processing sites rather than mutual inhibition of monocular sites. 48 

 49 

Keywords 50 

Visual consciousness, perceptual categories, unsupervised machine learning, 51 
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 53 

Layman abstract  54 

When our brain receives ambiguous information about the world, it changes its 55 

interpretation between different alternatives and thereby provides insight into how the 56 

mind works. Scientists often use a technique called binocular rivalry, where each eye 57 

sees a different image, to provoke an ambiguous visual world that is perceived as 58 

ongoing competition among interpretations of the two eyes inputs. Traditional methods 59 

for studying binocular rivalry struggle to describe the continuous nature of this 60 

fluctuation and to estimate the range of different perceived experiences. We have 61 

created a new approach in which participants reproduce their ongoing perceptual 62 

experiences combined machine learning analyses of these states. We found that 63 

individuals visual experience is more varied and complex than previously thought. Our 64 

results suggest that when our eyes see conflicting images, the brain's effort to make 65 

sense of what is seen involves syntheses among both monocular and binocular brain 66 

areas, not just competition between monocular areas.  67 
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Introduction 68 

The quest to understand consciousness has seen a boom of visual paradigms to 69 

investigate the relationship between awareness and neural correlates. Methods that 70 

provoke endogenous multistable perceptual competition without exogenous stimulus 71 

change have become prominent tools to investigate changes of the contents of visual 72 

consciousness over time in the minds of humans (1) and other primates. (2) In one 73 

multistability paradigm, when different images are presented to each eye viewers 74 

typically experience binocular rivalry and perceive transitions among the image 75 

presented to the left eye (left exclusivity), the image presented to the right eye (right 76 

exclusivity) and mixtures of those images (including superimposition and piecemeal 77 

combinations). The measurement of binocular rivalry has the potential to identify 78 

clinical biomarkers of neuro-atypicality (3) and personality traits. (4)  79 

A well-known problem with the study of these correlates of conscious experience is 80 

that the gradual nature of perceptual changes is not well-captured with standard 81 

paradigms that are used to measure multistability. During conventional alternative-82 

forced-choice (AFC) tasks, the observer is instructed to classify moment-to-moment 83 

changes in their subjective experiences typically by pressing buttons assigned to 84 

different perceptual categories. The available categories are pre-selected by the 85 

experimenter, are often only described verbally, and have included two exclusive 86 

percepts (2 AFC), (5) two exclusive percepts and all mixed percepts (3 AFC, see 87 

Figure 1A), (6) two exclusive and two mixed (piecemeal and superimposed) percepts 88 

(4 AFC), (7) two exclusive and three mixed (left-predominant, right-predominant or 89 

equal superimposition) percepts (5 AFC). (8)  The instructions for the perceptual 90 

categorization given by the experimenter may further vary between ‘predominance’ (9) 91 

and ‘exclusivity’ (10) within each category and even lead to additional judgement 92 

criterion of proportions within any moment of viewing (e.g. ³75% predominance (11)). 93 

These methods do not provide validated, personalized estimation of perceptual states 94 

or their boundaries, make assumption that the experiences described by the 95 

experimenter represent the experiences for the participant, do not capture all mixed 96 

perceptual experiences reported in the literature, button press methods provide are 97 

low in data resolution, nor are they able to track perceptual experiences within mixed 98 

categories (piecemeal and superimposition). For further review on rivalry methods 99 

please see. (12) 100 
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 101 

Concerns that the active report requirement of AFC paradigms may unintentionally 102 

influence conscious experience have been addressed by no-report paradigms. In 103 

these approaches, an observer performs a binocular rivalry task twice: once with and 104 

once without an AFC button pressing task while pupil diameter, (13) optokinetic 105 

nystagmus, (14) or active gaze changes are simultaneously recorded. (15) The ocular 106 

biomarkers are then correlated with the participants’ behavioral indications and used 107 

to classify experiences with or without active indication of behavior. However as no-108 

report paradigms relied on conventional AFC methods, they too suffer the same 109 

limitations and have a number of other confounders e.g., pupil size changes used as 110 

no-report biomarker can be affected by different perceptual states regardless of 111 

perceptual alternation, or that eye-movements may be triggered due to piecemeal 112 

rather than exclusive percepts. (15,16) 113 

Notice that all the above methods rely on two or more pre-defined categories for the 114 

participant to report by AFC and are based on the assumption that the categories 115 

defined by the experimenter are the same as those experienced by all participants. 116 

This assumption may be false, especially for atypical populations. Furthermore, the 117 

dynamics of transitions among states cannot be measured sensitively with button 118 

responses, which can only indicate abrupt transitions. Furthermore, these methods do 119 

not estimate an observer’s interpretation of the experimenter’s description of 120 

categorical boundaries, e.g. “exclusive left-tilt”, “piecemeal” etc. (see (17) for review of 121 

methods).  122 

To address these shortcomings, we recently developed a continuous method called 123 

Indicate-Follow-Replay Me: Binocular rivalry (InFoRM: Rivalry) that can generate a 124 

priori personalized estimates of perceptual introspection and captures the dynamics 125 

of perceptual changes. The data can also be re-analyzed between and within 126 

perceptual categories that have been used in previous studies. The endogenous 127 

changes in perceptual experience reported with InFoRM are validated against 128 

exogenous changes via a physical replay of stimuli (Figure 1B). (17)  129 

 130 
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 131 
Figure 1: Scheme for different binocular rivalry paradigms. A) Scheme of typical 132 

binocular rivalry setting. When an observer views dissimilar stimuli, e.g., achromatic 133 

sinusoidal gratings tilted -45° and +45° viewed dichoptically, perceptual competition 134 

arises in which experiences gradually change across time, known as binocular rivalry. 135 

The traditional task for the observer is then to continuously report what is seen via key 136 

presses assigned to categories by an experimenter, here a 3-Alternative-Forced-137 

Choice task. B) Schematic overview of the InFoRM: Rivalry paradigm. During Indicate-138 

Me (Phase 1), participants explore the stimulus-space, moving a joystick to modify 139 

binocular-non-rivaling stimuli in real-time that generate corresponding changes of the 140 

physical image. The participants were then asked to move the joystick to highlight 141 

images that they consider representative of six canonical rivalry states (‘exclusive left-142 

tilted’, ‘exclusive right-tilted’, ‘piecemeal’, ‘equal superimposition’, ‘superimposition 143 

with left-tilted predominance’, and ‘superimposition with right-tilted predominance’), 144 

that have been reported in previous rivalry literature. During Follow-Me (Phase 2), 145 

participants moved the joystick to match perceptual reports for physically changing 146 

binocular-non-rivaling-stimuli to confirm their understanding of the relationship 147 

between the joystick position and stimulus appearance. Participants followed four 148 

trials that reproduced the rivalry experiences of author JS and four trials that 149 

reproduced the six rivalry states the participant had generated themselves during 150 

phase 1 - Indicate-Me. This trained participants to track their changing experiences 151 

during perceptual rivalry while also capturing the participant’s joystick position for each 152 
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of six canonical perceptual categories. These data used to build estimates of 153 

introspection for each category, indicated with different colors in the classification 154 

figure. During Rival-Me (Phase 3), participants reported their perception with the same 155 

instruction as for Phase 2. The resulting data were then analyzed with various 156 

techniques, including the illustrated Hidden Markov Models. During Replay-Me (Phase 157 

4), participants’ responses during the Phase 3-Rival-Me dichoptic-trials were used to 158 

generate physically changing binocular stimuli, that the participant again tracked which 159 

validated their individual perceptual-state-space. These data from Phase 3 and Phase 160 

4 were then analyzed for similarity illustrated by the plot for one representative 161 

participant. 162 

 163 

The InFoRM method allows us to address many questions that cannot be studied with 164 

current approaches. For example, rather than assuming each participant experiences 165 

2 or more pre-specified categories, we can examine a priori how many distinct 166 

categories were reported for each participant and experimental condition. In the 167 

present study, we investigated three contrast conditions that are known to affect 168 

binocular rivalry: bilateral low, bilateral high, and low versus high contrasts, see more 169 

details here.(17) To determine the a priori categories first, data for each trial, 170 

participant, and contrast condition were analyzed using an unsupervised machine 171 

learning approach (k-means), and determined the clusters for a range of 1-10, 25, 50, 172 

100, 1000 k-means (example Figure 2A). Then, we measured separation of the 173 

clusters using Silhouette analysis (Figure 2B). Next, we used a two-parameter fit to 174 

estimate the minimal number of clusters necessary to generate well-separated 175 

clusters (Figure 2C) and repeated the procedure for all participants and contrast 176 

conditions (Table 1). Finally, we repeated the analysis to validate the method against 177 

the physical replay data from Phase 4. As shown in Table 1, averaged across trials, 178 

participants, and contrast conditions, perceptual rivalry and physical replay generated 179 

10 ±8 and 10 ±7 optimal clusters, respectively, which are well-separated (silhouette 180 

value 0.62 ±0.06 and 0.62 ±0.06). 181 

 182 

 183 

 184 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 24, 2024. ; https://doi.org/10.1101/2024.09.24.614648doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.24.614648
http://creativecommons.org/licenses/by-nc-nd/4.0/


	

7 

7	

Table 1: Summary of k-means optimal cluster analysis. Shown are mean and 185 

standard deviations across participants outcomes for the minimum silhouette 186 

values and their corresponding number of k-mean clusters for joystick report 187 

during perceptual and physical stimulus changes. 188 
 Perceptual Rivalry (Phase 3) Physical Replay (Phase 4) 
Contrast 
condition 

Min. silhouette 
value 

Min. k value Min. 
silhouette 
value 

Min. k value 

Low vs. Low  0.64 ±0.055   9 ±7 0.63 ±0.065 10 ±7 
High vs. High  0.61 ±0.054 12 ±7 0.61 ±0.059 11 ±8 

Low vs. High 0.62 ±0.063   9 ±8 0.64 ±0.075   9 ±7 

Mean  0.62 ±0.057 10 ±8  0.62 ±0.060 10 ±7 

 189 

 190 

Figure 2: Data analysis using unsupervised cluster analysis. A) Example of 191 

joystick position during a Phase 3 rivalry trial. Depicted are raw data (dots), classified 192 

by k-means clustering illustrated by different colors. The centroid of each cluster is 193 

indicated via green x. B) The same data as in A) plotted with silhouette analysis, the 194 

separation of each data point is expressed with a silhouette value. C) Silhouette values 195 

were calculated for 1-10, 25, 50, 100, 1000 clusters. Then, the mean silhouette was 196 

calculated for each participant and cluster condition (blue dots) and fit with a second 197 

order polynomial (black line, magenta dashed lines show 95% confidence intervals). 198 

The minimum of the function identifies the minimum numbers of clusters, here 10 199 
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clusters. D)  Illustration of raw data from A) with their optimal number of clusters 200 

(indicated with different hues) and centroids (green x) superimposed with that 201 

individual’s perceptual state map generated during phase 2 ‘Follow me’; (blue-left: 202 

exclusive left; green: equal superimposition; beige: superimposition with left-tilted 203 

predominance; blue-middle right: piecemeal; blue-upper right: exclusive right; yellow: 204 

superimposition with right-tilted predominance). E) Swarm plot of clusters for the low 205 

contrast condition for 8 trials for all 28 participants. Individual optimal k-means are 206 

superimposed on their perceptual state map, assigning number of k-means centroids 207 

for each of six perceptual states (x axis) for each individual (y axis). 208 

 209 

Although individuals were trained on 6 categorical states (based on a review of 210 

previous studies), the results show that on average more distinct clusters experiences 211 

were perceived during rivalry. Our data allow us to examine the agreement between 212 

the six canonical states that are commonly assigned and the 9 or 10 clusters that 213 

participants spontaneously report. To answer this question, we return to the 214 

introspection maps that were created during InFoRM’s Phase 2 and superimposed 215 

these with the optimal k-means from Experiment 1 for each participant  and condition. 216 

These maps were created based on each participant’s estimate of each of the six 217 

canonical categories previously described in the literature.(17)  We assigned each k-218 

means centroid from each trial to the closest of the six canonical categories and 219 

repeated this for each contrast condition (see example in Figure 2 D). As show in 220 

Figure 2E for the low contrast condition, the number of centroids in each perceptual 221 

state region varied between participants and occurred primarily in the exclusive 222 

portions of the joystick space as well as in the superimposed states with predominance 223 

of either left or right with fewer reports around equal superimposition or piecemeal 224 

observations during rivalry. These results suggest that piecemeal percepts can be 225 

thought of as an intermediate phase between both exclusive states (i.e. monocular 226 

sites) and superimposed states (binocular site).  227 

 228 

Averaged across trials and participants, 13 ±9, 15 ±10, 12 ±11 centroids emerged for 229 

the low, high, and low vs. high contrast conditions, respectively, and were not 230 

significantly different from each other [repeated measure ANOVA, Greenhouse-231 

Geisser F(2.0,53.1)=1.7, p>0.05 , ηp2= 0.06]. However, as can be seen exemplarily in 232 
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Figure 2E for the low contrast condition, the number of centroids across states varied 233 

significantly (two-way ANOVA, [F(3.0,80.0)=14.5, p<0.001, ηp2= 0.35]) but not was not 234 

affected by the contrast condition [F(2.0,53.1)=1.7, p>0.05 , ηp2= 0.06].  235 

We calculated the size of each classified area, as shown in Figure 2E, to investigate 236 

the relative sizes of different perceptual states. Averaged across trials, participants 237 

and contrast, the six states occupied 23% ±4, 16% ±5, 25% ±7, 9% ±7, 12% ±3, 15% 238 

±3 and showed a significant difference. (17) The number of cluster centroids falling 239 

within the 6 classic categories, averaged across all levels, was 22 (exclusive left 27% 240 

of all clusters) ±25, 14 (exclusive right, 17%) ±15, 9 (piecemeal, 11%) ±13, 6 (equal, 241 

7%) ±8, 19 (left-predominant superimposition, 24%) ±23, 10 (right-predominant 242 

superimposition, 14%) ±13. Interestingly, these results show that area and number of 243 

clusters mismatch for piecemeal and predominant left superimposed areas. In fact, 244 

although the piecemeal area of the introspection maps was the largest classification 245 

area overall, it housed only a small proportion of clusters. Taken together, a 246 

considerable number of clusters are generated in superimposed mixed states that 247 

resulted in 35% of all superimposed experiences and 12% piecemeal perception as 248 

reported previously. (17) These results suggest that current standard 2-3AFC methods 249 

have neglected these superimposed categories and thus may not accurately represent 250 

the experiences or their underlying neural site(s). Some studies have reported 251 

superimposition as a perceptual category during binocular rivalry, (18,19) but only a 252 

few used 4-5AFC methods to investigate the perceptual dynamics during binocular 253 

rivalry. (7,8) Only two studies have reported explicit experiences of superimposition 254 

with a predominance one eye’s stimuli. In one case it was invoked due to difference 255 

in spatial frequency (20) in the other it was invoked using the same spatial frequency 256 

but varying unilateral and bilateral stimulus contrasts. (17) Our results show that, even 257 

with bilateral equal stimuli, these experiences can emerge. It may be possible that 258 

studies that used ambiguous instructions such as ‘predominance’ may have captured 259 

instances of these experiences as well. (21,22) Importantly, while exclusive perception 260 

(global) and piecemeal (local) are thought to be a result of mutual inhibition of 261 

monocular sites, (23) superimposed percepts may activate distinct neural correlates 262 

(24) that might include binocular cells as suggested by different psychophysical 263 

investigations. (7,8,18) 264 

 265 
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In addition to investigating the categorical experiences during binocular rivalry, we 266 

next interrogate the transitory dynamics among these experiences during binocular 267 

rivalry. 268 

 269 

 270 
Figure 3: Analysis of binocular rivalry dynamics. A) A typical transition path of a 271 

single trial for one participant classified into 6 classic perceptual states (‘L’ left-tilted 272 

exclusive, ‘R’ right-tilted exclusive, ‘PM’ piecemeal, ‘ES’ equal superimposition, ‘LS’ 273 

left-tilted predominant superimposition, ‘RS’ left-tilted predominant superimposition) 274 

changes across time. B) Mean transition path for each participant during the low 275 

contrast conditions were then used to estimate the most likely transition path (C) 276 

calculated by a hidden Markov model. D) Cross-correlation for one participant as a 277 

function of lag between actual and model data. Maximum correlation coefficient, r, and 278 

its lag location relative to the optimum 0 lag as well as the estimated area under the 279 

curve (AUC) are included. E) Cross-correlations for each individual during the low 280 

contrast condition. F) Transition probability chain plot averaged across trials and 281 

participants for the low contrast condition. 282 

 283 

First, the actual transition path for each trial (example in Figure 3A) was used to 284 

calculate the mean transition pathway (Figure 3B) for each participant and condition. 285 

Then, the most likely transition pathway for each participant and condition was 286 

estimated using a Hidden Markov Model (Figure 3C). Next, the similarity of the model 287 
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with the actual data was estimated by using cross-correlation to determine the 288 

agreement between the model and data (Figure 3D). The resulting similarity measures 289 

(maximum correlation coefficient, lag at maximum correlation, and area under the 290 

curve) were further analyzed. Separate repeated measure ANOVAs were performed 291 

to test for an effect of contrast condition. An effect for area under the curve 292 

[F(1.8,48.0)=2.8, p<0.01 , ηp2= 0.21] was found due to less AUC for the high vs low 293 

contrast condition. Maximum correlation coefficient [F(1.7,46.3)=1.4, p>0.05 , ηp2= 294 

0.05], nor for lag at maximum correlation (bias) [F(1.0,27.0)=1.0, p>0.05 , ηp2= 0.04] 295 

was found. The lag at maximum correlation was close to zero (1 ±0.11). 296 

 297 

Previously, we introduced a new way to analyze multistability data, which combines 298 

Markov chains and their ability to depict states, their connections, and the likelihood 299 

of each connection with the temporal priors, i.e.,  the mean duration of a percept before 300 

it transitioned to another state (indicated via arrow thickness, where arrow thickness 301 

increases with percept duration) and  the mean duration of each principal state (nodes, 302 

where  diameter increases with mean duration (3)). This method therefore makes 303 

predictions of state connections and their likelihoods and also incorporates temporal 304 

legacy of each of these transitions. The node diameters (Figure 3F) symbolize each 305 

state’s mean duration, each arrow thickness (weights) indicates the mean duration of 306 

a given perceptual state prior to transition to another state. We correlated the weights 307 

with the transition probability values for each contrast condition and found no 308 

correlation for the low (R: 0.01; p>0.05) or high contrast conditions (R: 0.13; p>0.05), 309 

but a positive correlation when using different dichoptic contrasts i.e., the longer the 310 

prior duration of percepts the greater the transition likelihood between these two 311 

perceptual categories (R: 0.39; p<0.05). On one hand, these results imply that when 312 

using equal bilateral contrasts, rivalry transition dynamics are not dependent upon 313 

prior accumulative experiences (weights), suggesting a primary role of intrinsic noise 314 

as driver for transition. (25)  On the other hand, the positive correlation between 315 

weights and transition probabilities when using unequal bilateral contrasts suggest a 316 

role of prior experience, supporting the hypothesis that this type of multistable vision 317 

is explained by self-adaptation models. (26) 318 

We compared probability distributions between contrast conditions using a Kullback 319 

Leibler divergence. As expected, when comparing the dissimilarity of transition 320 
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probabilities for the equal bilateral contrast conditions (low/low vs. high/high), 321 

dissimilarity was the lowest (range: 0.05-0.29), whereas dissimilarity was higher for 322 

unequal bilateral contrast conditions (low vs. low/high conditions [0.11-0.50]; and high 323 

vs. low/high conditions [0.14-0.57]). As illustrated for the bilateral low contrast 324 

condition in Figure 3F, changes away from exclusive states to predominant-325 

superimposed states are more likely and with longer mean durations (thicker arrows) 326 

compared to other changes. One hypothetical reason for this result could be the 327 

joystick arrangement i.e., left tilt for left exclusive and right tilt for right-exclusive 328 

percepts, however, as shown in Figure 3B and 3C, mixed states were not mere transit-329 

states between two exclusive percepts for the majority of participants. As for data 330 

clustering, we show considerable individual differences in transition dynamics 331 

between perceptual states. Furthermore, the analysis reveals a higher transition 332 

probability between exclusive and left and right-predominance superimposed states. 333 

Specifically, for the low contrast condition the minimum transition probability 0 (no 334 

transition from left exclusive to right predominant superimposition, SI); maximum 0.50 335 

(right predominant SI to equal SI), and a mean of 0.19. The results for high contrast 336 

[min: 0.007;(exclusive right to equal SI); max:0.50 (right-tilted SI to equal SI), mean: 337 

0.18] and for the low versus high contrast conditions [min: 0.01(low contrast to high-338 

contrast predominant SI); max: 0.50 (low contrast to low contrast predominant SI); 339 

mean: 0.19] indicate that transitions were more likely to occur between exclusive 340 

monocular and fused binocular percepts. 341 

 342 

In conclusion, the combination of a continuous psychophysical approach, 343 

introspection estimates, and unsupervised cluster analysis revealed that on average 344 

more perceptual categories arise during binocular rivalry than previously thought. 345 

Moreover, binocular rivalry transitions are more likely to occur between exclusive and 346 

superimposed perceptual states than other state changes and are affected by prior 347 

experiences only when the interocular inputs are different. Together, these results 348 

suggest that conventional binocular rivalry paradigms do not capture the full range of 349 

experiences during binocular rivalry or their dynamics. Furthermore, transitions among 350 

states show greater variability than previously thought, in particular within 351 

superimposed perceptual categories. The results of the transition probability analysis 352 

imply that perceptual competition during binocular rivalry that is evoked by low-level 353 
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stimuli arises as a conflict between monocular and binocular neural sites rather than 354 

mutually inhibiting monocular sites. 355 

 356 

Methods 357 

 358 

The experiments were carried out in the facilities of Northeastern University, Boston. 359 

Written and verbal information about the project were provided in advance to the 360 

participants and they gave written informed consent before taking part. Ethics approval 361 

to conduct the experiments on human participants was in line with the ethical principles 362 

of the Helsinki declaration of 1975 and ethics board of the Northeastern University. 363 

The methods regarding the InFoRM Rivalry method have been reported elsewhere in 364 

detail. (17) Here we report methods and materials specific to the data analysis. Matlab 365 

(Mathworks, version 2023b) was used for data collection, analysis, and visualization 366 

of the results in the current study. Stimuli were presented on a LG 3D polarized  367 

monitor with a spatial resolution of 1920*1080 pixels in combination with radially-368 

polarized LG cinema 3D glasses (AG-F310), 60Hz refresh rate and mean luminance 369 

of 61.9 cd/m2, and a Dell computer (Optiplex 7060). The viewing distance was 150cm. 370 

The participants wore radially-polarized LG cinema 3D glasses (AG-F310) and 371 

provided responses with a Logitech ExtremeTM 3D pro (Logitech Europe S.A.) 372 

joystick. 373 

 374 

Binocular rivalry was induced in 28 normally-sighted participants using orthogonally 375 

oriented (±45°) sinusoidal gratings (2° Æ, 2c/°). Three contrast conditions (low versus 376 

low; high versus high, and high versus low) were tested in counterbalanced order. 377 

Raw data consisted of 3600 data points (60Hz joystick data sampling * 60seconds 378 

testing; 16.7ms temporal resolution) per trial (8 per contrast condition) that consisted 379 

of 2D joystick position estimates for each Phase 3 (rivalry) and Phase 4 (replay) and 380 

were stored in .mat files. Perceptual introspection maps and state assignment during 381 

Phase 3 (rivalry) and Phase 4 (replay) were described elsewhere. (17) 382 

 383 

Cluster Analysis  384 

  385 
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Horizontal and vertical joystick vectors were converted into Euclidean space for the 386 

Phase 3 (rivalry) data for each trial. Second, unsupervised clustering was performed 387 

for a range of clusters (1-10, 25, 50, 100, 1000) using the kmeans function applying 388 

the ‘cityblock’ method for each trial and averaging the results across trials for each 389 

condition. Third, we evaluated the separation among clusters using the silhouette 390 

function and applied again the ‘cityblock’ method. We found that the overall silhouette 391 

values were all positive, i.e. well-separated. As the choice of k-means is arbitrary, we 392 

decided to find the minimum separation value required, which represents the optimal 393 

clustering value. Hence, for the fourth step, we plotted the resulting silhouette values 394 

against k-means for each participant and for each condition, fit a quadratic function 395 

using polyfit and polyval functions to the data to estimate the minima of the fit, and 396 

extracted the corresponding optimal silhouette value and optimal number of k-means 397 

clusters. We repeated the above-described analysis for Phase 4 (replay).  398 

Each participant's optimal k-means value was used for the assignment to their 399 

respective introspection maps to find out where within the classification space the 400 

centroids would cluster. Then, we assigned each centroid for each trial with one of the 401 

six introspection classifications derived from previous binocular rivalry studies. For 402 

example, if a centroid arose in the introspection map area of ‘left exclusive”, that 403 

centroid was counted for left exclusive. This was repeated for each trial, participant, 404 

and contrast condition. SPSS software (IBM, version 28.0.0.0.(190)) was used to 405 

perform repeated measure ANOVAs. 406 

 407 

Transition Probability Analysis  408 

 409 

Actual and HMM most likely transition path 410 

Each trial's perceptual state vector (3600 data) consisted of up to six distinct states 411 

and was averaged across trials for each participant to generate the average transition 412 

path. The hmmestimate function was used to calculate the mean transition probability 413 

for that trial. The hmmestimate function was repeated with the ‘pseudotransition’ 414 

setting using the mean transition value as some transition probabilities were very low. 415 

Next, the HMM most probable transition path for each trial was estimated using the 416 

hmmviterbi function. Single transition paths were visualized using the stairs function. 417 
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Cross correlation of Actual and HMM transition path 418 

The xcorr function (‘normalized’ mode, maximum lag of ±200 time points = ±3.3 419 

seconds) was used for the cross correlation of the actual mean paths and means of 420 

the most likely paths HMM paths for each participant, and contrast condition. The peak 421 

of the resulting cross correlation function, lag, and area under the curve (estimated 422 

using the trapz function) were taken. 423 

Markov chains 424 

The hmmestimate function was used to estimate the transition likelihoods between 425 

states for each trial, participant, and contrast condition. We used the dtmc function to 426 

estimate Markov chains that were then plotted using the graphplot function for each 427 

contrast condition.  428 

As previously described, (3) we also included temporal legacy in the chain plot, 429 

indicated by increasing node diameter for mean durations and thicker arrows (weights) 430 

for longer prior mean durations before a transition occurred. Each weight was 431 

measured for each trial as a mean duration of how long either of the six canonical 432 

perceptual states lasted. The results were then averaged across trials and participants 433 

for each contrast condition. The corrplot function using Pearson’s method was applied 434 

for linear correlations between weights and transition probabilities, testing for R and 435 

for statistical significance test p. Kullback-Leibler similarity analysis was performed to 436 

compare the transition probabilities between contrast conditions applying the KLDiv 437 

function. 438 

 439 
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