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Introduction

Information theory has proven to be a useful tool in the analysis

and measurement of network complexity [1]. In particular, many

researchers have investigated the application of entropy measures

to graphs, see [1–4]. A variety of entropy-based measures have

been used to characterize networks associated with biological or

chemical systems [5,6]; a recent application in computational

biology uses an entropy measure to analyze metabolic networks

[7,8]. In addition to the use of measures on graphs to analyze

biological or chemical systems, information theory has been

employed in network physics, see [1,9,10]. Arnand et al. [1]

provide a comprehensive review of Shannon entropy measures

applied to network ensembles. The measures discussed in this

review are based on probabilistic aspects of networks such as the

expected number of links, the expected community structure, or

the expected degree sequences that have been used to define

probabilities. In addition, Arnand et al. [1] compared Shannon

entropies on network ensembles with Gibbs and von Neumann

entropies by plotting numerical values of the respective measures.

By contrast, we will establish connections between different

definitions of entropy by means of inequalities. Sanchirico et al.

[10] explored another problem in network theory, namely,

characterizing complex networks based on degree distributions.

In particular, entropy functions have been used to investigate

scale-free networks, see [10]. Finally, Krawitz et al. [9] have

applied the so-called Basin entropy to boolean networks, which

have been shown to be of great value in analyzing biological [7]

and related systems [9]. Krawitz et al. [9] applied the Basin

entropy measure to specific components of boolean networks [9].

In these applications, entropy provides a measure of network

connectivity. It is noteworthy that Krawitz et al. [9] were able to

estimate the Basin entropy from time-series data, since the model

thus becomes applicable to erroneous networks (i.e., graphs

affected by measurement errors) which are of great importance

in biology.

The information measures we want to consider in this paper

represent the structural information content of a network [5,11–

13]. In particular, they have been applied to special classes of

graphs and have figured prominently in research on topological

aspects of biological and chemical systems, e.g., see, [5,11–18].

Common to all such research is the use of Shannon’s [19] classical

measure to derive entropies of the underlying graph topology

interpreted as the structural information content of a graph. [5,11–

13]. Measures of this kind are functions of probability values that

derive, in the classical case [5,12], from a graph invariant and an

equivalence relation [11,12,20]. Thus far, a number of specialized

measures have been developed that are used primarily to

characterize the structural complexity of chemical graphs

[11,21,22]. That is to say, these measures can be viewed as

indexes of complexity based on certain structural features of a

graph. In the classical cases, special graph invariants (e.g., number

of vertices, edges, degrees, distances etc.) and equivalence relations

have given rise to special measures of information contents

[11,12,15].

Another class of graph entropies, not based on a graph invariant

associated with an equivalence relation, has also been explored.

These alternative measures are based on information functions

[23] that assign a probability value to each vertex of a graph [23].

An interesting feature of these measures is that they are
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parametric, see, e.g., [2,15], thus allowing the formulation of

optimization problems involving the parameters for given data sets.

This approach to measurement is applicable to research problems

in graph complexity, data analysis, and machine learning.

Furthermore, the measures are computable in polynomial time

because they depend on determining metrical properties of graphs

[24]. In view of the large number of existing quantitative measures

of network structure [22,25], methods are needed for comparing the

different indexes and investigating their interrelations. Such

research on interrelations can be expected to yield new insights

into complex systems that can be represented by graphs [22,26].

One promising direction is to infer inequalities between such

indices describing network information contents. Relatively little

work on this problem has appeared in the literature, see, e.g.,

[27,28]. Thus far we have studied in [2] so-called implicit

information inequalities involving two parametric entropies using

different information functions. General as well as special graphs

have been considered [2]. The present paper deals mainly with

inequalities between classical and parametric entropies. On the

one hand, this gives rise to general information inequalities

between measures; on the other hand, bounds for special classes of

graphs can be obtained.

The paper is organized as follows: In Section ‘Methods and

Results’, we describe the classes of information measures to be

examined, and detail relevant properties. Also, we prove

inequalities between classical and parametric entropies. The last

section provides a summary and conclusion.

Methods and Results

Classical Measures and Parametric Graph Entropies
In this section, we sketch briefly known graph entropy measures

for determining the information content of networks. As a

preliminary remark, jAj denotes the cardinality of a given set A.

Now, let G~(V ,E) be a graph and let jV j : ~n. The existing

graph entropy measures can be divided into two main classes: (i)

Classical measures [14] and (ii) parametric measures [23].

Classical measures I(G,t) are defined relative to a partition of a

set X of graph elements induced by an equivalence relation t on

X . More precisely, let X be a set of graph elements (typically

vertices), and let Xif g for 1ƒiƒk, be a partition of X induced by

t . Suppose further that pi :~
jXij
jX j. Then

I(G,t)~{
Xk

i~1

pilog(pi): ð1Þ

Parametric measures are defined on graphs relative to

information functions. Such functions are not identically zero

and map graph elements (typically vertices) to the non-negative

reals. For simplicity of description, we consider information func-

tions defined on V . Let qi :~
f við ÞPn

j~1 f vj

� � for 1ƒiƒn. Clearly, the

qi form a probability distribution over the vertices. Then

If (G) :~{
Xn

i~1

qilog(qi): ð2Þ

In general, a detailed overview of graph entropy measures can be

found in [2,11,14]. Note that various other graph entropies have

also been developed, see, e.g., [3,4,29–32] but these won’t be

discussed here.

The structural feature of a network captured by a classical

information measure depends on the graph invariant and the

equivalence criterion t . This is clear from Equation (1). The

relationship between the quantitative measure and graph structure

for classical measures is examined further by Nikolić [33].

For more general measures (Equation (2)), the structural feature

depends on the information function used to define the measure.

Examples are given by

f 1(vi) :~c1jS1(vi,G)jzc2jS2(vi,G)jz � � �zcr(G)jSr(G)(vi,G)j,

ckw0, 1ƒkƒr(G),
ð3Þ

f 2(vi) :~cid(vi), ckw0, ð4Þ

f 3(vi) :~cis(vi), ckw0: ð5Þ

The ck are positive coefficients used to weight structural

differences in a graph [23] and jSj(vi,G)j are the j-sphere

cardinalities. d(vi) denotes the degree and s(vi) the eccentricity of

the vertex vi [V . r(G) stands for the diameter of G. Such functions

are used to obtain the vertex probabilities as explained in [23]

pf (vi) :~
f (vi)Pn

j~1 f (vj)
: ð6Þ

The family of graph entropies resulting from different pro-

bability distributions is represented by Equation (2). In the

following, we provide examples of such an information function

(choosing f 1 as a special case) as well as of the resulting entropy

measure. Furthermore, we compare this measure with a classical

one using an identity graph as an example. Note that the

information function f 1 has already been used to characterize

chemical structures [15]. But first consider the graphs in Figure 1

to explain the graph entropy measure If 1 in more detail. For

calculating this structural information content explicitly, we set

c1 :~r(G), c2 :~r(G){1, . . . , cr(G) :~1: ð7Þ

The structural feature captured by this measure is linked to the

following observation: The more the vertices differ with respect to

their spherical neighborhoods, the smaller is the value and

conversely. Hence, If 1 detects a kind of inner symmetry of an

underlying graph. By using f 1 in Equation (2), regular graphs have

a constant information content equal to the maximum entropy (for

every information function). For example, the graph C7 gives rise

to (see Figure 2)

pf 1
(vi)~

2c1z2c2z2c3

7(2c1z2c2z2c3)
~

1

7
, ð8Þ

and finally I
f 1 (C7)~log(7). To compare the parametric with one

of the classical measures, we consider a special case of Equation (1)

in which the probabilities are determined by the respective sizes of

the (vertex) orbits of the automorphism group, see [12]. The

resulting graph entropy measure is denoted by Ia. Because C7 is

vertex-transitive, there is only one orbit containing all vertices and

Connections between Network Entropies

PLoS ONE | www.plosone.org 2 January 2011 | Volume 6 | Issue 1 | e15733



therefore we obtain

Ia(C7)~0: ð9Þ

Now, we evaluate the two different graph entropy measures If 1

and Ia for the identity graph depicted in Figure 3. This graph G4

has a trivial automorphism group (i.e., the identity graph) and,

hence, all orbits are singleton sets. This implies

Ia(G4)~log(6): ð10Þ

But when calculating If 1 , we get

I
f 1 (G4)~{

c1z3c2zc3P6
j~1 f 1(vj)

log
c1z3c2zc3P6

j~1 f 1(vj)

 !"

z
4c1zc2P6
j~1 f 1(vj)

log
4c1zc2P6
j~1 f 1(vj)

 !

z2
3c1z2c2P6

j~1 f 1(vj)
log

3c1z2c2P6
j~1 f 1(vj)

 !

z
c1z2c2z2c3P6

j~1 f 1(vj)
log

c1z2c2z2c3P6
j~1 f 1(vj)

 !

z
2c1z2c2zc3P6

j~1 f 1(vj)
log

2c1z2c2zc3P6
j~1 f 1(vj)

 !#
,

ð11Þ

where
P6

j~1 f 1(vj)~14c1z12c2z4c3. Finally, we find that

I
f 1 (G4)vlog(6). In contrast, note that Ia represents a symmetry-

based complexity measure [12]. Other structural features could be

chosen to provide other or more comprehensive measures of

complexity. For example, Bertz [34] modified the total informa-

tion content discussed by Bonchev [11] to obtain a different

measure. Other approaches to tackle this challenging problem

have been outlined by Nikolić [33]. To better understand the

measure I
f 1 and to get an intuitive sense of its complexity, we

perform a parameter study. More precisely, we show the entropy

represented by Equation (11) for different parameters. We plotted

the entropy for constant values of c1 (0, 0.5 - first row, and 1, 3 -

second row) independent of the other variables c2 and c3, see

Figure 4. Clearly, the positions of maximum entropy are shifted for

different values of c1; and for higher values of c1 the location of the

maximum approaches that of c2~c3~c1.

Inequalities for Parametric Graph Entropies and Classical
Measures

Most of the graph entropy measures developed thus far have

been applied in mathematical chemistry and biology [2,11,14].

These measures have been used to quantify the complexity of

chemical and biological systems that can be represented as graphs.

Given the profusion of such measures, it is useful, for instance, to

prove bounds for special graph classes or to study interrelations

among them. Such results might be useful to investigate network-

based systems as well as to design new network measures more

adequately. In terms of information-theoretic measures for graphs,

relatively little attention has been paid to this effort. An early

attempt in this direction was undertaken by Bonchev [27] when

investigating inequalities between entropy-based network mea-

sures by considering special graph classes. In particular, Bonchev

[27] used such inequalities to investigate the concept of branching

Figure 1. We obtain 2.78 = If 1 (G1)vIf 1 (G2)~2:79.
doi:10.1371/journal.pone.0015733.g001

Figure 2. We obtain 2.79 = If 1 (G3)vIf 1 (C7)~log(7).
doi:10.1371/journal.pone.0015733.g002
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[35] in molecules. A topic within this general framework which

seems to be completely unexplored is an analysis (using

inequalities) of formal relations between complexity measures.

On the one hand, this could be done by starting from special

graph classes which are interesting for practical applications. But,

on the other hand, one can also infer more general interrelations

between non-information-theoretic and information-theoretic

measures (e.g., see Theorem (1)).

In [28], we have investigated so-called implicit information

inequalities for graphs. Such information inequalities describe general

interrelations between parametric measures based on arbitrary

information functions. In this section, we demonstrate inequalities

between classical graph entropies and the entropy families given by

Equation (2). As mentioned earlier, numerous network information

measures [11,14,22] have been developed, but their mathematical

properties have yet to be studied in detail. Therefore, the results of

this section can be considered as a first attempt to detail these

properties. Some of the interrelations represent bounds which hold

for special graph classes (with no assumptions about the parameters

involved) when using a special information function.

We start with a more general statement expressing an

interrelation between the parametric entropy and a classical

entropy measure that is based on certain equivalence classes

associated with an arbitrary equivalence relation. In particular,

this interrelation can be stated as an upper bound of the

parametric entropy depending on the classical entropy measure.

Theorem 1. Let G~(V ,E) be an arbitrary graph, and let

Xi, 1ƒiƒk be the equivalence classes associated with an arbitrary

equivalence relation on X . Suppose further that f is an information function

with f (vi)wjXij for 1ƒiƒk, p(vi)~
f (vi)Pn

j~1 f (vj)
and c :~

1Pn
j~1 f (vj)

. Then,

1

jX j If (G)vc:I(G,t){
Xk

i~1

jXij
jX j c

:log(c){
log jX jð Þ
jX j

Xk

i~1

p(vi)

{
1

jX j
Xn

i~kz1

p(vi)log(p(vi))

z
1

jX j
Xk

i~1

p(vi) log 1z
jX j

c:f (vi)

� �
,

z
Xk

i~1

log
p(vi)

jX j z1

� �
:

ð12Þ

Proof. Note that we use the simplified notation p(vi) instead of

pf (vi) because it is clear (by definition) that a vertex probability

Figure 3. A graph with identity group.
doi:10.1371/journal.pone.0015733.g003

Figure 4. Entropy vs. Parameter Values.
doi:10.1371/journal.pone.0015733.g004
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value depends on the information function f . Now, suppose

f (vi)wjXij, i~1,2, . . . ,k, kƒn. Then,

jXij
jX j cv

1

jX j p(vi)v
1

jX j p(vi)z1 ð13Þ

and

jXij
jX j clog

jXij
jX j c

� �
v

1

jX j p(vi)z1

� �
log

1

jX j p(vi)z1

� �

~
1

jX j p(vi)log
1

jX j p(vi)z1

� �
zlog

1

jX j p(vi)z1

� �
:

ð14Þ

Assuming

log
1

jX j p(vi)z1

� �
~ log

1

jX j p(vi) 1z
jX j
p(vi)

� �� �

~ log
1

jX j

� �
z log p(vi)ð Þz log 1z

jX j
f (vi)c

� �
,

ð15Þ

and making use of Inequality (14) we derive

jXij
jX j clog

jXij
jX j

� �
z
jXij
jX j clog cð Þ

v

1

jX j p(vi)log
1

jX j

� �
z

1

jX j p(vi)log p(vi)ð Þ

z
1

jX j p(vi)log 1z
jX j

f (vi)c

� �
zlog

1

jX j p(vi)z1

� �
,

ð16Þ

or

{
Xij j
Xj j clog

Xij j
Xj j

� �
{

Xij j
Xj j clog cð Þ

w{
1

Xj j p(vi)log
1

Xj j

� �
{

1

Xj j p(vi)log p(vi)ð Þ

{
1

Xj j p(vi)log 1z
Xj j

f (vi)c

� �
{log

1

Xj j p(vi)z1

� �
:

ð17Þ

Adding up these inequalities (i.e., by adding across the vertices),

we obtain

c:I(G,t)w
Xk

i~1

Xij j
Xj j clog cð Þz log Xj jð Þ

Xj j
Xk

i~1

p(vi)

z
1

Xj j If (G)z
1

Xj j
Xk

i~kz1

p(vi)log p(vi)ð Þ

{
1

Xj j
Xk

i~1

p(vi)log 1z
Xj j

f (vi)c

� �

{
Xk

i~1

log
1

Xj j p(vi)z1

� �
:

ð18Þ

But this is Inequality (12).

In the following, we apply the assumption f (vi)w Xij j for

1ƒiƒk to some special graph classes and using the proof

technique of the previous theorem. The set X is taken to be V ,

and thus the equivalence relation induces a partition of V into

equivalence classes of vertices. These assumptions allow for

obtaining upper bounds on If (G) which can be stated as

corollaries of Theorem (1).

Corollary 2. Let Sn be a star graph having n vertices and suppose v1

is the vertex with degree n{1. The remaining n{1 non-hub vertices are

labeled arbitrarily. vm stands for a non-hub vertex. Let f be an information

function satisfying the conditions of Theorem (1). Let V1 :~ v1f g and

V2 :~ v2,v3, � � � ,vnf g denote the orbits of the automorphism group of Sn

forming a partition of V . Then

If (Sn)vp(v1)log 1z
1

p(v1)

� �
zp(vm)log 1z

1

p(vm)

� �

zlog 1zp(v1)ð Þzlog 1zp(vm)
� �

{
Xn

i~2

i=m

p(vi)log(p(vi)){(n{1):c:log (n{1):c½ �{clog(c):

ð19Þ

Proof. By hypothesis V1j j~1 and V2j j~n{1 so that

n{1vf (v1) and 1vf (vm), 2ƒmƒn: ð20Þ

The information functions given by Equation (3), (4), (5) can be

seen to satisfy the above conditions by choosing appropriate

ckw0. Again, with c :~ 1Pn

j~1
f (vj )

, the Inequalities (20) yield

(n{1):c:log (n{1):c½ �v(p(v1)z1)log p(v1)z1ð Þ, ð21Þ

c:log(c)v(p(vm)z1)log p(vm)z1
� �

: ð22Þ

Now, applying the proof technique of Theorem (1) and performing

some elementary transformations, we obtain Inequality (19).

Corollary 3. GI
n be an identity graph having n§6 vertices. GI

n has

only the identity automorphism and therefore each orbit is a singleton set, i,e.,

jVij~1,1ƒiƒn. Let f be an information function satisfying the conditions

of Theorem (1). Then,

If (GI
n)v

Xn

j~1

p(vj) log 1z
1

p(vi)

� �

z
Xn

j~1

log 1zp(vi)ð Þ{n:c log(c):

ð23Þ

Proof. By hypothesis

1v f (v1), ð24Þ

1v f (v2), ð25Þ

..

.
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1v f (vn): ð26Þ

Clearly,

c:log(c)v (p(v1)z1)log p(v1)z1ð Þ, ð27Þ

c:log(c)v (p(v2)z1)log p(v2)z1ð Þ, ð28Þ

..

.

c:log(c)v (p(vn)z1)log p(vn)z1ð Þ: ð29Þ

Once again applying the proof technique of Theorem (1) and

performing some elementary transformations, we obtain Inequal-

ity (23).

Corollary (3) leads immediately to

Corollary 4. Let GI
n be an identity graph having n§6 satisfying the

conditions of Corollary (3). Then,

If (GI
n)vn log 1z

1

p?

� �
zn log(2)

z
1

min1ƒjƒnfp(vj)g
log

Xn

j~1

f (vj)

 !
,

ð30Þ

where p? :~minfp(v1),p(v2), . . . ,p(vn)g.
Corollary 5. Let GP

n be a path graph having n vertices and let f be an

information function satisfying the conditions of Theorem (1). If n is even, GP
n

possesses
n

2
equivalence classes Vi and each Vi contains 2 vertices. Then,

If (GP
n )v

Xn
2

j~1

p(vj) log 1z
1

p(vi)

� �

z
Xn

2

j~1

log 1zp(vi)ð Þ{
Xn

j~n
2
z1

p(vj) log p(vi)ð Þ

{n:c: log (2c):

ð31Þ

If n is odd, then there exist n{t
n

2
s equivalence classes n{t

n

2
s{1 that have

2 elements and only one class containing a single element. This implies,

If (GP
n )v

Xn{tn
2
s

j~1

p(vj) log 1z
1

p(vi)

� �
z
Xn{tn

2
s

j~1

log 1zp(vi)ð Þ

{
Xn

j~n{tn
2
sz1

p(vj) log p(vi)ð Þ{ n{t
n

2
s{1

� �
2c:log(2c){c:log(c):

ð32Þ

Proof. By hypothesis

2v f (v1), ð33Þ

2v f (v2), ð34Þ

..

.

2v f (vn
2
): ð35Þ

Then, it is easy to see that

2c:log(2c)v (p(v1)z1)log p(v1)z1ð Þ, ð36Þ

2c:log(2c)v (p(v2)z1) log p(v2)z1ð Þ, ð37Þ

..

.

2c:log(2c)v (p(vn)z1) log p(vn)z1ð Þ: ð38Þ

When n is odd, we have

2v f (v1), ð39Þ

2v f (v2), ð40Þ

..

.

2v f vtn
2
s{1

� �
, ð41Þ

1v f vtn
2
s

� �
, ð42Þ

and

2c:log(2c)v (p(v1)z1) log p(v1)z1ð Þ, ð43Þ

2c:log(2c)v (p(v2)z1) log p(v2)z1ð Þ, ð44Þ

..

.

2c:log 2cð Þv p vn{tn
2
s{1

� �
z1

� �
log p vn{tn

2
s{1

� �
z1

� �
, ð45Þ
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c: log (2c)v (p(vn{tn
2
s)z1) log p(vn{tn

2
s)z1

� �
: ð46Þ

Multiplying these inequality systems by -1 and performing the

addition step (of the proof technique of Theorem (1) gives

Inequality (31) and Inequality (32).

Assuming different initial conditions, we can derive additional

inequalities between classical and parametric measures. We state

the following theorems without proofs because the underlying

technique is similar to the proofs of the previous assertions.
Theorem 6. Let G be an arbitrary graph and p(vi)vjXij. Then,

1

jX j If (G)wI(G,t){
1

jX j
Xn

i~kz1

p(vi)log p(vi)ð Þ{ log(jX j)
jX j

Xk

i~1

p(vi)

{
1

jX j
Xk

i~1

jXijlog 1z
jX j
jXij

� �
{
Xk

i~1

log 1z
jXij
jX j

� �
:

ð47Þ

Theorem 7. Let G be an arbitrary graph with pi being the

probabilities satisfying Equation (1) such that pivf (vi). Then,

1

c
I(G,t)wIf (G)z

log cð Þ
c

z
Xn

i~kz1

p(vi) log p(vi)ð Þ

{
Xk

i~1

log p(vi)ð Þ{
Xk

i~1

log 1z
1

p(vi)

� �
1zp(vi)ð Þ:

ð48Þ

For identity graphs, we can obtain a general upper bound for

the parametric entropy.
Corollary 8. Let GI

n be an identity graph having n vertices. Then,

If (GI
n)vlog(n){c:log(c)z

Xn

i~1

log(p(vi))

z
Xn

i~1

log 1z
1

p(vi)

� �
1zp(vi)ð Þ:

ð49Þ

Discussion

Quantitative measures of network structure have been defined

and applied in many different settings, see, e.g., [2,22,25]. For

example, chemists represent molecules as graphs as an aid in

distinguishing molecules and cataloguing their properties [36,37];

biologists model natural phenomena as complex networks in the

study of brains and genetic information systems [38,39];

epidemiologists and computational biologists investigate the

spread of diseases in populations modeled as networks of

individuals [40,41]; computer scientists design and build networks

of artificial systems that support message exchange and distributed

computation [42,43]. In each of these different settings, questions

about the structure of networks arise, leading to the definition of

mathematical functions designed to measure structural complexity.

As a result of all these relatively independent scholarly efforts,

many different measures [2,22,25,33] have been defined whose

interrelations remain to be determined. This paper is intended

as a contribution to the classification of these diverse measures

of network structure. In particular, we have singled out two

different classes of measures, namely classical and parametric

entropy measures defined on graphs, and have examined their

interrelations.

The approach taken in this paper is to establish inequalities

between measures. As already mentioned, an early attempt in this

direction has been undertaken by Bonchev [27] who proved

inequalities in the course of investigating branching structures in

molecules. Our aim here is somewhat broader, namely to establish

general, formal relations between complexity measures defined on

arbitrary graphs. Since complexity measures typically assign real

numbers to networks, inequalities provide the foundation for

constructing partial orders on sets of measures. Knowledge of such

order relations enables us to use inequalities to infer bounds on

specific measures of the structural complexity of graphs and

networks. Knowing that measure a is bounded above by measure

b whose maximum value has been established tells us that measure

a has a maximum value less than that of measure b. Relatively

little work on the problem of ordering entropy measures has

appeared in the literature, see, e.g., [44,45].

The main focus of the paper has been on establishing

inequalities between entropy-based measures, i.e., measures that

make use of Shannon’s classical entropy function. In particular, we

examined inequalities involving classical and parametric informa-

tion measures. Such measures have been used extensively to

quantify the information content of systems represented by graphs

[2,12,21,22]. For this reason, we believe that such inequalities are

critical for a proper understanding of entropy-based measures.

The inequalities presented in this paper show interrelations

between entropy-based measures applied to special classes of

graphs. Establishing such inequalities for arbitrary graphs is a

daunting task. The work reported here is thus a first step in that

the methods employed can in principle be generalized to establish

inequalities between information measures on arbitrary graphs.

More research is clearly needed to extend the results to graphs in

general, and ultimately to build a foundation for a unified

interpretation of network complexity as measured by entropy-

based functions.
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