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Exploring novel mechanistic 
insights in Alzheimer’s disease 
by assessing reliability of protein 
interactions
Ashutosh Malhotra1,3, Erfan Younesi1, Sudeep Sahadevan2, Joerg Zimmermann3 & 
Martin Hofmann-Apitius1,3

Protein interaction networks are widely used in computational biology as a graphical means of 
representing higher-level systemic functions in a computable form. Although, many algorithms exist 
that seamlessly collect and measure protein interaction information in network models, they often 
do not provide novel mechanistic insights using quantitative criteria. Measuring information content 
and knowledge representation in network models about disease mechanisms becomes crucial 
particularly when exploring new target candidates in a well-defined functional context of a potential 
disease mechanism. To this end, we have developed a knowledge-based scoring approach that uses 
literature-derived protein interaction features to quantify protein interaction confidence. Thereby, 
we introduce the novel concept of knowledge cliffs, regions of the interaction network where a 
significant gap between high scoring and low scoring interactions is observed, representing a divide 
between established and emerging knowledge on disease mechanism. To show the application of 
this approach, we constructed and assessed reliability of a protein-protein interaction model specific 
to Alzheimer’s disease, which led to screening, and prioritization of four novel protein candidates. 
Evaluation of the identified candidates showed that two of them are already followed in clinical trials 
for testing potential AD drugs.

Protein function is usually governed by protein-protein interactions (PPIs); therefore, defining the inter-
action partners of proteins may help to understand their biological role. Particularly, for complex idi-
opathic diseases like Alzheimer’s disease (AD), the limited efficacy of available treatments1 indicates a 
strong need for deciphering alternative disease mechanisms. Protein-protein interaction (PPI) networks 
are popular means to obtain biological insights into disease mechanism2. The prospect of deducing fur-
ther conclusions and speculations makes PPI data interesting and important. Many research groups are 
progressively working in this domain and thus, an ever-increasing amount of data on the interaction of 
proteins is being produced. As a consequence, there is also substantial interest in developing a rationale 
for determination of the reliability of protein-protein interactions.

Protein-protein interactions can be scored differently based on various parameters. For instance, 
they can be scored based on structural information, network topology, experimental conditions, litera-
ture confidence, similarity of the functional annotations for interactors, or evolutionary conservation3. 
Therefore combining all these parameters into a single, central scoring schema appears to be a daunting 
task. Depending on the final objective and information resources, different frameworks and scoring 
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systems exist that can uniquely measure the confidence of protein interactions. For instance, PSISCORE3 
is a framework for qualitative assessment of molecular interaction data that makes use of multiple con-
fidence scoring servers to provide and compare scores on interaction data. Similarly, MINT database4 
uses a scoring schema based on heuristic integration of the experimental evidence, number of studies, 
orthology and community trust to calculate a score called MINT score4. HIPPIE (Human Integrated 
Protein-Protein Interaction reference)5, is another scoring system that uses experimental confidence as a 
prime feature for interaction reliability whereas String database6 has its own scoring schema that deter-
mines interaction validity by taking into account factors such as experimental evidence, neighborhood, 
Co-occurrence, Co-expression and number of publications supporting interaction. One disadvantage, 
however, that is common to all of these scoring functions is that they do not consider negative interac-
tions or non-interacting proteins unequivocally. Statements about negative interactions in the literature 
are very rare, although approximations have been proposed7. Also, apart from some recent efforts8, most 
of the above-mentioned strategies just consider assigning score to an interaction without demonstrating 
the true value that comes with the confidence assessment. In this work, we show, how an assessment 
of the knowledge quality or the confidence behind a protein interaction network representing a disease 
mechanism, can serve as a rational to assist decision making for emerging targets and the selection of 
biomarker candidates. In the present work, we introduce a novel scoring strategy, which incorporates 
knowledge quality measurement parameters into protein interaction networks in a way that enables 
us to reliably distinguish established (well known) from emerging (speculative or surging) knowledge. 
This is particularly useful for investigating molecular mechanisms underlying complex and idiopathic 
diseases such as AD where the focus on integrating both established and emerging knowledge into 
integrative models is more likely to generate novel insights rather than considering only established, 
well-known information. Hence, our aim was to find and prioritize emerging knowledge niches within 
the AD domain that have the potential to add value to the ongoing research activities.

The core of our workflow encompasses empirically optimized guidelines based on multiple criteria 
decision-making (MCDM) method9. We show that application of this methodology to AD-specific PPIs, 
in the first place, provides further support for the existing disease targets or known, valid, targeted 
interactions. Moreover, this assessment highlights regions of the interaction network where high-score 
interactions are in vicinity to low-score interactions, thus leading to a sudden decline of score. We define 
such suburbs in a PPI network as “Knowledge Cliffs”, i.e. coherent sub-graphs in which the difference 
of adjoining interaction scores is greater than a defined threshold. Investigating such Knowledge Cliff 
regions help us identify new emerging candidates in neighborhood to the “well-known” proteins, which 
could serve as upstream causal entity with a relevant downstream bio-clinical effect on an established 
target. We aimed to obtain novel mechanistic insights into possible disease processes through such can-
didates as they are already embedded in a well-defined functional context. Our work demonstrates, how 
mechanistic modelling and identification of reliable and novel findings in a network context can increase 
chances to identify new targets causally involved in the disease mechanism.

Methodology
Building literature-derived Alzheimer’s-specific PPI network. We have built a reliable and 
curated Alzheimer’s-specific PPI network using the biomedical literature, which is arguably one of the 
most comprehensive information resources. The Alzheimer’s-specific protein interaction network has 
been constructed by mining AD-specific statements in the literature (PubMed abstracts +  PubMed cen-
tral documents). Initially, a supervised machine learning approach designed by Bobic et al.10 was used to 
automatically extract sentences from the literature relevant to AD where two proteins have been reported 
to interact with each other. Such evidence were further manually filtered by 3 annotators following strict 
annotation guidelines (Supplementary file1). Annotators were looking typically for relationships existing 
in the literature where two proteins have been shown to interact physically with each other under AD 
conditions. These annotators individually annotated each and every protein interaction evidence and 
their annotations were used to calculate the inter-annotator agreement (IAA)11. The IAA determines the 
quality and acceptability of annotations among annotators and provides a rationale for measuring the 
quality of introduced annotation guidelines. The kappa value between the annotators was calculated as 
high as 0.81, which indicates an acceptable agreement, given the complicated nature of the annotated 
evidence lines.

Although, curated PPI information can be extracted from publicly available databases like STRING 
(http://string-db.org) where the source of interaction information comes from multiple methodologies6 
or MINT (http://mint.bio.uniroma2.it/mint/Welcome.do) where the source of interaction information is 
full-text publications4, this information is not context specific (i.e. exclusively mentioning interactions 
taking place during AD). Also, the number of PPIs in databases vary widely from as low as 100 to 
over 36,000 interactions and overlap of PPIs even within the same category of databases (e.g. between 
literature-derived databases) is low12,13, with rare exception shared by databases such as MINT, DIP, 
IntAct that are coordinated under IMEx collaboration framework (http://www.imexconsortium.org)14 
to intentionally avoid overlap. Hence, we directly mined the literature to derive PPI information in the 
context of molecular events underlying AD.

Interactions (edges) of the derived AD network are directed and annotated with entities like type_
of_experiment_performed (which can have two values: InVivo or InVitro) to confirm an interaction. All 
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different parameters annotated by annotators corresponding to a PPI have been mentioned in details in 
the annotation guidelines (Supplementary file1). These guidelines have been prepared after input and 
feedback from several domain experts in the field (see Acknowledgments). The Cytoscape environment15 
was finally used for the visualization of the AD specific PPI network.

Measuring reliability of protein interactions. Calculation of the reliability score assigned to each 
edge in the network takes into account the following attributes extracted from the literature:

•	 Number of independent evidence in the literature in support of PPIs.
•	 Number of contradictory evidence.
•	 Experiment type: In-vivo (human/mouse/cell lines), in-vitro (using physicochemical methods (rated 

as the most reliable by domain experts), genetic methods or library-based methods (rated as the least 
reliable by domain experts).

•	 Factual or Hypothetical statement backing up a claim (as inferred by the annotators).
•	 Community trust of the publication reporting PPI.

Next important aspect for confidence measurement concerns combination and weighting of these 
attributes. Application of machine learning techniques for weight assignment in this particular task was 
not an option due to lack of high quality data for training and testing (particularly data supporting PPI 
using Human/Mouse models and the very limited availability of sufficient contradictory information or 
negative data). Hence, the core of the developed workflow encompasses empirically optimized guidelines 
based on multiple criteria decision making (MCDM)10. This discipline of statistical analysis explicitly 
considers multiple criteria in decision-making environments. To adhere to requirements of MCDM, 
each of the above-mentioned attributes has been flattened into 12 categories or factors. Every evidence 
(supportive or contradictory) backing up or contradicting a protein-protein interaction was classified in 
one of these 12 categories (see Supplementary file 2 for further details).

Further, we asked experts in the AD field (clinicians, molecular biologists, proteomics experts) to 
rank multiple, often conflicting, factors based on which they judge the reliability of a PPI, with rank 
“1” assigned to the most reliable factor and “12” to the least reliable one (Supplementary dataset 1). 
Proportionally, ranks supplied by the decision makers (experts) were converted into weights using the 
“rank sum linear weight” method9,15, which has been shown to outperform other methods for the defined 
factor of choice16.
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Where Wr is the final weight, r is the factor rank and n is the total number of ranked factors.
Derived weight for each factor along with the total count of supportive and contradictory evidence 

forms the basis for the designed scoring function. In addition, the calculation of scores also takes into 
account a factor representing the community confidence in a finding, i.e. the citation-based impact fac-
tor. We are fully aware of the potentially strong bias underlying impact factor and there is good reason 
why impact factors are discussed controversially. However, given pros and cons, and particularly, after 
feedback from several domain experts on attribute selection and ranking, we found that most experimen-
tal biologists and clinical researchers actually acknowledge the usefulness of impact factor in assessing 
the confidence especially when it comes to literature-derived data. Hence, a list of impact factors derived 
from 932 biological journals (manually filtered) were discretized into 12 ranks using a quintile-based 
distribution and finally following the above defined strategy these ranks were converted into weights.

PPI confidence scoring function. The score (S) was calculated as a weighted sum of three different 
factors including Evidence, a function of the number of studies in which an interaction was detected or 
not detected; Weight of the bin, a function which combines quality of experimental techniques (as ranked 
by experts) along with the reliability expressed in textual evidence provided by the authors (Hypothesis/
Fact); and Community confidence, a function measuring the impact that individual articles published in 
particular journal have on research community. Each of these factors was combined in the following 
formula to calculate the score for measuring reliability of a particular protein interaction.

∑( ) = (( ) + ) ( )=
⁎Score S Evidence Weight of the bin Community confidence 2i

n
1

where i =  1 is the default value assigned to every new evidence and n is the total number of evidence 
lines backing up a particular protein-protein interaction. Evidence can have a positive or negative value 
depending on whether it is a supporting evidence or a contradiction. Since we aimed at converting 
the score (S) into a normalized value that could easily differentiate between the highly studied (estab-
lished) interactions and the less studied (emerging) interactions, the final scores were normalized into 
a 0-1 scale. Protein interactions with a score close to 1 represent most studied interactions (frequently 
reported in the literature) and interactions with a score near to 0 are the ones with least confidence or 
less studied interactions. As a first step for score normalization, we log transformed the calculated score 
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(S). This log-transformed score was referred to as log_score. This step was necessary as our final scores 
were highly skewed towards the most studied interactions. In the next step, we normalized the log_trans-
formed_ final_score into a 0-1 scale using the equation:

=
_ − ( _ )

( _ ) − ( _ ) ( )
Final normalized score

score score
score

log min log
max log score min log 3

An R script has been generated which takes the PPI annotated file as input and calculates the “Final 
normalized score” using the above-mentioned formulas (Supplementary Dataset 2).

Evaluation of the scored network model. Typically, it is very difficult to judge about the complete-
ness of a network because of the varying scales of information available from different resources that can 
be integrated into the network. However, such constrains can be partly mitigated if one tries to judge the 
completeness of information from the literature. In order to evaluate the completeness of the presented 
AD network (Supplementary file 3), we performed an enrichment analysis using the relation mining 
approach11: we generated a “test-corpus” of 200 randomly selected full text articles from PubMed con-
taining information relevant to PPIs in AD. Three new independent annotators manually crosschecked 
the test-corpus and mined for AD-specific PPI evidence. Finally, we compared the network coming from 
the test-corpus (Supplementary file 4) to our previously built AD network. We found a complete overlap 
conceivably showing that our AD network is complete as per the AD related PPI information existing 
in the literature.

In another scenario, we mined protein candidates reported as biomarkers for AD in the literature 
using a biomarker terminology17 within our text mining system SCAIView18. The biomarker terminology 
helped us to systematically look for evidence lines (apart from the keyword biomarker) in the litera-
ture where a particular candidate has been shown to be differentially expressed or have been proven 
as a genetic marker for AD. This approach - along with manual curation - resulted in a collection of 
statements describing role of a particular candidate as a biomarker (Supplementary file 5). An overlay 
of 43 literature-derived putative AD biomarkers on our AD-network resulted in a 100% superimpose 
(Supplementary file 6) showing that this network is highly enriched for the presence of the majority of 
reportedly altered proteins under AD condition. Also, the more established biomarker candidates (e.g. 
APP, MAPT, APOE, PSEN1) were present as hub genes in our network.

Network analysis and cause-and-effect knowledge model generation. In an attempt to high-
light network regions linking established and emerging knowledge in the defined AD context, we looked 
for neighboring interactions with highly varying interaction scores (see Results). Ultimately, we aimed to 
find new emerging candidates neighboring to the “well-known” proteins, which could serve as upstream 
causal entity with a relevant downstream bio-clinical effect on an established target. Further, to discover 
the potential mechanism underlying the role and functional involvement of a putative candidate, we tried 
to embed the candidate into a model representing causal and correlative relationships. This embedding 
in a bigger context further helps in rationalizing candidate selection and generation of hypotheses on 
putative disease mechanisms.

An overview of the methodology described in this section is provided in Fig. 1.

Results
Construction of manually curated AD-specific PPI network. We have constructed a directed 
protein interaction network specific to Alzheimer’s disease, which consists of 301 nodes (proteins) and 
339 edges (protein interactions) (Supplementary file 3). By this means, we tried to model physical pro-
tein-protein interactions in the AD context based on literature reports and estimate the PPI confidence 
based on features described in the methodology section. Using this network, we aimed to identify key 
proteins and protein interactions (established and emerging) involved in molecular changes underlying 
AD.

Validation of the scored network model. For establishing the relevance, we made a context-free 
comparison of the top 5 high scoring interactions as predicted by our methodology with other scoring 
functions e.g. String7, and HIPPIE6. Such test frames allow for analyzing the uniformity of scores with 
available benchmarks such as prior knowledge. We observed an alignment in results when our scoring 
output was compared to other scoring results. Top scored interactions predicted by using our approach 
were scored high by other scoring schemes too. Additionally, our top scored interaction (BACE1-APP) 
has been the most targeted interaction19 for the development of inhibitor drugs to treat Alzheimer’s 
disease20,21, providing further translational validation for our scoring function.

Analysis of scored Alzheimer’s disease network. The scored network provides a good resolu-
tion at the level of protein interactions based on which research trends can be analyzed and discussed. 
Figure  2 shows the distribution of scores over AD-specific protein interactions, varying from highly 
scored interactions to low scoring ones. However, a low score does not rule out the possibility of inter-
action. It is just that there is only limited experimental data and lines of evidence available for that 
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Figure 1. Workflow of the methodology developed to identify new emerging AD candidates. The 
workflow shows the steps used for the construction of a confidence assessed Alzheimer specific protein-
protein interaction network that was further used to filter a set of emerging potential AD candidates existing 
in the network.

Figure 2. Distribution of interaction scores. Each interaction has been assigned a score between 0-1 based 
upon assessment of the literature confidence. Score distribution segments the interactions into three sections: 
Established knowledge (High scoring interactions), Buffer zone (interactions with scores between established 
and emerging), Emerging knowledge (Low scoring interactions).
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particular interaction. Also notable is the clear distribution of scores (Fig. 2) in three segments, namely 
“established knowledge zone”, “buffer zone”, and “emerging knowledge zone” that categorize protein 
interactions based on the reliability assessment.

Our scoring approach assigned top score to APP-BACE1 interaction, consistent with the popularity 
(how often a particular interaction has been studied in the literature) of the interaction in the context 
of AD. We found 145 studies in the literature that confirm BACE1 interacts with APP in AD patients, 
making it the most established and well-studied interaction. Beside BACE1-APP, abundant evidence also 
exists in the literature for APOE-APP interaction amounting to a high score of 0.84. Accordingly, we 
consider these top scored interactions as “established knowledge” or most notable interactions in the AD 
domain. Other top scoring interactions following the above-described interactions include GSK3B-MAPT, 
CDK5-MAPT, and PSEN1-APP. Although these interactions are also well studied, yet the number of 
independent supporting studies for them is not as high as number studies supporting BACE1-APP and 
APOE-APP interactions. Hence, we observed a rapid decrease in scores for these interactions.

We scored the reliability of every protein pair in the AD network and it was clear that high-ranking 
interactions have been extensively studied for their role in the disease. Nonetheless, we also observed that 
the majority of AD-specific PPIs got a low score (below 0.5). We did not find many independent studies 
in the literature in support of these PPIs as these represent emerging knowledge and could be seen as 
opportunities for researchers to provide new contributions. In particular, among these low-scoring inter-
actions, we found valid pairs embedded in the defined functional context that are likely to be involved 
in the potential disease mechanism and certainly worth further investigation. Subsequent exploration of 
such emerging knowledge niches can provide added value to ongoing research activities. Hence, we took 
advantage of the directed scored network edges to find such candidates in our AD network.

Neighboring high and low score regions: Knowledge cliff. Assessing the confidence of AD-specific 
PPIs provided further support for the existing disease targets or known valid targeted interactions. For 
instance, APP-BACE1 interaction was scored highest in the network. Besides, these assessment points 
towards regions with high score interactions, which form a coherent (uni-directional) sub graph22 and 
introduce a sudden decline of score forms “Knowledge Cliffs” (Fig. 3).

For a weighted network or graph represented as G =  (V, E) where V represents the vertices of the 
graph and E represents edges connecting these vertices.

Knowledge cliffs within a weighted graph (G) are sub-graphs (S) forming a unidirectional chain 
(i-> j-> k), where i, j, k are vertices of graph G satisfying the conditions WIJ> 0 and WJK > 0. Additionally, 
the difference between WIJ and WJK has to be greater than a predefined threshold (c): (WIJ- WJK) >  =  c.

The value of chosen threshold (c) can vary between 0.1 to 0.99 and can be chosen as per the usage 
scenario. In this study, the goal is to find new emerging candidates neighboring to the most “well-known” 
proteins involved in AD, hence a high threshold value(c) =  0.75 has been chosen to identify relevant 
knowledge cliffs existing within the scored AD network. With the defined threshold choice of 0.75, we 
found 4 knowledge cliffs in our AD network.

Figure 3. Knowledge cliff representation with in a disease network. Coherent sub-graphs where ratio of 
adjoining interaction scores is maximum are represented as knowledge cliff. Knowledge cliff helps us finding 
new emerging candidates sticking to the established candidates, which are well known to play a role in the 
disease.
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Targeting such Knowledge Cliff regions help us find new emerging candidates neighboring to the 
“well-known” proteins. We aimed to derive all such candidates in a systematic way as they are already 
embedded in a disease-specific functional context. In this work, we focused on knowledge cliffs next to 
some of the most-established interactions such as BACE1-APP and found four “potential new candi-
dates”, namely TP53INP2, RTN4, F2RL3, and FBXO2, presumably new targets for Alzheimer’s disease as 
guided by the knowledge cliff concept.

Statistical validation of knowledge cliffs within a network. We aim to statistically validate 
knowledge cliffs identified within the network against a null hypothesis of random occurrence of edges. 
In order to accomplish this, we employed a “permutation test” based on the assumption of an independ-
ence of the edges. Here we generated 10,000 random networks preserving the node degree distribution in 
the original Alzheimer’s network. From these 10,000 random networks, the probability of occurrence of 
an edge (p-value of the edge in the original network) at random network was calculated (Supplementary 
file 7). The probability of a knowledge cliff occurring at random (p-value of the knowledge cliff) was 
calculated as the product of all edge probabilities in the knowledge cliff. Based on a p-value thresh-
old (p <  0.05), all knowledge cliffs identified in our network were found to be statistically significant 
(Supplementary file 7).

Interpretation of mechanistic causal models. To show the relevance of the pinpointed candidates 
to AD, we modelled their functional context by integrating literature-derived ‘cause and effect’ relation-
ships into cause-and-effect knowledge models. Such models allow for enhanced contextual reasoning 
at a higher resolution so that modelling the “chains of causal relationships” around putative candidates 
can provide new insights into their potential mechanistic involvement in the disease. For instance, the 
RTN4 model (Fig. 4) shows that RTN4 interacts with BACE1 and inhibits its ability to produce Abeta23. 
Also, increased expression of RTN4 results in reduced secretion of Abeta24 and there is evidence that 
RTN4 improves neuro-pathological outcomes such as improved learning and memory deficits in APP 
transgenic mice25. These arrays of evidence lend support to the notion of a putative role for RTN4 in 
pathology of AD and provide hints about the potential use of RTN4 as a new drug target for AD. This 
idea is further supported by the finding that Bexarotene26- an FDA approved anti-cancer agent, acts as 
an RTN4 agonist and has been shown to reduce Abeta in AD mouse brain27. Currently, there is already 
a clinical trial (www.clinicalTrials.gov ID: NCT01782742) going on to test if Bexarotene can be used as 
a drug for treating AD.

Similarly, we reasoned over interlinked molecules and processes around FBXO2 by combining evi-
dence scattered in the literature (Fig.  5). Accordingly, increased expression of FBXO2 has been shown 
to decrease BACE1 protein levels and activity28, which in turn, leads to reduced beta-amyloid levels 
and rescue of synaptic deficits in an AD mouse model. Additionally, recent evidence from Atkin et al. 
(2014) suggest that APP is itself a substrate for FBXO2 and APP levels were decreased in the presence 
of FBXO2 in non-neuronal cells, and increased in both cultured hippocampal neurons and brain tissue 
from FBXO2 knockout mice29. Loss of FBXO2 also has been shown to result in greater expression and 
surface localization of NMDA receptors29, which play a role in the AD pathogenesis.

Modification of the apoptotic cascade could be considered as a primary therapeutic strategy for AD, 
as implied by our models. Accordingly, our approach was able to detect another candidate, the F2RL3 

Figure 4. Cartoon-like representations of putative candidate: Reticulon 4 (RTN4). The model illustrates 
the functional role of the proposed candidate at a mechanistic level in Alzheimer’s disease supported by 
PubMed identifiers at edges.

http://www.clinicalTrials.gov
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protein, which induces apoptosis30 and may contribute to pathology of AD (Fig.  6). F2RL3 has been 
known for its involvement in the regulation of beta-secretase cleavage of Alzheimer’s amyloid precursor 
protein31 and its overexpression is accompanied by aberrant Abeta production32. F2RL3 has been pre-
dicted to induce tau hyper- phosphorylation33. All this knowledge may be instrumental for considering 
F2RL3 as a potential target candidate in AD.

TP53INP2, which promotes the processing of APP by BACE1 and Gamma-secretase, emerges as 
another candidate (Fig.  7)34. Investigations have demonstrated that knockdown or antagonization of 
TP53INP2 reduces secretase activities and ameliorates Abeta pathology and Abeta-dependent behav-
ioural deficits. Hence, intervention with TP53INP2 interaction can also serve as a new strategy against 
AD. Dextromethorphan (NMDA receptor agonist) is an established antitussive drug that targets 
TP53INP2 and a clinical trial (www.clinicalTrials.gov ID: NCT01584440) is already running to test if 
Dextromethorphan can be used as a drug for treating AD.

All these proposed candidates look very interesting in a functional context and ongoing clinical tri-
als certainly add up to the confidence. However, studies highlighting these candidates and their role in 
pathology of AD barely exist in the literature as compared to the frequently investigated APP and MAPT 
proteins (Fig.  8). This imbalance between the numbers of articles reflects the publication bias towards 
APP and MAPT in the disease context.

We show here that any evidence indicative of a potential role for a particular protein in the disease 
mechanism could be very valuable, particularly when these lines of evidence are aggregated and placed 
into the context of disease progression as a mechanistic, context-sensitive model.

Figure 5. Cartoon-like representations of putative candidate: F-box protein 2 (FBXO2). The model 
illustrates the functional role of the proposed candidate at a mechanistic level in Alzheimer’s disease 
supported by PubMed identifiers at edges.

Figure 6. Cartoon-like representations of putative candidate: Thrombin Receptor-Like 3 (F2RL3). The 
model illustrates the functional role of the proposed candidate at a mechanistic level in Alzheimer’s disease 
supported by PubMed identifiers at edges.

http://www.clinicalTrials.gov
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Discussion
The computational evaluation and scoring of protein–protein interactions certainly offer potential to 
ascertain compelling candidates mentioned in the literature. Protein interaction analysis based on relia-
bility assessment may also uncover unique, unforeseen functional roles for not so-well-known proteins. 
Particularly, in complex diseases like AD, we should aim at integrating both established and emerging 
knowledge in integrative models. Linking hypotheses to the established knowledge or background theory 
can strengthen the ability of hypothesis-driven predictions. Especially, encoding relevant knowledge into 
causal relationship models further confers enhanced interpretation power that is well suited to back up 
existing hypotheses. Integrative analysis of extracted knowledge in the context of AD mechanism is a 
promising approach towards identification of candidates most likely involved in the complex aetiology 
of the disease. We are aware that we increase the level of speculation when we generate these “emerging 
functional context models”, but at the same time, we generate testable hypotheses through this modelling 
and mining approach, which are guided by neighbouring established knowledge.

From our evaluations, it was clear that low-scored coherent interactions lying next to high scoring 
neighbors (knowledge cliff) are of value and had a higher likelihood to impact disease etiology. Moreover, 
functional annotations for the selected cliff-interaction must be taken into account, which further helps 

Figure 7. Cartoon-like representations of putative candidate: Tumor Protein P53 Inducible Nuclear 
Protein (TP53INP2). The model illustrates the functional role of the proposed candidate at a mechanistic 
level in Alzheimer’s disease supported by PubMed identifiers at edges.

Figure 8. Number of publications in a chronological order-supporting role of established and emerging 
candidates in Alzheimer’s disease. Figure shows a schematic representation of the number of publications 
backing up the role of APP and tau (bar graph) in AD as compared to the emerging candidates (line graph) 
revealed in this study. Abbreviations mentioned stands for Amyloid beta (A4) precursor protein (APP), 
Microtubule associated protein tau (MAPT), Reticulon 4 (RTN4), F-box protein 2 (FBXO2), Thrombin 
Receptor-Like 3 (F2RL3), Tumor Protein P53 Inducible Nuclear Protein (TP53INP2).
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to refine the candidate selection. The major reason accountable for the low scoring interactions could 
be their recent discovery or an expert bias towards established trends. Interesting, and particularly sur-
prising candidates are RTN4 and TP53INP2 that interact with BACE1, and were predicted using our 
approach but their relevance to mechanism of AD has been barely studied in the literature, although 
their interactions are targeted in clinical trials for testing potential AD drugs.

We have tried to assign reliability scores based on selection of parameters that accumulate informa-
tion (including negative evidence) and are most suitable for protein interactions. These parameters were 
further weighted to reflect the joint belief of domain experts. Thus, our score calculation goes much 
beyond just measuring the number of studies reporting an interaction by providing as a rationale to find 
candidates partially neglected in the literature, particularly when they have been shown to be upstream 
regulator of a well-established candidate. The criteria used in this work for calculation of scores are well 
suited for application to any other disease domain, which extends the scope of its applicability beyond 
the AD discipline. We believe that the method developed here can provide support to the emerging 
knowledge existing in other research realms. The knowledge-based models built in this way provide a 
first concrete framework to start with and to support arguments for prioritization of existing hypotheses. 
In view of the rapid pace of scientific articles, our approach proposes a strategy that helps in mining 
and prioritization of interesting candidates that could shift the direction of research towards new and 
rewarding avenues.

Conclusion
This work demonstrates that reliability assessment can serve as a rationale for detection of emerg-
ing knowledge niches embedded in a defined functional context. Mining relevant knowledge zones 
(Emerging +  Established) in a network context and further modelling their causal relationships confers 
enhanced interpretation power that is well suited for identification and prioritization of potential drug 
target or biomarker candidates at a mechanistic level. In the future, we intend to apply this strategy to 
different disease areas and conduct additional research to set up automated alerts for identification of 
novel knowledge cliffs.
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