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Over the past 15 years, we have seen a dramatic shift in the delivery of clinical care in oncology.

The profound impact of trastuzumab in treatment of HER2-amplified breast cancer and of

imatinib in chronic myeloid leukemia harboring the BCR-ABL translocation sparked intensive

efforts to reproduce these early successes by targeting therapy to a tumor’s individual molecu-

lar profile. This increased focus on precision medicine has grown in parallel with exponential

improvements in the sequencing technologies used to decipher the cancer genome. High-

throughput next-generation sequencing (NGS) has made it possible to rapidly and accurately

detect all classes of genomic alterations in tumors, including sequence mutations, copy num-

ber alterations, and structural rearrangements in hundreds or even thousands of genes simul-

taneously [1–3]. As the sophistication of testing has improved, sharp declines in cost have

facilitated access in the clinic.

The appeal of large gene panels has been driven by the operational efficiencies afforded by

running one standardized assay instead of multiple single analyte or customized gene panels,

improved sensitivity compared to traditional methodologies, and the desire to detect rare and

potentially actionable genomic variants across cancer types [3]. Broad NGS can also provide

additional clinically important information such as identification of microsatellite instability

(MSI) and hypermutation, acquired resistance mutations, and, in assays utilizing paired germ-

line sequencing, the presence of cancer predisposition alleles [4–6]. This convergence of fac-

tors is expected ultimately to make NGS more cost-effective than performing multiple parallel

tests.

Tumor sequencing is already used to guide routine treatment decisions in many cancers

including non-small cell lung cancer, melanoma, colorectal cancer, gastrointestinal stromal

tumors, ovarian cancer, and several leukemias. Genomically guided therapies have produced

durable responses in these diseases [7]. What remains unanswered is how broadly applicable

this paradigm will be to the overall population of cancer patients. To date, many large NGS

efforts have resulted in disappointingly low rates of enrollment into clinical trials designed to

test responses to genomically guided treatments [8,9]. Careful analysis of these data suggests

that this low rate reflects a clinical research system that is ill-suited to provision of rational

therapeutic options for patients profiled by large-panel NGS assays rather than the absence of

potentially actionable alterations detected by this technology. Major barriers to genomically

matching patients include the availability of relevant trials, physician and patient knowledge

of these studies, and geographical access to studies. Moreover, the diversity of tumor types

that can harbor potentially targetable alterations, as well as the rarity of many of these
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alterations within any given tumor type, have made traditional disease-specific studies difficult

to conduct.

Studies that define eligibility based on the presence of a specific genetic alteration irrespec-

tive of histology, so called “basket trials,” have emerged as one particularly efficient way to

treat patients with genomically matched therapy and generate high-quality evidence to guide

future treatment. The design of these basket studies also acknowledges that response to tar-

geted therapy can be conditioned by tumor type, further reinforcing the importance of gener-

ating such data. Recognizing the value of this approach, ambitious efforts such as the National

Cancer Institute’s Molecular Analysis for Therapy Choice (NCI-MATCH) study have been

launched that combine genomic screening with a large selection of therapeutic studies

assigned based on the profiling results. However, despite plans to sequence tumor DNA from

5,000 patients, several of the treatment arms in NCI-MATCH enrolling less common variants

are not expected to accrue sufficient numbers of patients [10]. This further emphasizes that

successfully conducting studies in the rarest variants will ultimately require even broader

adoption of large-panel NGS uncoupled from individual therapeutic studies.

Experience using large NGS panels for mutation profiling has already led to the detection

of rare genomic alterations across tumor types and improved treatments for patients harboring

these alterations. For example, fusions in the genes encoding the three isoforms of tropomyo-

sin receptor kinase proteins (NTRK1/2/3) have been found in nearly a dozen distinct tumor

types to date, albeit at low frequency, and have led to near-universal, dramatic, and durable

responses to selective tyrosine kinase inhibitors in clinical trials [11]. These early clinical trial

data led the FDA to grant breakthrough therapy designation to one compound for the treat-

ment of “metastatic solid tumors with NTRK-fusion proteins,” raising the possibility of the

first entirely genomics-driven, tumor type–agnostic drug approval [12]. Similarly, ALK and

ROS1 fusions arising in diseases other than lung cancer have been identified in multiple tumor

types and demonstrate very promising sensitivity to targeted therapy [13]. Without the avail-

ability of broad NGS panel testing, individuals with these alterations and other patients would

miss the opportunity to be treated with effective therapy.

A critical question for justifying the long-term adoption of this technology is determining

the scope of patients who harbor actionable alterations and therefore may benefit from geno-

mically matched therapy. Previously reported clinical sequencing efforts have found that 30%–

80% of advanced solid tumors harbor potentially actionable alterations [2,8]. However, many

of these alterations have not been clinically validated and remain under investigation. Addi-

tionally, we believe that binary classification of actionable alterations oversimplifies interpreta-

tion of data. Nevertheless, as research progresses, novel therapies are developed, and new

clinical trials become available, the number of actionable alterations will continue to increase.

Furthermore, the utility of NGS goes beyond identifying aberrations that are predictive of

response to a targeted therapy and may also predict response to immunotherapy by identifying

MSI or other hypermutated phenotypes, provide important diagnostic or prognostic informa-

tion, and identify treatment-informing biomarkers that predict a lack of drug response.

Leveraging the tremendous amount of genomic data generated by NGS to improve clinical

care will require a multidisciplinary approach involving physicians, scientists, computational

biologists, statisticians, drug companies, and patients. Data sharing across institutions and lab-

oratories engaged in this testing is essential and will allow us to identify patterns and explore

hypotheses that will otherwise be impossible. The American Association of Cancer Research

(AACR) recently introduced Project GENIE, an international data-sharing venture that will

aggregate clinical-grade cancer genomic data with clinical outcomes initially across eight

major cancer centers. The Global Alliance for Genomics and Health is also engaged in an

ambitious effort to pool genomic and clinical data across various stakeholders [14].
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Currently, large panel testing is considered investigational in all but a small number of can-

cers and is therefore generally not reimbursed by third party payers. This lack of reimburse-

ment has been a major barrier to the adoption of NGS sequencing technology and

consequently our ability to evaluate its utility. While payers understandably expect proof that

this testing improves patient outcomes overall, developing this critical evidence base will

require screening of very large numbers of patients. Therefore, we find ourselves in a catch-22.

Large academic institutions have relied heavily on grants and philanthropic contributions to

support internal sequencing efforts, yet this is not sustainable over the long term. This cost

must be shared among all stakeholders and the outcomes carefully measured. Further, our

ability to evaluate the clinical utility of molecular profiling depends on broadening access to

clinical trials for patients treated outside of academic medical centers. To address this need,

several novel study designs are emerging to bring the study to the patient. The Signature study,

for example, utilized a “just-in-time” model of study activation to bring matched targeted ther-

apy to patients utilizing any available genomic testing [15]. The American Society of Clincal

Oncology (ASCO) recently launched its first clinical trial, Targeted Agent and Profiling Utili-

zation Registry (TAPUR) (www.tapur.org), which provides free matched therapy of marketed

drugs to providers and collects a minimal dataset on outcome.

We believe a period of broad access to testing is necessary to accumulate a knowledge base

sufficient to evaluate the clinical utility of biomarkers representing not only common genetic

alterations in common diseases but also rarer alterations and diseases. We have a responsibility

to patients to pursue the promise afforded by this potentially revolutionary technology. Impor-

tantly, containing costs will require close partnership with industries to improve the likelihood

that insights gained from sequencing will be pursued therapeutically. Collaborations, multisite

clinical trials, and data sharing are all necessary to maximize knowledge acquired from

sequencing efforts. While we pursue this ambitious agenda, it is important that we continually

revisit assumptions regarding the clinical benefit of precision medicine to determine if expec-

tations are being met. Only then can we truly judge the value of precision oncology.
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