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Abstract: The use of robotics in harsh environments, such as nuclear decommissioning, has increased
in recent years. Environments such as the Fukushima Daiichi accident site from 2011 and the
Sellafield legacy ponds highlight the need for robotic systems capable of deployment in hazardous
environments unsafe for human workers. To characterise these environments, it is important to
develop robust and accurate localization systems that can be combined with mapping techniques
to create 3D reconstructions of the unknown environment. This paper describes the development
and experimental verification of a localization system for an underwater robot, which enabled
the collection of sonar data to create 3D images of submerged simulated fuel debris. The system
was demonstrated at the Naraha test facility, Fukushima prefecture, Japan. Using a camera with a
bird’s-eye view of the simulated primary containment vessel, the 3D position and attitude of the
robot was obtained using coloured LED markers (active markers) on the robot, landmarks on the
test-rig (passive markers), and a depth sensor on the robot. The successful reconstruction of a 3D
image has been created through use of a robot operating system (ROS) node in real-time.

Keywords: robotics; nuclear characterization; underwater; submersible; ROV; 3D reconstruction;
mapping; localization; vision

1. Introduction

In 2011, a tsunami struck the coast of Japan which caused the Fukushima Daiichi nuclear power
plant back-up generators to fail. The loss of power meant that the cooling systems failed, leading to the
fuel melting. As the fuel melted, it fell to the bottom of the reactor pressure vessels (RPVs), then melted
through to the base of the pedestal within the primary containment vessel (PCV) [1].

Areas within the Fukushima nuclear power plant are now classified as being hazardous.
High radiation levels in the region of 10 Gy·h−1 have been recorded [1,2], with higher dose-rates
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predicted further into the power plant. The area is also very compact with debris strewn across many
areas making access very difficult. There have already been examples of robots either failing due to
radiation [3], or becoming entangled and stuck [2] within Fukushima. It is therefore imperative to
develop robust systems capable of characterising the environment and returning the required data [4].

To enable decommissioning of the site, the exact location of the remaining fuel debris must be
found and the fuel characterised, both physically and radiologically. The fuel debris is currently
submerged to keep the remaining fuel cool and continually circulated to enable the water to remain
cool. Due to this circulation of water, there are consistent, albeit slow, currents within the water,
dust, rust, and sludge, with poor turbidity and lighting conditions. Any system deployed within
the environment must have a small form-factor, operate in variable and unknown environments and
offer safe control through fast refresh-rates of position. These constraints are also true of nuclear
decommissioning sites such as the Sellafield legacy ponds for nuclear fuel storage.

A number of submersible robots have been developed to characterise the submerged
environments. These include the “Little Sunfish” [5] developed by Toshiba, Hitachi’s swimming
robot [6], and the University of Manchester’s AVEXISTM robot [7]. Plant operators must be able to
localise the remotely operated vehicle (ROV), which will enable the operators to know the real-world
position of fuel debris and nuclear waste that is characterised by the ROV. 3D reconstructions of the
environment can then be made with radiological data over-laid onto the model.

Naraha Technology Demonstration Facility

The ability of our ROV and sensor to complete this task was experimentally verified through a
technical demonstration at the Naraha test facility, Japan. The test facility replicates the conditions
(i.e., the shape of the environment and depth) of the reactors at the Fukushima accident site in Japan.
The Naraha Tank is a 5 m wide by 5 m tall cylinder used to test platforms that might be deployed
in the Fukushima reactors. Due to the available testing facility, our proposed solution had to be
simple enough to deploy in a short period of time and robust to unforeseen difficulties arising out of
development of the technology in the UK before demonstration in Japan.

Figure 1a,b outline the Naraha Tank in which the AVEXISTM was deployed. Figure 1a is the
working space on the top of the tank with Figure 1b highlighting the windows around the outside to
observe the ROV during operation.

(a)
(b)

Figure 1. View of the access to the robot test pool can be seen in (a), and overall view of the robot test
pool showing the side view windows and the access to the pool can be seen in (b) [8].

Simulated fuel debris, as seen in Figure 2, was covered in simulated sludge (to simulate the sludge
that has built-up in the PCV over the last seven years) and then lowered to the bottom of the tank. It was
made up of various shapes and sizes of materials, indicative of the expected Fukushima environment.
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(a)

(b)

Figure 2. Simulated debris placed at the bottom of the tank as seen in-air, (a), before simulated sludge
was added and from a submerged camera after deployment with sludge, (b).

2. Proposed Solution

The proposed solution to demonstrate the characterization of submerged nuclear fuel debris
and waste, is to adapt The University of Manchester AVEXISTM ROV to physically characterise the
submerged environment through use of a mounted IMAGENEX 831L sonar [9]. This will then be
combined with the vision localization system outlined in Section 3, that will deploy a camera above
the working environment. A 3D reconstruction of the inside of the environment could then be created
from this combined data that would highlight the location and physical dimensions of the fuel debris.

2.1. The AVEXISTM Remotely Operated Vehicle

The AVEXISTM ROV, that will be used as a research platform within this work, was developed in
collaboration between the University of Manchester, the University of Lancaster and the Japan Atomic
Energy Agency (JAEA), the National Maritime Research Institute (NMRI), and Nagaoka University of
Technology in Japan. It is a 6 in diameter, 300 mm long, three degrees of freedom (d.o.f) ROV that is
both powered and communicated with through a single twisted pair of wires. Five aquatic pumps
on each end-cap propel the AVEXISTM with neutral buoyancy maintained through the use of ballast.
The AVEXISTM has a payload of approximately 1.5 kg. Initially designed to aid in characterization of
nuclear storage fuel tanks, it has been adapted for use within Fukushima. Figure 3 is an overview of
the ROV during an experiment.

Figure 3. Mounting of the IMAGENEX 831l sonar beneath the AVEXISTM.

2.2. Underwater Localization

The majority of underwater localization systems are based on measuring the range between a
speaker or acoustic modem and a hydrophone [10]. They can reach localization and communication
distances up to 10 km or even more by hopping through a network of modems covering a large
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area [11]. Range-based acoustic positioning systems can achieve accuracies of less than half a metre
when the environment conditions are ideal [12].

It is rare for environmental conditions to be ideal however, as acoustic systems are strongly
affected by environmental factors such as the depth of water (shallow water decreases the performance),
multipath interference due to cluttered or noisy environments (e.g., enclosed environments or seabed),
pressure/temperature gradients, ambient noise, salinity, turbidity and, if the underwater vehicle (UV)
is moving fast enough, motion-induced Doppler shift [13].

Alternative underwater localization technologies include electromagnetic (EM) [14], inertial [15],
sonar [16], Lidar [17], visual simultaneous localization and mapping (SLAM), [17–20] and sonar
SLAM [21–23]. Table 1 summarises and compares a range of underwater localization technologies and
shows the importance of different characteristics of the working environment.

Table 1. Summary of the most common underwater localization technologies against the
low/moderate/high importance of possible characteristics of the environment. Also included for
comparison are range, accuracy and costs.

Acoustic Electromagnetic (EM) Vision Inertial Sonar Lidar

Visibility N/A N/A high N/A N/A high
Saliency N/A N/A moderate N/A high high
Line of sight high moderate/high high N/A N/A N/A
Conductivity N/A high N/A N/A N/A N/A
Latency high low moderate low high moderate
Range up to 10 km 0.05–1 m vis. dependant N/A 1–50 m vis. dependant
Accuracy 0.5–5 m 1–5 cm 10–20 cm 1 cm–∞ 5–100 cm 1 mm–5 cm
Cost medium low low low high very high

The requirements for the localization system to be deployed in this research include a highly
accurate system, in an enclosed environment (less than 5 m in diameter and 5 m deep) offering
moderate latency. Acoustic systems can be used effectively at long ranges, but their use in small
confined spaces, such as those encountered at Fukushima Daiichi, is limited due to the multipath
effect cause by the submerged structures and the environment boundaries. In the case of EM based
systems, their working range is limited to approximately one metre before repeaters are required, while
inertial systems are not reliable over long time periods, due to drift. Sonar systems requiring complex
SLAM algorithms to accurately calculate position, struggle in enclosed featureless environments [24].
The proposed test facilities offer few features on the walls of the tank, reducing the accuracy of sonar
SLAM based systems.

Visual SLAM techniques also struggle with featureless environments [25], reducing accuracy with
loop-closure difficult in a repetitive cylindrical tank environment. Lidar systems are prohibitively big
and expensive. The accuracy and latency of image-based systems are mainly limited by the resolution
of the camera and visibility. The visibility of the proposed environment is known to be relatively clear
due to constant recycling, therefore, a vision localization system was chosen for the inspection tasks
outline in Section 1.

A vision-based localization system can be achieved using a camera mounted above the proposed
environment to track the location of the ROV [26]. By combining the vision system with a
pressure sensor, full 3D coordinates for the AVEXISTM could be estimated. The target accuracy
was approximately 10 cm. The accuracy of this system was predicted to be appropriate for the aim of
stitching sonar slices together to develop a 3D reconstruction of the submerged environment.

Commercially available external vision-based localization systems are prohibitively expensive
and are also not suitable for this particular use-case as they are optimised for air operation, rather than
submerged, and they require multiple cameras and calibration processes not possible in the enclosed
environment. Therefore, a new low-cost, external image-based localization system was developed,
using one camera, for less than US$150.
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The rest of this paper is structured as follows; Section 2 presents the proposed solution to the
problem, Section 3 gives an overview of the localization system, and Section 4 describes the 3D
reconstruction of data from the sonar. Experimental verification and results are described in Section 5
for the localization system, Section 6 outlines the technical demonstration at the Naraha demonstration
facility, and Section 7 describes the results of the fully integrated system. Section 8 offers a discussion
on the results, whilst Section 9 concludes the work.

3. External Vision Localization System (EVLS)

The overall system diagram of the proposed external vision localization system (EVLS) is shown
in Figure 4. The system initially obtains an image, then passes it through a calibration matrix to remove
the lens induced distortions. Features of interest are then identified before the pixel position of the
robot is translated to real-world coordinates. Depth and Inertial Measurement Unit (IMU) readings are
gathered from the ROV to be taken into account during the translation to real-world coordinates.

Figure 4. Flow chart of the localization system’s software steps.

Calibration is required for lens distortion for most vision systems, but is of great importance in
this work due to the use of a fish-eye lens camera and the increased radial distortion caused by the
water interface. This camera was chosen to cover as large an area as possible to enable localization of
the entire environment with one deployed camera. Therefore, the image returned from the camera
must be calibrated as shown in Figure 5. Water distortion was not found to significantly increase the
error of the proposed system to enable 3D reconstruction of the environment and so was not included
in the calibration of the fish-eye lens.

Figure 5. Demonstration of required calibration of fish-eye lens camera to “flatten” out the image to
maintain consistent positions.

The EVLS was required to be adaptable and applicable for deployment in any tank facility and
to be able to view the entire work-space with no blind-spots. Each test tank has varied shapes, sizes,
mounting locations and mounting angles for the camera. This camera angle, with respect to the
water surface, must be as orthogonal as possible and not more than 25 degrees off centre to avoid
the loss of line-of-sight of the submersible due to the internal reflection of water. This meant that the
pixel to real-world co-ordinates in the field of view (FoV) of the camera system must be calibrated
in each environment and deployment. Therefore, the system was required to track both passive and
active markers. Eight passive landmark markers, which were placed around the inside of the tank
for calibration of the ROV work-space at each new tank facility, and two active markers mounted on
the AVEXISTM.
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The passive markers would not be required in a real-world environment, instead, characterization
of the system in a representative environment would be required. The active markers consisted of a red
LED strip and a green LED strip, which allowed the AVEXISTM to be tracked for the full depth of the
tank (5 m) and made the system robust against interference from the medium. The camera used had
a FoV of 170◦ and was selected so it could view the entire working environment and markers when
positioned ≈3 m above the water surface as seen in Figure 6, which is a constraint of the test facility.

The multimedia effects of light passing between air and water have not been taken into account
in this work. This is due to the proposed calibration of the system with respect to pre-determined
markers. These markers enable the change in x, y, and z co-ordinates, within the marker space, to be
determined and calibrated, allowing multimedia effects to be ignored. The camera’s position above
the water at heights of 2 m and above also mean that the refraction of light is minimized, resulting in
smaller errors over the system.

Figure 6. Example deployment of passive markers in the Naraha testing pool with the image
localization system mounted.

To translate the pixel position of the robot to real-world coordinates the system also makes use
of the AVEXISTM’s on board pressure sensor [27], which was capable of determining its depth to an
accuracy of less than 1 cm. This helped to correct for the refraction effect due to the medium interface
of air to water and the perspective distortion dependant on the distance of the robot to the camera.

The localization system, the camera calibration, the feature recognition to identify the AVEXISTM,
and the image rectification was achieved using OpenCV and its libraries using the PythonTM

programming language. The real-time 3D imaging used the robot operating system (ROS), with nodes
programmed using the PythonTM language.

3.1. Image Coordinates

To estimate the position of the AVEXISTM underwater, its pixel centroid (Pc), which is the position
of the robot in the camera’s image, needs to be found. To achieve recognition of the robot, two coloured
LED strips were installed on its top, one red and one green (as seen in Figure 7, which also identifies
the Pc). The two different colours enable the yaw of the robot to be calculated as well as the (x, y)
coordinates in relation to the camera.
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Figure 7. Image recognition of the pixel centroid of the AVEXISTM. Identifying the red and green LEDs
and marking a centroid for each colour. The white point in the middle shows the AVEXISTM centroid
after determining the mean of the red and green centroids.

To calculate Pc, the centroid of the red LED strip, Rpc, needs to be calculated. The green LED
strip can then be found within a set distance from the red centroid, as the maximum distance between
the centroids depends on the size of the robot. This is done to reduce the computing time required to
find the robot in the image, as instead of re-scanning the image again, it only re-scans the pixels within
the vicinity of the red marker. The radius of the vicinity depends on the maximum expected pixel
size of the robot. This value is adjusted by the user of the system. This method reduces false positives
caused by objects in the environment.

After finding the green marker, its centroid is calculated, Gpc. This information is used to calculate
Pc as a simple average:

(Rpc + Gpc)/2, (1)

and then the orientation of the system:

θ = atan2((Rpcy − Gpcy)/(Rpcx − Gpcx)). (2)

These camera co-ordinates give a relative position of the robot within the FoV of the camera,
the real-world co-ordinates now need to be found.

3.2. Real World Coordinates

A key challenge to overcome in the estimation of the real-world coordinates, Rc, is perspective
distortion, which can manifest in two ways; depth distortion and camera misalignment. If the
AVEXISTM is held at a constant (x,y) coordinate, but it changes its depth, its (x,y) pixel position in the
image will vary (depth distortion). If the camera FoV is off-centre, it will not be normal to the working
environment, so the transformations are not direct (camera misalignment).

To overcome the distortions, circular, passive landmark markers of known size were distributed
in the test tank. Eight markers were placed at known positions in the working environment. Four of
these markers were positioned on top of the water surface, P1−4 and the other four, P′1−4, at a depth of
D. D can be any distance that fits inside the tank in a straight vertical line from the top markers to the
bottom ones, as long as they can be seen by the camera.

Once the camera is positioned, the pixel position of the markers is manually introduced to the
localization system. If the camera is moved, the pixel position of the markers needs to be re-introduced.

To correct the scaling and perspective distortion, the localization system estimates the depth
of the robot using the pressure sensor measurements and estimates the projection Dpn (orange
dots in Figure 8) of it along the vertical edges of the perspective cube, represented by the green
lines. This is currently achieved using a linear function, however further research is investigating
non-linear approaches.
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Figure 8. Diagram representing an image captured by the camera in which the top plane formed by

the points Ppn and the bottom plane formed by Pp′n points is highlighted in yellow. The
−−−−→
PpnPp′n are

shown in green. Intersecting points of the robot’s submerged plane (grey dashed lines) are marked
in orange.

Once the depth of the plane in which the robot is submerged has been approximated, a matrix
that describes the perspective transform is obtained using Dp1−4 and the known distances between
them, a and b. By multiplying each of the pixels of the image with this matrix, the perspective of the
image will be corrected to make it look as if it were parallel to the camera.

The real-world position and attitude Rc = (X, Y, Z, θ) of the robot can be calculated by
multiplying the same matrix to Pc. This gives the real-world position of the AVEXISTM in the tank.

4. Integration of Sonar for 3D Reconstruction of the Environment

With an accurate position of the ROV, a 3D map of the underwater environment can be gathered
through the sewing of multiple sonar “slices” together. This will enable the localization and
characterization of fuel debris with accurate size, shape, and position of the debris, leading to efficient
and safe decommissioning. The 3D reconstruction of the environment in a known test environment
can also act as a verification of the localization system.

As discussed in Section 1, the IMAGENEX 831l pipe profiling sonar was used. Interface hardware
was developed and placed within the AVEXISTM with the sonar mounted beneath the ROV as seen in
Figure 3.

The sonar was interfaced through a TCP/IP socket written in PythonTM that collects, formats
and outputs the data into a robot operating system (ROS) node. This node is combined with a 3D
representation of the AVEXISTM and the latest positioning data of the ROV to output a “sonar slice” to
the RVIZ visualization package of ROS. The sonar outputs data in circular section slices, with each
slice taking approximately three seconds, dependent on the survey distance. This can then be used to
view the state of an unknown environment as well as mapping. Figure 9 shows a visualization of a
single scanning slice, where the bright purple set of data points show the high intensity reflections
incoming into the sonar and the green ones show lower intensities. A threshold can be applied to the
incoming data to reduce the noise on the displayed data.
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Figure 9. A 2D slice of the sonar during the technical demonstration at the Naraha Nuclear Test Facility.

The 3D reconstruction of the environment was done by over imposing all the 2D sonar readings
over a user-defined period of time whilst moving the AVEXISTM within the environment. A complete
3D construction would take in the range of two minutes.

Each data point retrieved from the sonar was timestamped to ensure that it was synchronised with
the localisation system and avoided placement of data in the wrong 3D position due to the movement
of the ROV whilst a sonar slice was retrieved. For example, if the ROV rotated during the sonar data
retrieval, the sonar slice was placed within the 3D reconstruction in a helix pattern.

5. External Vision Localization System Characterization

To estimate the accuracy of the system across the FoV of the camera, an experiment was conducted
where a scale version of the AVEXISTM system was placed at different positions across a 1 m by 1 m
grid layout and its position estimated. The AVEXISTM was mounted on a fixed grid with defined
spacings for validation as seen in Figure 10.

Figure 10. Miniature mock AVEXIS used for verification on grid.

The system showed a mean absolute error of 5 mm across the test area, with the most accurate
position to be the centre of the FoV (2.3 mm), and the worst accuracy to be in certain edges of the
FoV (8.1 mm). The accuracies were not symmetrical about the camera’s central axis due to the light
distribution during the test.

The precision of the position and attitude estimation of the robot was then tested in a test tank
using a stand to position the scale model of the AVEXISTM in known positions along the X, Y, and Z
axis. Thirty different positions were sampled in the X and Y plane at five different vertical distances to
the camera. The experimental setup can be seen in Figure 11.
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(a) (b)
Figure 11. Experimental verification of mock AVEXISTM with Z-axis variation. The real-world test
setup can be seen in (a), whilst (b) outlines that the test was completed both in a submerged and
in-air environment.

The standard deviation for the five samples at each of the 30 positions was then averaged for each
vertical distance to the camera. The tests were performed without water (dry test) and with water
(wet test).

The light conditions of the environment were set to avoid reflections of light sources to the camera,
with the camera placed directly above the centre of the test tank. These are optimal conditions for
image identification and the perspective algorithms. All the objects that could cause false positives
were removed from the vicinity of the test tank.

The results of these tests are shown in Table 2, which shows that for the dry test the precision of
the system is between 0.4 mm and 0.7 mm. Adding the water reduces the precision of the system to
between 0.7 mm and 0.9 mm.

Table 2. Overall precision of the system at various distances to the camera during the wet and dry tests.

Distance from the Camera to the AVEXISTM Dry Average Standard Deviation Wet Average Standard Deviation

580 mm ±0.7 mm ±0.8 mm
680 mm ±0.5 mm ±0.8 mm
780 mm ±0.4 mm ±0.7 mm
880 mm ±0.4 mm ±0.8 mm
980 mm ±0.5 mm ±0.9 mm

The Z precision was not calculated as it was determined by the physical mount as the mock
AVEXISTM does not contain a pressure sensor, therefore, it was a set input into the test setup.
The accuracy of the depth sensor on the ROV is 10 mm.

6. Naraha Deployment

As mentioned in Section 2, the primary aim of the localization system was to help demonstrate the
feasibility of identifying and localizing spent fuel debris using the AVEXISTM vehicle and an imaging
sonar at the Naraha Nuclear Test Facility.
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The technical demonstration took place over 3 days with the camera mounted on an overhead
crane giving a centred view of the working environment as seen in Figure 12.

Figure 12. Setup of the camera in the Naraha Nuclear Test Facility.

The markers for the Pn and P′n reference points, as seen in Figure 13, were blue circles made out
of thin plastic with a diameter of 0.3 m and 2 m apart from each other, in the XY plane, and D was
1 m. Blue was arbitrarily chosen as the preferred colour for the passive markers. Any colour for the
marker is suitable as the calibration procedure requires manual selection of the markers’ positions.
In the chosen environment, the water had high clarity and therefore had little effect on distortion of
the colour from the camera system.

Figure 13. Setup of the markers in the Naraha Nuclear Test Facility. The four top markers (blue circles)
can be seen at the top of the water and the bottom four markers can be seen at an offset of 1 m.

The position of the large warehouse light sources in the environment created reflections on the
surface of the water directed at the camera. This was mitigated by blocking and diffusing the ambient
light to reduce the reflections into the camera. To assess the localization system’s positioning accuracy,
measuring tape was mounted in the test tank, also seen in Figure 13 as the red and white lines crossing
the tank.
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7. Experimental Verification of the Complete System

The technical demonstration began with visual inspection of the simulated fuel debris.
The deployment of the complete ROV system within the Naraha tank for visual inspection can
be seen in Figure 14.

Figure 14. Deployment of the AVEXISTM in the Naraha test tank, characterising the simulated
fuel debris.

After visual inspection, a 2D sonar slice was taken to determine the correct operation of the sonar
and a broad overview of the simulated fuel debris. The general shape of the debris can be seen in
Figure 15, compared with the camera view of the debris.

(a) (b)
Figure 15. Comparison of an on-board image from the ROV of simulated debris (a) vs. one 2D slice of
the 3D reconstruction from the sonar data (b).

The sonar data can be interpreted as a dome of the debris at the correct size, however, although at
specific angles of rotation, the debris is easily recognisable/comparable with a visual inspection, it is
often difficult to highlight specific metallic blocks or pipes. This is due to only the cross-section being
returned, with pipes particularly difficult to sense as sonar data could be returned as a “floating edge”.
To take into consideration these difficulties in interpreting cross-sectional data and enable comparison
with visual inspection, a 3D re-construction is required.

After testing the functionality of the AVEXISTM, a series of tests to create a 3D reconstruction
of the environment were conducted. Figure 16 shows an example visualization of a dataset of the
deployment where the localization system returned an x, y, and z coordinate to combine with the
sonar data.
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Figure 16. Output map showing the input from the sonar and positioning the robot on the output from
the localization system.

Due to the orientation of the sonar, the “slices” of the environment are detected in a semi circle
perpendicular to the AVEXISTM. This is highlighted by the noise returned at the extremes of the
semi-circle slice in Figure 16.

In order to make a full map of the environment, the robot needs to rotate at least 180◦, while
moving slowly, in order for the sonar to return a recognisable 3D scan. To avoid noise on the pitch and
roll axis, the AVEXISTM was ballasted so that no movement could occur in the roll and pitch directions.

Complete verification of the system is only possible with the installation of a ground-truth system.
Currently, these are prohibitively expensive, therefore, due to the size of the tank and inaccuracies in
visual reading of the deployed measuring tape from a distance through the water, the exact accuracy
of the localization system was difficult to verify. However, the output of a visibly recognisable 3D
visualization and the position of the AVEXISTM against the mounted measuring tape on the inner side
of the tank suggested that the localization system had an accuracy of ∼100 mm. When combining the
accuracy of the sonar (∼50 mm) with the positioning system accuracy, the 3D reconstruction had an
overall accuracy of ∼150 mm.

8. Discussion

The use of a vision localization system has advantages and disadvantages. An accuracy of
approximately 10 mm when the ROV is within 1–2 m, increasing to approximately 100 mm when the
ROV is within 8 m, is more accurate than any deployable acoustic system and has a larger range than
Radio-Frequency RF based systems. However, when the ROV moves further away from the camera,
more of the light from the ROV is absorbed by the water and refracted at the air–water medium. This
requires manipulation of the camera feed, for example, increased brightness, contrast, and exposure to
enable tracking to continue. This is currently a manual process, which leads to the occasional loss of
localization capability during settings adjustment.

Possible solutions to the difficulty of maintaining a strong tracked position at further distances
could be to use larger and brighter active markers, to optimise the tracking algorithm to reduce false
positives, and to move the camera to be within the water, removing difficulties with the change
in medium.
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A current limitation of the proposed solution is the requirement of passive land-markers to
calibrate the system to a new environment where the distance between the camera and the water may
vary. In harsh environments, this may not be feasible. However, moving the camera to be placed
within the water and within a waterproof housing would remove the need for calibration markers
as the vision system can be fully calibrated in a water tank prior to deployment. All that would be
required during deployment would be a known position for the camera, which can then be defined
within the program to output a global position.

Finally, the vision system may be affected by turbid water. It is believed that with bright enough
markers, a reasonable position could still be obtained through averaging the returned markers.
However, there may be increased error due to this process and also the refraction of light due
to particulates in the water. This may also require recalibration of the localization system and is
highlighted for future work.

The output 3D reconstruction showed considerable correlation with what was expected from
visual inspection. However, as inaccuracies are present at each stage of the process from the sonar,
to the localization system, a “domed” area of debris was witnessed with little clarity in individual
metallic pipes or blocks. As acquiring sonar data is “slow” (approximately 3 s for one slice) the ROV
would move during the slice with not all of the data points correctly positioned in the 3D reconstruction,
which resulted in further errors during the visualisation of the data.

Adaptations to the data visualisation programming to remove returned acoustic noise, fusion
of the data with other on-board systems such as an IMU for more accurate placement of sonar slices
during rotation and exploration of alternative sonar systems could improve the returned 3D data that
would be capable of highlighting specific metallic structures smaller than 100 mm.

With increases in localization accuracy, through increased camera resolution, automated exposure
calibration and movement of the camera to within the water, we believe this could be a low cost
deployable localization system that can be used in harsh environments such as Fukushima, but also
nuclear storage tank facilities and tanks within the oil and gas industry.

9. Conclusions

The use of an overhead camera outside of the water, active markers on the robot, an on board
pressure sensor, and known landmarks has been proven to be an accurate solution for underwater
localization. This is the first external image-based localization system specifically designed to
track underwater robots through an air/water interface that uses low cost off-the-shelf components
(<$150 USD).

Robustness to the air/water interface, water ripple, light reflection, and alignment of the camera
has been demonstrated, which makes the system easy to setup and able to operate even in environments
with superficial currents. Although very bright spot-lights caused interference with the system, this
is unlikely to be a problem in a test or deployment scenario as the light conditions and setup can be
modified to suit the localization system.

The ability of the localization system to estimate the position with accuracy and precision has been
demonstrated, with tests using several tanks and by tracking the AVEXISTM vehicle while exploring the
Naraha Nuclear Test Facility. The localization system made 3D image reconstruction of an unknown
environment possible. An accurate representation of the tank has been reproduced with a broad
overview of the debris returned. This enables the localization of debris and physical characterization
of unknown environments.

The accuracy of the system might be increased by optimizing various stages of the system, from the
marker design, background filtering, automatic aperture, and exposure compensation. If sufficient
accuracy and precision are achieved this system could be used as ground truth for the development
of micro-ROVs, micro-autonomous underwater vehicles and tROVs (tether-less ROVs) that require a
positioning system in enclosed environments.
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The system designed can be used to track any object that is within the FoV of the camera, provided
that the required markers for the perspective cube are properly placed and there is line-of-sight between
the tracked object and the camera. The tracking volume can be increased if there are more cameras,
and their markers, are distributed around the environment with an overlap volume in the FoV of
both cameras.
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Abbreviations

The following abbreviations are used in this manuscript:

RPV Reactor Pressure Vessel
PCV Pressure Containment Vessel
ROV Remotely Operated Vehicle
d.o.f Degrees of Freedom
JAEA Japan Atomic Energy Agency
NMRI National Maritime Research Institute
UV Underwater Vehicle
EM Electromagnetic
RF Radio Frequency
SLAM Simultaneous Localization And Mapping
EVLS External Vision Localization System
FoV Field-of-view
ROS Robot Operating System
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