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Purpose: Studying white matter fibers from diffusion tensor imaging (DTI) often requires them to be
grouped into bundles that correspond to coherent anatomic structures, particularly bundles that con-
nect cortical/subcortical basic units. However, traditional fiber clustering algorithms usually generate
bundles with poor anatomic correspondence as they do not incorporate brain anatomic information
into the clustering process. On the other hand, image registration-based bundling methods segment
fiber bundles by referring to a coregistered atlas or template with prelabeled anatomic information,
but these approaches suffer from the uncertainties introduced from misregistration and fiber tracking
errors and thus the resulting bundles usually have poor coherence. In this work, a bundling algorithm
is proposed to overcome the above issues.
Methods: The proposed algorithm combines clustering- and registration-based approaches so that
the bundle coherence and the consistency with brain anatomy are simultaneously achieved. Moreover,
based on this framework, a groupwise fiber bundling method is further proposed to leverage a group
of DTI data for reducing the effect of the uncertainties in a single DTI data set and improving cross-
subject bundle consistency.
Results: Using the Montreal Neurological Institute template, the proposed methods are applied to
building a full brain bundle network that connects cortical/subcortical basic units. Based on several
proposed metrics, the resulting bundles show promising bundle coherence and anatomic consistency
as well as improved cross-subject consistency for the groupwise bundling.
Conclusions: A fiber bundling algorithm has been proposed in this paper to cluster a set of whole
brain fibers into coherent bundles that are consistent to the brain anatomy. © 2013 Author(s). All
article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0
Unported License. [http://dx.doi.org/10.1118/1.4811155]

Key words: bundling, white matter fibers, diffusion tensor imaging

I. INTRODUCTION

Magnetic resonance diffusion tensor imaging (DTI) has be-
come a primary neuroimaging technique for noninvasive char-
acterization of the structure and architecture of the human
brain in vivo.1, 2 Since its first introduction in the early 1990s,
this technique has been widely used to elucidate the struc-
tural basis for brain function both in healthy3, 4 and disease
conditions.5–11 As alterations of brain function are neces-
sarily accompanied by structural changes in the underlying
neural circuits, characterizing these changes may offer valu-
able insights into the pathogenesis, extent or progression of
the disease, thus holding the potential of guiding therapeutic
interventions.

A large body of DTI-based structural studies rests on fiber
tractography,12 in which local tissue orientations depicted by
DTI are combined and used to delineate and visualize the
courses of fiber tracts at a macroscopic scale. Typically, in-
dividual fibers are first reconstructed, then grouped into co-
herent fiber bundles and assigned labels that have anatomic
interpretations.13 Anatomically labeled fiber bundles provide
the basis for quantitative analysis of fiber structures and com-
parisons of structural properties across different populations
in a physiologically meaningful manner.

To group individual fibers into coherent and anatomi-
cally meaningful bundles, a plethora of fiber bundling meth-
ods have been proposed to date. These methods come in
three different flavors: manual,14–16 clustering based,17–25
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and knowledge-based bundling.26–29 Manual fiber bundling
groups fibers using one or more regions of interest (ROIs)
placed by an experienced operator as constraints to the fiber
courses.14–16 Performance of the manual bundling hinges sig-
nificantly on the accuracy of identifying anatomic landmarks
or structural boundaries. Evidently, such a bundling method
suffers from the drawback of low time efficiency, high oper-
ator biases, and poor intraoperator reproducibility. The situa-
tion is made worse by fuzzy or missing structural boundaries
when inspected visually, which renders accurate and precise
definitions of ROIs nontrivial.

The difficulties and limitations with manual bundling have
been greatly ameliorated by automated fiber bundling, for
which a rich literature of clustering algorithms has been devel-
oped in the recent past.17–25 With no need for prior ROI def-
initions, these methods group fibers automatically according
to their similarities in geometrical properties such as shapes,
locations, or other attributes. While the clustering based meth-
ods are able to generate coherent fiber bundles efficiently by
means of fully automated algorithms, they are purely data
driven, and hence bundle fibers without due regard to their
anatomical plausibility.

A logical compromise between the manual- and clustering-
based bundling methods is knowledge-based bundling.13, 26–29

A common knowledge-based method uses a template of pro-
totypical fiber bundles that are constructed from a subset of
data.13, 28 To bundle reconstructed fiber tracts for a given sub-
ject, the template is first transformed into the subject’s na-
tive space via a registration procedure. All the fibers are then
classified in reference to the prototypical bundles in the tem-
plate. Because the prototypical bundles are usually defined
manually, it would be pretty awkward to perform full brain
fiber bundling, and quite problematic as well given the fact
that our knowledge on distributions of fiber connection routes
in the human brain is far from complete. A ramification of
knowledge-based methods is atlas-based fiber bundling.26, 27

Instead of defining the courses of prototypical fiber bundles
as above, the atlas based method typically bundles fibers with
parcellated gray matter as constraints to fiber terminals. Of
particular note, due to the availability of complete gray mat-
ter parcellations,30 the atlas-based method has the inherent ca-
pability of bundling fibers of the entire brain automatically.
A salient advantage of both the template- and atlas-based
methods is that expert knowledge is incorporated into the
bundling process, and thus all resulting bundles in principle
bear anatomical interpretations naturally. Meanwhile, these
methods have largely alleviated the problems of low time effi-
ciency and poor inter- and intraoperator reproducibilities en-
countered in manual bundling. It should be pointed out, how-
ever, that essential to the accuracy of the knowledge-based
methods is the performance of the registration algorithm used
to transform the template or atlas into the subject’s native
space.

In our earlier work,29 we developed a unified fiber
bundling and registration (UFIBER) algorithm using a tem-
plate based approach. A set of well-established fiber bundles
were chosen to debut the process and performance of the al-
gorithm. In the present study, we extend the UFIBER algo-

rithm so that fibers that connect cortical/subcortical units in
the entire brain can be bundled in a fully automatic man-
ner and consistently across subjects. Similar to the work in
Refs. 26 and 27, an atlas of gray matter parcellation defined
in the standard MNI space is used.30 Obviously, using par-
cellated gray matter in the form of individual functional re-
gions to constrain fiber bundling has direct benefits to in-
tegrated structural-functional studies of the human brain.31

But unlike Refs. 26 and 27, which bundle fibers with some
heuristic proximity rules, we pose the problem of full brain
bundling as an optimization process cast with a more rigor-
ous mathematical framework, in which constraints from gray
matter region parcellation and coherence of white matter fiber
bundling are simultaneously considered and optimized. This
relaxes the requirements for accurate registration, which is of-
ten hard to satisfy if at all owing to practical difficulties such
as poor image contrast between gray matter regions and fairly
complex structures therein. Furthermore, consistent bundling
across subjects offers great advantages in subsequent statisti-
cal analysis of fiber bundle properties as clinical studies are
almost exclusively population based.

In the remainder of this paper, a gray matter constrained
bundle model that integrates constraints from anatomical par-
cellation into a statistical fiber bundle model is first proposed
in Sec. II. This is followed by a fiber bundling algorithm that
generates both geometrically coherent and anatomically con-
sistent bundles for a single subject in Sec. III. In Sec. IV,
a groupwise bundling approach that improves cross-subject
bundling consistency is described. Evaluation of the proposed
algorithm is presented in Sec. V. Finally, the main contribu-
tions of this work and potential future directions are discussed
in Sec. VI.

II. GRAY MATTER CONSTRAINED BUNDLE MODEL

Given a brain atlas, in which gray matter is fully parti-
tioned into L disjoint ROIs and each ROI is associated with
a label l = 1, 2, . . . , L, we assume a registration procedure
transforms all the labeled ROIs into a subject’s space using
homomorphic mapping. Let r denote the coordinates of a ter-
minal point of a fiber x in the subject’s space, and l(r) denote
the ROI label of r. Therefore, a fiber x can be represented by
a space curve connecting l(r1) and l(r2), where r1 and r2 are
the two terminals of fiber x, respectively.

II.A. Uncertainties

The variables r and l(•) are observations of their true val-
ues, and thus contain uncertainty due to observational errors.
Uncertainties of r arise from the fiber tracking procedure,
which has been widely recognized as being highly susceptible
to image noise.32, 33 Fundamentally, the noise susceptibility is
attributable to the integrative nature of fiber tracking, which
leads to greater errors and uncertainties toward the terminals
of fiber tracts.34 Moreover, the commonly used echo-planar
imaging (EPI) sequences for DTI data acquisitions typically
generate images with poor signal-to-noise ratio (SNR), creat-
ing a fair amount of uncertainty in the local fiber orientations
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estimated. Although measures can be taken to partly suppress
the effect of noise prior to or during fiber tracking,35–37 the un-
certainty from noise by nature always exists, albeit to a lesser
extent after noise suppression. In addition, complex structures
of white matter fibers at certain locations, along with inade-
quacies of the tensor model to capture them and the available
fiber tracking algorithms, add another source of uncertainties
to fiber tracts.38 Of note, complex fiber structures may, in prin-
ciple, be resolved by using high angular resolution diffusion
imaging (HARDi) (Refs. 39 and 40) or handled by probabilis-
tic fiber tracking,41–43 but these techniques have not become
routine utilities owing to other complications they involve.

Uncertainties of l(•) are caused by the fact that registra-
tion of brain magnetic resonance (MR) images is particularly
error-prone. As briefly alluded to before, there are two pri-
mary difficulties in the registration: (1) there is a virtual lack
of intensity contrast between neighboring functional regions
in the gray matter, which provides no intensity cues for regis-
tering structures therein; (2) structures in the gray matter are
pretty complex and have considerable anatomical variations
among individuals, rendering precise matching of structural
details a daunting task if possible at all.44 Image noise and ge-
ometric distortions may contribute to the complexity of gray
matter registration as well.

II.B. Gray matter projection model

Given a subject, whose gray matter is parcellated into L
disjoint, labeled regions via atlas mapping, the likelihood of a
fiber terminal r belonging to ROI l = 1, 2, . . . , L is modeled
with a Gaussian distribution as follows:

p(r|l) = (
2πσROI

2
)−3/2

× exp

(
− (r − v(l, r))T (r − v(l, r))

2σROI
2

)
, (1)

where v(l, r) is a point in ROI l closest to r and T denotes the
transpose operation on a vector.

In Eq. (1), distance is used in modeling of terminal-to-ROI
probabilities, and the terminals of a fiber are projected into
their closest points in cortical or subcortical gray matter re-
gions. Variance σ ROI, which is isotropic in this model, is a
parameter related to uncertainties in image registration and
fiber tracking. It is set to a smaller value for more precise reg-
istration and tracking, reflecting the fact that terminal points
are expected to lie closer to their true ROIs, and vice versa.

Brute-force evaluation of the probability p(r|l) in Eq. (1) is
computationally expensive. To improve time efficiency, a dis-
tance transform of ROI l is precomputed and stored in a func-
tion φl(•). This avoids the time consuming process of search-
ing in ROI l for the closest point to r. Therefore, p(r|l) can be
evaluated as

p(r|l) = (
2πσROI

2
)−3/2

exp

(
− (φl(r))2

2σROI
2

)
. (2)

II.C. Gray matter constrained bundle model

For efficient parameter estimation, fibers in a bundle
are modeled with a Gaussian distribution, as in previous
works.22, 29 With a further assumption of point independence
in a fiber, the probability of a fiber x belonging to the bundle
connecting l1 and l2 can be expressed as

p(x|μl1,l2, σl1,l2) =
m∏

i=1

(
2πσl1,l2

2)−3/2

× exp

(
− (xi − μl1,l2,i)

T (xi − μl1,l2,i)

2σ 2
l1,l2

)
,

(3)

where i indexes points along the fiber x and μl1,l2 is the me-
dial axis of the bundle connecting l1 and l2. Typically, μl1,l2 is
an unknown parameter that needs to be estimated by an opti-
mization scheme. Here, an isotropic variance σ l1,l2 is used for
all points along the fibers in all bundles (denoted as σ bundle),
as some bundles may contain a small number of fibers, which
makes estimation of point-specific covariance and its inverse
computationally unstable. x and μl1,l2 are resampled to an
equal number of points and xi and μl1,l2,i denote their ith point.

When clustering fibers solely based on this Gaussian
model, fibers with similar spatial courses would be grouped
into a bundle without respect to their terminal locations. To
use gray matter parcellation as constraints to fiber terminals,
the projection model of fiber terminal points can be included.
Thus, for a fiber x with terminal points r1 and r2, the likeli-
hood of x being in the bundle connecting l1 and l2 is defined
as the joint probability of fiber distribution in a bundle and
gray matter parcellation distribution, i.e.,

p(x|l1, l2) = p(x|μl1,l2, σbundle, σROI)

= p(x|μl1,l2, σbundle)p(r1, r2|l1, l2), (4)

where

p(r1, r2|l1, l2)= max(p(r1|l1)p(r2|l2), p(r1|l2)p(r2|l1)).

Note that the correspondence between r1, r2, and l1, l2 is
chosen to be the one yielding a greater overall probability of
terminal assignments evaluated using Eq. (2).

According to the model in Eq. (4), fibers are bundled con-
sidering both the coherence of fiber tracts and proximity of
their terminals to designated ROIs. Trade-offs between the
fiber bundle coherence and terminal proximity are regulated
by relative magnitudes of the values of bundle variance σ bundle

and ROI variance σ ROI.

III. GRAY MATTER PARCELLATION CONSTRAINED
FIBER BUNDLING FOR A SINGLE SUBJECT

In this section, an algorithm is proposed to bundle the en-
tire brain of a single subject based on the gray matter con-
strained bundle model.
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III.A. Objective function

With a complete gray matter parcellation scheme, fibers of
the entire brain can be modeled as a mixture of gray matter
constrained bundle models

p(xall|μ, σbundle, σROI)

=
J∏

j=1

L∑
l2=l1+1

L∑
l1=1

p(xj |μl1,l2, σbundle, σROI), (5)

where j indexes a fiber in the set of J fibers over the entire
brain and σ bundle, σ ROI are, respectively, the bundle and ROI
variance, which in this work are fixed based on several inves-
tigation studies (see Sec. V.D below). Mixture proportions are
set to one for all the bundles. This is because it is observed that
the number of fibers in some bundles, such as those passing
the corpus callosum, is significantly greater than that of other
bundles and it is not desirable that fibers prefer to be assigned
to bundles with big mixture proportions. Therefore, the only
variable that needs to be estimated is the bundle medial axis
μl1,l2. Note that the second summation is taken from l1 + 1
to L for the index l2 since we assume μl1,l1 does not exist and
μl2, l1 and μl1,l2 are identical.

Assuming each fiber is an independent sample from this
distribution, an optimal μ can be estimated by maximizing
the following likelihood:

μ̂ = arg max
μ

p(xall|μ, σbundle, σROI)

= arg max
μ

J∏
j=1

L∑
l2=l1+1

L∑
l1=1

p
(
xj |μl1,l2, σbundle, σROI

)
.

(6)

III.B. Expectation and maximization (EM) algorithm

To solve for an optimal μ in Eq. (6), the classic solution,
EM algorithm,45 is employed in this work. Given an initial μ0,
an expectation (E), step and maximization (M) step are alter-
natively performed until convergence. In the E step, based on
the current estimation of μn−1, the fiber-to-bundle member-
ship is computed with the formula below

mn
j,(l1,l2) = p

(
xj

∣∣μn−1
l1,l2, σbundle, σROI

)
L∑

l2=l1+1

L∑
l1=1

p
(
xj

∣∣μn−1
l1,l2, σbundlle, σROI

) , (7)

where mn
j,(l1,l2) represents the membership of fiber xj to bun-

dle (l1, l2). In essence, mn
j,(l1,l2) is the likelihood of fiber xj to

bundle (l1, l2) normalized across all the bundles.46, 47

In the M step, using the estimated mn
j,(l1,l2), an optimal μn

can be found by maximizing the likelihood below:

E(μn) =
J∑

j=1

L∑
l2=l1+1

L∑
l1=1

mn
j,(l1,l2)

× log
(
p

(
xj |μn

l1,l2, σbundle, σROI
))

, (8a)

which leads to the update function for μn,

μn
l1,l2 =

J∑
j=1

mn
j,(l1,l2)xj

J∑
j=1

mn
j,(l1,l2)

. (8b)

The above update scheme is essentially a weighted sum of
all fibers using the membership. Using only the Gaussian bun-
dle model [Eq. (3)], the membership is solely determined by
the distance between individual fibers and their correspond-
ing bundle medial axis, which leads to a minimization of the
inbundle variation or the coherence of resulting bundles. Us-
ing the gray matter constrained bundle model, a decay term
[Eq. (1)] is used to attenuate the membership based on the
distances between fiber terminal points to the corresponding
ROIs, which constrains the bundling process so that the bun-
dle center would not deviate too much from its correspond-
ing ROI. The inherent coherence minimization force is to cor-
rect inaccurate ROI labeling caused by image misregistration,
while the parcellation constraint places a certain level of con-
fidence on coregistrated ROIs.

III.C. Implementation issues

From Eqs. (7) and (8), it can be seen that the computational
complexity is proportional to the total number of fibers, which
is huge (∼40 000) for each subject. To reduce the number of
fibers in the computation, mj, (l1,l2) is set to zero if one ofxj’s
end points has a distance greater than 3σ ROI from ROI l1 or
l2. Then mj, (l1,l2) would never be evaluated, nor would xj be
involved in the update of μl1,l2. With this simplification, a sig-
nificant amount of computation is avoided, leading to a CPU
time of about 1 min per iteration (Intel Xeon 5150 2.66 GHz).

To find an initial estimate of μ0, all fibers are first classified
into a bundle that connects a pair of ROIs that their end points
are closest to. Then μ0 for each pair of ROIs can be computed
as the mean value of all the fibers in the bundle connecting
them. Since all fibers have already been resampled to the same
number of points, each point in the mean fiber is simply the
average point of all the corresponding points in the bundle.

In each E step, fibers are assigned to the bundle with
the maximum membership value. The algorithm automati-
cally terminates when the total number of changes to fiber-
to-bundle assignment or the number of iterations reaches a
preset threshold (20 and 10, respectively, in this work).

IV. GROUP CONSISTENT FIBER BUNDLING

In this section, an algorithm is proposed to bundle the en-
tire brains for a group of subjects based on the gray matter
constrained bundle model.

IV.A. Objective function

The proposed groupwise bundling is formulated as esti-
mating a common bundle model for a given set of subjects.
Each fiber set is assumed to be an independent sample from
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the underlying common bundle model. Such an assumption
can be safely made when fiber sets are from a group of sub-
jects with the same condition or even from the same subject.
Let xs denote the sth fiber set in the subject group, where s
could range from 1 to S, the total number of subjects in the
group. Using the gray matter projection bundle model, the un-
known parameter, bundle centroids μ, can be estimated using
the below Bayesian rule,

μ̂ = arg max
μ

S∏
s=1

p
(
xall

s |μ, σbundle, σROI
)
,

where σ bundle, σ ROI are the bundle variance and ROI variance,
respectively.

One problem with the above estimation is that each fiber
set is in its own native space as subjects may be scanned in
different positions in scanners. Therefore, it is necessary to
transform all fiber sets into a common space, where the bun-
dle model will be estimated. A T1 or fractional anisotropy
(FA) based image registration procedure may be applied to
this problem, but these approaches align fibers by only min-
imizing their image intensity difference without considering
the underlying fiber directions. As T1 or FA intensity only
indicates the type of the underlying tissue but nothing about
fiber orientations, two voxels with different fiber orientations
may be incorrectly considered to correspond simply due to
their T1 or FA intensity similarity. To address this issue, fibers
shall be utilized to make the alignment among a group of
subjects. To avoid the alignment of whole fiber sets, which
contain a huge number of fibers, bundle centroids can be effi-
ciently aligned with each other through a nonrigid transforma-
tion. However, since the fiber bundles are yet to be estimated,
there are no reliable bundles that can be used to make this
alignment.

As the solutions to the groupwise bundling and spatial
alignment could benefit each other, these two problems are
coupled into a unified objective function and optimal transfor-
mations and bundling are jointly estimated. Let Ts be a trans-
formation that warps the fiber set xs into a common space.
This can be cast as an optimization problem that simultane-
ously seeks an optimal model μ and optimal transformations
Ts from subject fiber sets’ native spaces to the common space
given a group of fiber sets xs. Using a Bayesian estimation
framework, an optimal solution can be obtained by a maxi-
mum a posteriori (MAP) approach,

θ = (T1,2,...,Sμ)

= arg max
T1,2,...,Sμ

S∏
s=1

p
(
xall

s
∣∣μ, σbundle, σROI, Ts

)
. (9)

To derive the expression of p(xall
s |T1,2,...S,μ, σbundle,

σROI), it is assumed that each transformed fiber in the com-
mon space is an independent and identically distributed sam-
ple that is drawn from the distribution of the common bundle

model, which leads to the below formula,
S∏

s=1

p(xall
s |Ts ,μ, σbundle, σROI)

=
S∏

s=1

p(Ts(xall
s)|μ, σbundle, σROI)

=
S∏

s=1

Ms∏
j=1

p(Ts(xs
j )|μ, σbundle, σROI)

=
S∏

s=1

Ms∏
j=1

K∑
k=1

p(Ts(xs
j )|μk, σbundle, σROI), (10)

where j, k, s index fibers in a target fiber set, fiber bundles in
the common bundle set, and subject in the group, respectively.
There are totally K bundles that need to be estimated and Ms

fibers for each subject fiber set xs. p(Ts(xs
j )|μk, σbundle, σROI)

is evaluated using the same formula as Eq. (4), where a bundle
is indexed by the ROI pair (l1, l2). The index k is in essence
the same as the (l1, l2). The optimal parameters (T1, 2, . . . , S,μ)
can be found by maximizing the above probability [Eq. (10)].

IV.B. EM algorithm

The above optimization problem can be solved with the
Expectation and Maximization algorithm. Let n denote the it-
eration of the EM algorithm and (Tn, 1, 2, . . . , S,μn) denote the
resulting parameters estimated in that iteration. In the E step,
the membership probability of a fiber xs

j to the kth bundle is
estimated as follows:

m
s,n
j,k = p

(
Tn−1,s

(
xs

j

)∣∣μn−1
k , σbundle, σROI

)
K∑

k=1
p
(
Tn−1,s

(
xs

j

)∣∣μn−1
k , σbundle, σROI

) . (11)

In the M step, based on the fiber membership m
s,n
j,k , the

original objective likelihood is turned into

EEM(Tn,1,2,...S,μn) =
S∑

s=1

Ms∑
j=1

K∑
k=1

m
s,n
j,k

× log
(
p

(
Tn,s

(
xs

j

)∣∣μn
k , σbundle, σROI

))
.

(12)

The above objective function can be optimized by firstly
fixing the transformations Tn, 1, 2, . . . S to be Tn − 1, 1, 2, . . . Sand
then solving the differential equations,

dEEM

dμn
= 0,

which leads to the below solution

μk,i
n =

S∑
s=1

Ms∑
j=1

m
s,n
j,kTs,n−1

(
xs

j,i

)
K∑

k=1

S∑
s=1

Ms∑
j=1

m
s,n
j,k

, (13)

where i is used to index the points on the fiber.
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After μk,i
n is computed and fixed, we minimize the below

objective function to estimate transformations Tn, 1, 2, . . . S,

EEM(Tn,1,2,...S) =
S∑

s=1

Ms∑
j=1

K∑
k=1

m
s,n
j,k

Nk∑
i=1

(
Ts,n

(
xs

j,i

) − μn
k,i

)

×(
Ts,n

(
xs

j,i

) − μn
k,i

)T ))
,

where Nk is the number of fibers in the kth subject.
The minimization of EEM(Tn, 1, 2, . . . S) is actually a least-

squares problem, the computational cost of which depends
mainly on the number of target fibers Ms in each sub-
ject and the total number of subjects S. To improve the
computation efficiency, we circumvent the direct optimiza-
tion of EEM(Tn, 1, 2, . . . S) by minimizing a simpler form
EEM

′(Tn, 1, 2, . . . S) as follows:

EEM
′(Tn,1,2,...S) =

K∑
k=1

Nk∑
i=1

(
Ts,n

(
yn

k,i

) − μn
k,i

)

×(
Ts,n

(
yn

k,i

) − μn
k,i

)T ))
, (14)

where

yn
k,i =

S∑
s=1

Ms∑
j=1

m
s,n
j,kxs

j,i .

Here, yn
k,i can be interpreted as the current estimation of

bundle centroids for individual subject k. The optimization
of Eq. (14) is essentially aligning bundle centroids of each
subject to their common model centroids. This simplification
would make the computational complexity proportional to the
number of bundles and the number of points in each bundle,
which is much smaller than the total number of fibers in the
whole data set. In the case of whole brain bundling, even with
reduction, the computational complexity is still unacceptable
due to a large number of bundles (typically ∼1000). There-
fore, each centroid is further downsampled (three times) to fit
the computation to our hardware resources.

Theoretically, any form of transformation can be used in
the above registration framework. The thin-plate spline (TPS)
transformation is chosen in this work due to its smoothness in
deformation fields and closed-form solution for warping and
parameter estimation.42

To compute the initial values for the parameters
(T0,1,2, . . . , S,μ0), a rigid registration is first performed to
give a rough alignment of all the subjects to the template
(T0,1,2, . . . , S). Then fibers from all subjects are transformed to
the template space and classified as bundles that connect a
pair of ROIs. μ0 is obtained by combining the same bundles
from all the subjects and computing their mean values.

V. EXPERIMENTS AND RESULTS

V.A. Gray matter parcellation template

In Tzourio-Mazoyer’s work,18 the gray matter in the Mon-
treal Neurological Institute (MNI) single subject MRI data
is manually labeled into 90 ROIs, the so-called automated
anatomical labeling (AAL) mask, including 39 cortical re-

gions on each brain hemisphere and 12 subcortical regions.
Similar to the work of Gong et al.,2 these ROIs are consid-
ered to be basic units of the brain gray matter, and fiber bun-
dles connecting pairs of ROIs are studied in this work.

V.B. Imaging and fiber tracking

The T1 weighted and diffusion weighted images were ac-
quired for ten healthy human subjects using a 3T Philips
Achieva MR scanner. Informed consent was given by the sub-
ject according to a protocol that was approved by the local
ethics committee. Each T1 volume contains a 170 × 256
× 256 matrix with an isotropic resolution of 1 × 1 × 1 mm3.
The DWI data were acquired with 32 noncollinear weighting
directions and a single shot, echo-planar, pulsed gradient spin
echo imaging sequence with a diffusion weighting factor (i.e.,
b-value) of 1000, which generated a volume of 128 × 128
× 60 voxels at an isotropic resolution of 2 × 2 × 2 mm3

for each direction. Three repeated scans were performed and
coregistered and corrected for motion and distortion. A lin-
ear least-squares fitting was used to estimate diffusion ten-
sors. Then a streamline tracking algorithm was started at all
voxels with FA > 0.15, and followed sequentially along the
local principal diffusion direction at a step size of 2 mm. A
fiber was terminated when voxels with FA below 0.15 were
met or the angle between the principal diffusion directions of
two consecutive points exceeded 41◦. The above procedure
generated a whole volume fiber set (∼40 000 fibers) for each
subject.

V.C. Registration of AAL mask with fibers

To transform a subject’s fibers to the MNI space, the MNI
T1 template is registered with the subject’s T1 images using
intensity difference as a metric. As the subject’s T1 images
are not in the exact space as the DTI data and fibers, the T1
images need to be first aligned with the associated b0 diffu-
sion weighted images. As the two types of images have differ-
ent intensity distributions, normalized mutual information42

is used as the registration metric. Moreover, a rigid transfor-
mation is estimated since both image sets are from the same
subject and thus a rigid transformation should be sufficient
to characterize the transformation. The T1 images are warped
and then registered with the T1 MNI template. The result-
ing transformation maps fibers from DTI space to MNI space,
where the AAL mask is used as the parcellation constraint.

V.D. Evaluations of single-subject based bundling

Although an anatomical mapping is already provided by
the above registration process, the inaccuracy of registration
likely results in bundles with poor coherence. On the other
hand, a coherent bundle from a clustering algorithm may have
poor consistency with this anatomical mapping.

V.D.1. Metrics

To quantitatively characterize the bundling results, two
metrics are proposed in this work: (1) mean inbundle
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variation and (2) mean end-to-ROI distance. Mean inbundle
variation (MIV) generally measures the coherence of a bun-
dle, which is expressed as the mean distance of fibers to their
corresponding bundle centroids,

MIV = 1

J

J∑
j=1

|xj − μϕ(j )|, (15)

where |•| denotes the distance between two fibers and ϕ(•)
is the fiber assignment function that maps fiber xj to the bun-
dle with maximum membership. The total distances are nor-
malized by the number of fibers J. The mean end-to-ROI dis-
tances (MED) characterize the deviation of bundles from their
assigned ROI pair. This metric can be expressed as follows:

MED = 1

J

J∑
j=1

φl1ϕ(j ) (r1j ) + φl2ϕ(j ) (r2j ), (16)

where r1j and r2j are start and end points of fiber xj, and l1ϕ(j)

and l2ϕ(j) correspond to the two ROIs, which define the bun-
dle that xj is assigned to. A smaller MED usually suggests
resulting bundles are consistent with the original ROI defini-
tion, while a bigger MED shows resulting bundles may not
connect their corresponding ROIs correctly.

V.D.2. Convergence

The single-subject bundling algorithm (σ bundle = 2 vox-
els, σ ROI = 2 voxels) is applied to all ten subjects’ DTI data.
The number of fiber assignment changes is recorded at each
iteration, and the algorithm achieves convergence (below 20
changes) in nine iterations for all ten cases (see Fig. 1).

V.D.3. Effect of the ROI variance

For one of the subjects, the proposed bundling algorithm
is applied several times with variance σ ROI changing from 0.5
to 5. The plot in Fig. 2(a) shows that the number of itera-
tions that is needed to reach convergence increases with the
increase of σ ROI, which indicates that a smaller σ ROI would
make the algorithm converge faster. The increase of variance
puts less confidence on the ROI mapping and thus the effect
of the ROI constraint is weakened so that the clustering pro-

FIG. 1. The variation of the number of fiber-to-bundle assignment changes
with respect to iteration index for all ten subjects.

FIG. 2. The variations of (a) number of iterations to convergence, (b) mean
inbundle variation, and (c) mean end-to-ROI distance with respect to different
ROI variance.

cess takes longer. In Fig. 2(b), the mean inbundle variation
decreases with the increase of σ ROI, which leads to a decreas-
ing contribution of end point positions to the bundle model.
It also can be seen from Fig. 2(c) that the mean end-to-ROI
distances are increasing with the increase of σ ROI, as a big-
ger σ ROI would reduce the “force” of dragging a bundle to
its corresponding ROI pair so that the bundle is more free to
move away from ROIs. From these results, we can see that a
zero σ ROI would turn the algorithm into a simple one that just
labels fibers based on their closest ROI pairs, while a posi-
tive infinite σ ROI would turn the algorithm into a pure cluster-
ing algorithm without consideration of the anatomical infor-
mation. Based on this result, σ ROI is set to 2 for the follow-
ing experiments as this setting can generate relatively smaller
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values for both the mean inbundle variance and end-to-ROI
distances.

V.D.4. Comparisons with baseline methods

In this experiment, the proposed algorithm is compared
with two other baseline methods: (1) a clustering without
gray matter projection model and (2) directly assigning fibers
based on their closest ROI label.

Two examples of the resulting bundles from these meth-
ods are illustrated in Fig. 3. In the first row, the bundle con-
necting the triangular part of the left inferior frontal gyrus to
the left caudate is displayed for both the proposed method
Fig. 3(a) and the ROI constraint only method Fig. 3(b). It can
be seen that in Fig. 3(b) several outlier fibers, which deviate
significantly from the majority of the bundle, are also grouped
into this bundle as their end points fall into the correspond-
ing ROIs. These fibers are discarded in the proposed method
as their existence in this bundle would increase the inbun-
dle variation or reduce the coherence of the bundle. On the
other hand, a clustering algorithm that only aims at minimiz-
ing such coherence will also produce some erroneous results
as in Fig. 3(d). Although initialized as a bundle connecting
the left hippocampus to the left supplementary motor area, the
bundle still finally converges to a very small bundle that does
not even connect these two specific ROIs. The proposed algo-
rithm is capable of constraining the bundle to the two ROIs so
that the resulting bundle will not move too far away.

To further quantify this performance, the mean inbun-
dle variation and end-to-ROI distances are summarized in
Fig. 4 for all ten subjects. Although the clustering only and
ROI constrained only methods achieved minimum inbundle
distance and end-to-ROI distances, respectively, they also
generate large values for the other metric. On the other hand,

FIG. 3. An illustrative example of differences of the parcellation constrained
bundling with the clustering only and the parcellation constraint only method.
(a) The bundle connecting the triangular part of the left inferior frontal gyrus
to the left caudate (parcellation constrained clustering). (b) The same bun-
dle as (a) (parcellation constraint only). (c) The bundle connecting the left
hippocampus to the left supplementary motor area (parcellation constrained
clustering). (d) The same bundle as (c) (clustering only).

FIG. 4. The plot of mean inbundle variation (a) and end-to-ROI distances
(b) for the parcellation constrained bundling and the two baseline methods.

the proposed algorithm yields close-to-minimum values for
both metrics without deteriorating the other metric.

V.D.5. Demonstrations of resulting bundles

Due to the image misregistration and the uncertainty in the
DTI fibers, it is possible that some bundles are generated for
nonexisting connections between two cortical/subcortical re-
gions. To eliminate these outlier bundles, only bundles con-
sistent across the whole group are identified and kept as valid
connections. To measure the consistency, we computed the
mean differences of each individual bundle’s mean and its
group mean (discussed further in Sec. V.E). Bundles with
above 2.5 voxels difference are discarded, resulting in a total
of 36 bundles which are rendered in Fig. 5 for two example
subjects.

V.E. Evaluations of groupwise bundling

In the case of the groupwise bundling, the initial regis-
tration is not considered to be sufficient to provide bundle-
wise alignment. Therefore, in addition to bundling, bundles
from different subjects are aligned simultaneously, which
contributes to the preservation of cross-subject consistency.
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FIG. 5. Saggittal (left), axial (middle), and coronal (right) view of whole
brain bundling results for two example subjects (subjects 3 and 6) using the
parcellation constrained bundling.

V.E.1. Metrics

To measure the cross-subject bundle consistency, a mean
bundle centroid difference (MBCD) is proposed and com-
puted as follows:

MBCD = 1

KS

K∑
k=1

S∑
s=1

∣∣μs
k − μk

∣∣, (17)

where μs is the subject-specific bundle centroid, μ is the bun-
dle centroid of the group, and k indexes the bundle. This
metric essentially measures the deviation of subject-specific
models from the group mean. The groupwise mean inbun-
dle variation (GMIV) is also measured by computing the av-
erage distance of fibers to their corresponding group bundle
centroids

GMIV = 1
S∑

s=1
Ms

S∑
s=1

Ms∑
j=1

∣∣xs
j − μϕ(xs

j )

∣∣, (18)

where the assignment function ϕ(xs
j ) assigns the fiber xs

j to
a group common bundle. The coherence metric GMIV is re-
lated to consistency, as consistent bundling tends to yield co-
herent bundles.

V.E.2. Baseline methods

To demonstrate the main advantages of the proposed algo-
rithm, we compared it with three different baseline methods.
In method I each fiber set from the subject group is individ-
ually bundled using the gray matter parcellation constrained
bundling algorithm with no attempt to correct for image mis-

TABLE I. The consistency and coherence metrics (in voxels) for all four
types of groupwise bundling methods.

Group consistent
fiber bundling Method I Method II Method III

GMIV 3.74 4.98 4.54 4.41
MBCD 1.31 2.78 2.20 1.90

FIG. 6. Saggittal (left), axial (middle), and coronal (right) view of whole
brain bundling results for two example subjects (subjects 3 and 6) using the
groupwise bundling.

registration. Method II bundles the fibers in a way identical
to method I except that a TPS transformation is applied after-
wards to transform each individual subject’s bundle centroids
to the corresponding common centroids. Method III uses a
joint clustering scheme that treats fibers from all subjects as a
single fiber set, and performs gray matter parcellation con-
strained bundling on this combined data set. Note that all
fibers are transformed to the MNI space by the preliminary
image coregistration for all the three methods.

The above metrics are computed and summarized in
Table I for all four methods, including the proposed method
and the other three baseline methods. It can be seen that the
proposed consistent groupwise bundling algorithm has the
smallest values for both metrics, which indicates its superi-
ority in preserving consistency. Although a nonrigid transfor-
mation is also used in method II to align bundles with their
group mean, the resulting metric values still cannot compete
with the proposed algorithm due to the absence of this trans-
formation in the bundling process. In each iteration of the pro-
posed algorithm, the clustering would favor the direction that
could generate more consistent bundling. On the other hand,
the joint clustering without transformation is less likely to re-
duce consistency very much due to the misalignment caused
by scalar-image coregistration. Therefore, from this example,
one can see that it is important to integrate the nonrigid trans-
formation into the clustering process.

V.E.3. Demonstrations of resulting bundles

To demonstrate some identified connections, the same
elimination procedure as used for the single subject bundling
experiments (see Sec. V.D.5) is applied to the resulting
fiber bundles, generating 45 bundles for each subject (see
Fig. 6 for two representative subjects).

VI. CONCLUSION AND DISCUSSION

To obtain a set of DTI fiber bundles, one must start with
DTI imaging, track fibers by connecting DTI tensor direc-
tions, and then cluster these fibers based on fiber similarities.
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There is a significant amount of noise and uncertainty in each
step. Noise introduced in the DTI imaging step makes the es-
timated fiber direction at each voxel unreliable. By following
these unreliable directions a fiber is generated. Therefore, any
uncertainty in these directions causes the fiber to vary from its
true shape and position. This issue is more serious on the ends
of the fiber as these points are farther away from the starting
point and errors are accumulated in the tracking process. To
cluster these fibers into bundles, fiber similarity needs to be
measured. However, this step is more challenging, as it is still
an open question on how to measure curve similarity and there
are lots of issues such as point correspondence and metric and
so on. Therefore, this kind of noise must be reduced to gener-
ate accurate fiber bundles for a study.

Using prior knowledge and smoothing is the major way of
reducing noise. For example, on DTI images it could be as-
sumed that intensities of close voxels should be similar. This
prior knowledge can be utilized to smooth images by aver-
aging intensities of neighboring voxels to get rid of imaging
noise. If it is only assumed that only voxels in homogenous
regions have similar intensities, one should only smooth vox-
els on nonboundary regions, which leads to an anisotropic de-
noising method. Different prior knowledge could lead to dif-
ferent denoising algorithms. Similarly in fiber tracking, the
prior knowledge that two neighboring points along the curve
should have similar directions has been frequently used to re-
duce the noise in the fiber tracking, although this prior can be
integrated into fiber tracking in different ways, such as sim-
ply smoothing a curve to reduce curvature or using it as a
Bayesian prior.

The basic motivation of this paper is to introduce useful
priors to reduce the noise in the fiber bundling process. In ad-
dition to the traditional prior that similar fibers should stay
in the same bundle, we proposed a novel prior based on the
anatomical information of human brain, i.e., bundles should
have meaningful correspondence to the real brain anatomy.
The anatomical prior is much more reliable than the imag-
ing data obtained through a single DTI scan, as it is built
from numerous imaging data sets and validated by human
experts. Therefore, fiber bundles deviating from the anatomy
structure are corrected by enforcing this prior. We also de-
veloped a Bayesian algorithm to combine the traditional and
the anatomical prior to make them work together. Another
useful prior introduced into fiber bundling is that bundles
from a group of similar subjects should have similar struc-
tures. With this prior, bundles in a subject are smoothed by
bundles from his/her “neighboring” subjects. A groupwise
bundling algorithm is proposed in this paper to make this
prior integrated into the Bayesian clustering framework. In
summary, the major contribution of this paper is the explor-
ing of different priors to reduce the uncertainty of DTI fiber
bundling.

Similar to other smoothing techniques, oversmoothing
could be a potential issue to the use of priors in reducing
noise. In other words, true individual variations could also be
falsely treated as noise and removed due to its difference from
the prior, such as the brain anatomical template or the mean
bundle of the subject group. This could be the focus of future

work, identifying the right procedure of tuning the algorithm
parameters.

Two important aspects ignored in this paper are the under-
lying diffusion models and fiber tracking algorithms that are
used to generate the input to the presented method. Although
they are not the focus of this paper, we do realize that the re-
sulting fiber bundles are heavily affected by these factors. The
proposed method can only yield the fiber bundles for the en-
tire brain only if the input fibers contains all the fibers in the
entire brain. We use a tensor model and streamline fiber track-
ing algorithm for demonstration purposes. However, more
accurate models with higher angular resolutions and more ac-
curate fiber tracking algorithms (e.g., probabilistic tracking
algorithms) could be potentially used to improve the cover-
age and accuracy of the resulting fiber bundles.
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