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Abstract
Gastroenteritis is inflammation of the lining of stomach and intestines and causes significant morbidity and mortality 
worldwide. Many viruses, especially RNA viruses are the most common cause of enteritis. Innate immunity is the first line 
of host defense against enteric RNA viruses and virus-induced intestinal inflammation. The first layer of defense against 
enteric RNA viruses in the intestinal tract is intestinal epithelial cells (IECs), dendritic cells and macrophages under the 
intestinal epithelium. These innate immune cells express pathogen-recognition receptors (PRRs) for recognizing enteric 
RNA viruses through sensing viral pathogen-associated molecular patterns (PAMPs). As a result of this recognition type I 
interferon (IFN), type III IFN and inflammasome activation occurs, which function cooperatively to clear infection and reduce 
viral-induced intestinal inflammation. In this review, we summarize recent findings about mechanisms involved in enteric 
RNA virus-induced intestinal inflammation. We will provide an overview of the enteric RNA viruses, their RNA sensing 
mechanisms by host PRRs, and signaling pathways triggered by host PRRs, which shape the intestinal immune response to 
maintain intestinal homeostasis.
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Introduction

Gastroenteritis is an inflammatory condition of the stomach 
and intestines that affects people of all ages, with severe 
complications in young children and elderly people most 
vulnerable to dehydration [1]. Gastroenteritis causes sig-
nificant morbidity and mortality worldwide and represents 
one of major socioeconomic burdens. In children, diarrheal 
diseases induced by gastroenteritis accounts for 9% of child 
deaths, making diarrhea the second leading cause of death 
globally [2]. Since identification in 1972 [3], enteric viruses 

have been recognized as a leading cause of gastroenteritis 
worldwide [1]. Enteric viruses are primarily transmitted 
through the fecal–oral route by contact with the feces. Fecal 
shedding of enteric viruses can last for months after resolu-
tion of gastroenteritis symptoms in human [4–6]. Symptoms 
during viral gastroenteritis include watery diarrhea, abnor-
mal cramps, nausea or vomiting, and sometimes fever [1]. 
Viral gastroenteritis pathologies normally are self-limiting 
and generally resolve within 14 days, but they can turn life-
threatening for immunocompromised patients and for infants 
in developing countries [7].

Many enteric viruses cause gastroenteritis in humans which 
are mainly RNA viruses [1]. The most common enteric RNA 
viruses include rotavirus, reovirus, norovirus, enterovirus, 
astrovirus, severe acute respiratory syndrome coronavirus 2 
(SARS-CoV-2), and torovirus. Both rotavirus and reovirus 
are double-stranded (ds) RNA virus and are classified in Reo-
viridae family. Rotavirus infection occurs in small intestinal 
epithelial cells (IECs) causing intestinal disease mainly in chil-
dren and has symptoms including vomiting, diarrhea and low-
grade fever [8]. Reovirus infection normally does not provoke 
pathology in humans, whereas reovirus infection can trigger 
inflammatory responses to cause intestinal inflammation and 
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pathology in mice [9, 10], which makes reovirus a good model 
virus for investigating pathogenic mechanisms underlying host 
antiviral immune responses to enteric RNA viruses. Norovirus 
is single-stranded (ss) RNA virus of the Caliciviridae family 
and is the most common cause of food-borne gastroenteritis 
with symptoms of severe vomiting and diarrhea in adults [11]. 
Globally, norovirus infection causes about 18% of acute gas-
troenteritis cases and appropriately 200,000 deaths annually 
[12]. Enteroviruses are ss RNA viruses in Picornaviridae fam-
ily and include poliovirus, coxsackieviruses, echoviruses and 
enterovirus 71. Enteroviruses are spread primarily through the 
fecal–oral route and target the intestinal epithelium to cause 
gastrointestinal illness such as severe vomiting or diarrhea 
[13]. Astrovirus is ss RNA virus in Astroviridae family and 
is recognized as second most common instigator of viral gas-
troenteritis in children [14]. SARS-CoV-2 and torovirus are ss 
RNA viruses of the Coronaviridae family and SARS-CoV-2 
is the causative agent of the ongoing coronavirus disease 
2019 (COVID-19) pandemic, which has infected more than 
4 million people, spreading to over 200 countries or regions 
worldwide [6]. Human torovirus was firstly detected in human 
gastroenteritis in 1984 [15] and has been associated with viral 
gastroenteritis in human [16]. A notable proportion of patients 
with COVID-19 develop gastrointestinal symptoms and nearly 
half of confirmed COVID-19 patients have detectable SARS-
CoV-2 RNA in their fecal samples in human [6, 17, 18]. More-
over, multiple studies have provided direct evidence of intesti-
nal infection by SARS-CoV-2 both in vitro [19, 20] and in vivo 
in mice and other animals [21–23]. Although these lines of 
evidence highlight the nature of SARS-CoV-2 gastrointestinal 
infection, the mechanism of diarrhea in patients with COVID-
19 is still largely unknown and needs further studies. There are 
several available vaccines for preventing SARS-CoV-2 infec-
tion, however, COVID-19 induced by SARS-CoV-2 remains a 
severe global public health problem due to emergence of more 
mutant and virulent SARS-CoV-2 virus strains. The length of 
effectiveness of the current vaccines remains unknown.

In this review, we focus on how intestinal innate immu-
nity controls enteric RNA virus-induced intestinal inflam-
mation. We summarize the detailed molecular mechanisms 
involved in sensing of enteric RNA viruses, intestinal innate 
immunity triggered by enteric RNA viruses, and the effect 
on regulation of intestinal inflammation.

Antiviral innate immunity in intestine

Innate immune cells in intestine

The first layer of defense against enteric RNA viruses in 
the intestinal tract is intestinal epithelial cells (IECs). These 
cells form a layer facing the luminal surface of the intestinal 
epithelium. IECs contain six cell lineages from a common 

stem cell progenitor: enterocytes, goblet cells, Paneth cells, 
enteroendocrine cells, tuft cells and microfold (M) cells [24] 
(Fig. 1). Enterocytes are the major cell type of IECs with 
importance in host defense and nutrient absorption [25]. 
Goblet cells comprise around 10% of all IECs and secrete 
mucus for promoting intestinal barrier function [25]. Paneth 
cells are only found in the small intestine. These cells secrete 
antimicrobial peptides called defensins, which contribute to 
host defense against microbes including enteric RNA viruses 
[26]. Enteroendocrine cells produce and release intestinal 
hormones into the bloodstream after stimulation that gener-
ate systemic effects and stimulate nervous responses [27]. 
Tuft cells are rare chemosensory cells and are targets of 
norovirus infection [28]. M cells are specialized cells for 
antigen sampling [29]. Both tuft and M cells play important 
role in immune surveillance and response to enteric viruses 
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Fig. 1   Overview of IECs and immune cells in intestine. The first 
layer of host defense against enteric RNA viruses in the intestinal 
tract is intestinal epithelial cells (IECs), which conclude six cell line-
ages coming from a common stem cell progenitor: enterocytes, goblet 
cells, Paneth cells, enteroendocrine cells, tuft cells and microfold (M) 
cells. Underneath the intestinal epithelium, there is the lamina propria 
containing the immunocompetent cells infiltrated from blood ves-
sel, which include innate immune cells such as dendritic cells (DCs), 
macrophages and adaptive immune cells such as T cell and B cells
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[28, 29]. Although both small intestine and colon have same 
intestinal layers, they have some differences. Colon has no 
plicae circularis, villi and Paneth cells, but has more gob-
let cells. Underneath the intestinal epithelium, the lamina 
propria contains immunocompetent cells. Macrophages and 
dendritic cells (DCs) are major innate immune cells respon-
sible for detecting enteric RNA virus infection as well as 
present viral antigens to T cells in the lamina propria [30]. 
T cells and B cells form the adaptive immune system in the 
lamina propria. Here, we focus only on innate immune cells 
including IECs, macrophages and DCs and discuss their 
roles in promoting antiviral innate immunity and control-
ling intestinal inflammation induced by enteric RNA viruses.

General mechanisms involved in antiviral innate 
immunity of intestine

Innate immunity is the first line of defense against enteric 
RNA virus infection in intestine.Intestinal innate immune 
cells, including IECs, macrophages and DCs, use patho-
gen-recognition receptors (PRRs) to recognize pathogen-
associated molecular patterns (PAMPs) such as viral RNA 
from enteric RNA viruses [31]. Multiple PRRs have been 
identified that sense RNA viruses [31], such as some Toll-
like receptors (TLRs) recognizing viral RNA in endosome 
and RNA helicase receptors sensing viral RNA in cytosol. 
TLR3, TLR7, and TLR8 locate in endosomes and are the 
major TLRs that detect distinct forms of viral RNA from 
enteric RNA viruses and initiate antiviral responses [32]. 
Once sensing viral RNA from enteric RNA viruses, RNA 
helicase receptors including retinoic acid-inducible gene I 
(RIG-I) [33, 34], melanoma differentiation-associated gene 5 
(MDA5) [35], DEAH-box helicase 9 (DHX9) [36], DHX15 
[10, 37, 38], DEAD-box helicase 1 (DDX1)/DDX21/DHX36 
complex [39], and DHX33 [40] employ downstream adap-
tors mitochondrial antiviral-signaling protein (MAVS) [41, 
42] or Toll/interleukin-1 (IL-1) receptor (TIR)-domain-
containing adaptor-inducing interferon-β (TRIF) to induce 
type I interferon (IFN) and type III IFN responses [43–45]. 
Additionally, some RNA helicase receptors recruit down-
stream adaptors nucleotide-binding oligomerization domain 
(NOD)-like receptor family pyrin-domain-containing 3 
(NLRP3) or NLRP6 to activate the inflammasome response 
with subsequent release of both IL-1β and IL-18 [10, 40]. 
Recently, our group identified poly(ADP-ribose) polymerase 
9 (PARP9), one of 17 PARP family members, as a nonca-
nonical sensor of RNA viruses resulting in MAVS-independ-
ent type I IFN production in mice [46].

The thorough understanding of the mechanisms by which 
different PRRs recognize enteric RNA viruses for activat-
ing the innate immune system will be key to informing 
the development of putative therapeutic strategies. A clas-
sic example of fundamental discoveries translated into an 

application is when researchers harnessed the ability of TLR 
agonists (such as TLR9 agonist CpG1018) to initiate the 
innate immune system to be used as adjuvant candidates to 
improve the immunogenicity of vaccines [47]. Therefore, 
agonists or substances that stimulate specific PRRs to recog-
nize enteric RNA viruses and activate strong innate immu-
nity will be developed as promising new vaccine adjuvants 
or drugs to clinically treat enteric virus-induced diseases.

Type I IFN in antiviral innate immunity

Type I IFN comprises several IFN-α subtypes, IFN-β, IFN-
δ, IFN-ε, IFN-κ, IFN-ω, IFN-τ and IFN-ζ [45]. Among the 
members of type I IFN, IFN-α and IFN-β play crucial roles 
in limiting viral replication and clearing viral spread. The 
membrane receptor interferon-α/β receptor (IFNAR) binds 
secreted IFN-α/β and triggers downstream Janus kinase/sig-
nal transducer and activator of transcription (JAK/STAT) 
signaling cascade resulting in the phosphorylation and het-
erodimerization of STAT1/2. These STAT heterodimers 
translocate to the nucleus to drive expression of numerous 
interferon-stimulated genes (ISGs), which are responsible 
for clearing enteric RNA viruses by restricting viral replica-
tion, inhibiting protein synthesis and priming neighboring 
cells for a viral attack [48, 49]. Moreover, antiviral type I 
IFN signaling can induce apoptosis to destroy the replicative 
niche of enteric RNA viruses [50, 51]. Furthermore, type I 
IFN induces resistance to virus infections in neighboring 
cells, mediates killing of enteric RNA virus-infected cells 
by activating natural killer (NK) cells and cytotoxic T cells 
(CTLs) and promotes adaptive antiviral immune responses 
by producing cytokines and chemokines [52, 53]. Although 
type I IFN plays a critical role in antiviral innate immunity 
in intestinal macrophages and DCs, it acts in a compartmen-
talized manner within the small intestine and has a minimal 
effect on IECs [54].

Type III IFN in antiviral innate immunity

Type III IFN includes IFNλ1, IFNλ2, IFNλ3 and IFNλ4 
in humans, whereas only IFNλ2 and IFNλ3 are activated 
in mice [45]. Type III IFN signal through a heterodi-
meric receptor complex composed of the IFNλ receptor 
1 (IFNλR1) and IL-10Rβ subunit for activating JAK1 
and TYK2[55, 56], which lead to the phosphorylation of 
STAT1/STAT2 and induction of ISGs [57]. Type I IFN 
receptors are ubiquitously expressed on all nucleated cells, 
while the expression of type III IFN receptor IFNλR1 sub-
unit is mainly restricted to epithelial cells. Therefore, type 
III IFN is particularly important in responding to intestinal 
antiviral responses and to control persistent infections of 
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enteric RNA viruses [10, 58, 59]. In addition to their anti-
viral activities, both type I IFN and type III IFN protect the 
intestinal epithelial barrier by inducing the production of 
tight junction proteins [60]and downregulating intestinal 
immune responses [61, 62].

Inflammasome in antiviral innate immunity

The inflammasome is a multiprotein complex of the innate 
immune response that controls caspase-1 activation, which 
promotes maturation and secretion of the proinflamma-
tory cytokines interleukin 1β (IL-1β) and IL-18, as well 
as ‘pyroptosis’, a lytic form of cell death [63]. These mul-
tiprotein complexes are comprised of three basic com-
ponents including a sensor such as a NOD-like receptor 
(NLR), the adaptor protein apoptosis-associated speck-like 
protein containing a caspase-recruitment domain (ASC) 
and the intracellular cysteine protease such as caspase-1 
[64]. The inflammasomes involved in innate antiviral 
immunity include those activated through NLRP3 [65, 
66], NLRP6 [10, 67] and NLRP9b [68]. The IL-1β, IL-18 
and pyroptosis are important for the antiviral functions of 
inflammasome activation.

Recombinant IL-1β controls viruses in various cell lines 
[69–72], indicating the crucial role of IL-1β in mediat-
ing antiviral functions. Administration of mice with IL-18 
before intestinal rotavirus infection diminished subsequent 
fecal shedding of rotavirus in mice [73], suggesting the 
critical antiviral role of IL-18 in innate immunity. Pyropto-
sis is a form of lytic, programmed cell death through cleav-
age of its substrate Gasdermin D (GSDMD) that forms 
pores [74–76]. Pyroptosis is an innate immune effector 
mechanism to facilitate host defense against pathogenic 
microorganisms, including viruses [77].

Additionally, IL-1β/IL-18 not only functions in the 
innate immune response containing lymphocyte activa-
tion and leukocyte transmigration, but also ensure adap-
tive immune response by inducing IFN-γ production [78]. 
Most studies about the antiviral roles of inflammasome 
activation are investigated in non-enteritic RNA and DNA 
viruses [79, 80]. There are few reports regarding the anti-
viral roles of inflammasome in enteric RNA viruses, which 
need to be further investigated in future.

Therefore, type I IFN, type III IFN and inflammasome 
responses play multiple roles in antiviral innate immunity 
against viruses including enteric RNA viruses. Below, 
we will discuss detailed mechanisms about how several 
classes of PRRs recognize viral RNA from enteric RNA 
viruses and induce activation of type I IFN, type III IFN 
and inflammasome responses in intestine, which normally 
leads to successful elimination of enteric RNA viruses 
from intestine.

Role of type I IFN pathway mediated by PRRs 
sensing enteric RNA viruses

A number of PRRs sense enteric RNA viruses for induc-
ing type I IFN signaling pathway in IECs, DCs and mac-
rophages, introduced below in detail (Fig. 2).

Toll‑like receptors

Toll-like receptors (TLRs) are a class of transmembrane 
PRRs containing three structural domains: a leucine-rich 
repeats (LRRs) motif, a transmembrane domain, and a cyto-
plasmic Toll/IL-1 receptor (TIR) domain [81]. The LRRs 
motif is responsible for recognizing pathogens including 
viruses, while the TIR domain is responsible for initiating 
downstream signaling[82]. The TLR family contains 10 
TLRs (TLR1-10) in humans and 13 TLRs (TLR1-13) in 
mice. TLR3 recognizes viral double-strand RNA (dsRNA), 
TLR7 and TLR8 detect viral ssRNA. After binding ligand, 
TLR3 leads to the recruitment of adaptor protein TRIF, while 
TLR7 and TLR8 result in the interactions with downstream 
adaptor MyD88 [82]. TRIF recruits downstream tumor 
necrosis factor receptor-associated factor 3 (TRAF3), which 
promotes TANK-binding kinase 1 (TBK1) and IκB kinase ε 
(IKKε)-mediated activation of IRF3 leading to IFN-β pro-
duction [77, 78]. However, the activation of TLR7 and TLR8 
results in recruitment of downstream adaptors MyD88 and 
interleukin-1 receptor-associated kinases 1/2/4 (IRAK1/2/4) 
and subsequent complex formation with TRAF3, TRAF6, 
IRAK1, IKKα, osteopontin and IRF7, which phosphorylate 
and activate IRF7 leading to massive production of type I 
IFN in DCs [83–85].

The first report about the role of TLRs in enteric RNA 
virus infection is a study regarding host responses to rotavi-
rus infection. Injection of mice with dsRNA from rotavirus 
induced small intestinal inflammation dependent on acti-
vation of the endosomal dsRNA sensor TLR3 [86]. Later, 
TLR3 knockout mice were found to be highly susceptible to 
rotavirus infection as adults but not in the neonatal stage in 
mice [87]. Previous studies using mouse coronavirus showed 
that TLR7 and MyD88 pathways mediated coronaviral RNA 
sensing and type I IFN induction in pDCs [88]. TLR7 was 
subsequently shown to be the primary sensor of MERS-CoV 
RNA for type I IFN induction in epithelial cells in mice [89].

RIG‑I‑like receptors

The RIG-I-like receptors (RLRs) are a family of DExD/H 
box containing RNA helicases and include three family 
members: RIG-I [33, 34], MDA5 [35] and laboratory of 
genetics and physiology 2 (LGP2) [90]. RIG-I recognizes 
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short dsRNA or 5’-triphosphate RNA from enteric RNA 
viruses, whereas MDA5 senses viral dsRNA from enterovi-
ruses in Picornaviridae family and synthetic long dsRNA of 
more than 2 kb in length [91–94]. Binding of the viral RNA 
ligands to RIG-I and MDA5 results in engagement of MAVS 
with large prion-like polymers formation, which is anchored 
to the outer membrane of mitochondria. MAVS subsequently 
recruits TBK1 and IκB kinase ε (IKKε) to phosphorylate 
and activate IRF3 leading to production of type I IFN [42].

In the context of enteric RNA viruses sensed by RLRs, 
RIG-I and MDA5 are important in restricting rotavirus infec-
tion in IECs by inducing IFN-β production [95]. Moreover, 
knockout of both RIG-I and MDA5 prevented the induction 
of type I IFN after reovirus infection of conventional DCs 
[96, 97], suggesting that the type I IFN pathway mediated 
by RLRs is vital to control reovirus infection. In addition, 
the production of type I IFN was dependent on MDA5 by 

DCs since replication of norovirus was controlled by MDA5 
in the intestine and lymphoid organs after peroral infection 
in mice [98]. Furthermore, MDA5 detect viral long dsRNA 
from enteroviruses, such as coxsackie B virus 3 (CVB3), 
to induce type I IFN production for controlling viral infec-
tion [99–101]. Similarly, MDA5 recognizes viral RNA from 
coronaviruses critical for host defense against coronavirus 
infection [102–104].

Other RNA helicases

In addition to RLRs, several other RNA helicases directly 
detect viral RNA from enteric RNA viruses and initiate anti-
viral type I IFN response [105]. The RNA helicases DDX1-
DDX21- DHX36 complex were shown by our group to rec-
ognize reovirus dsRNA using the helicase domain of DDX1, 
meanwhile DDX21 and DHX36 interact with downstream 

Rotavirus Reovirus SARS-CoV-2

Endosome

TLR7 TLR3

ssRNA dsRNA

Norovirus Enterovirus

MyD88 TRIF

IRAK1/4
TRAF3/6IKKα

Osteopontin

IRF7

TBK1

IKKε

IRF3

DDX1
DDX21 DHX36

MAVS

TRIF

MAVS

RIG-I MDA5

Mitochondria

DHX9 DHX15

Nucleus

dsRNA
Short dsRNA Long dsRNA

PARP9

dsRNA
dsRNA

1100-1400bp
dsRNA

P
IRF7

P
IRF3

NLRP6 PI3K 
p85 

AKT3

IRF3IRF7

Type I IFN

Cytoplasm

IRF7

DHX33

Fig. 2   Host PRRs sense enteric RNA viruses to induce type I IFN 
signaling pathway. Invasion by enteric RNA viruses, including rota-
virus, reovirus, norovirus, enterovirus and SARS-CoV-2, introduces 
RNA into the endosome or dsRNA in the cytoplasm. The host pat-
tern recognition receptors (PRRs), including TLR3 and TLR7 in 
the endosome and DDX1/DDX21/DHX36 complex, RIG-I, MDA5, 
DHX9, DHX33, DHX15 and PARP9 in the cytoplasm, recognize the 
RNA molecules and trigger the activation of downstream cascades 
through their adaptors leading to the induction of type I IFN in innate 
immune cells of the intestinal tract. MyD88 Myeloid differentiation 
primary response 88, TRIF TIR-domain-containing adapter-inducing 

interferon-β, IRAK1/4 Interleukin 1 receptor-associated kinase 1 and 
4, IKKα IκB kinase α, TRAF3/6 TNF receptor-associated factor 3 and 
6, IRF7 Interferon regulatory factor 7, DDX1 DEAD-Box helicase 
1, RIG-I Retinoic acid-inducible gene I, MDA5 Melanoma differen-
tiation-associated protein 5, DHX15 DEAH-Box helicase 15, PARP9 
Poly (ADP-ribose) polymerase 9, MAVS Mitochondrial antiviral-sign-
aling protein, TBK1 TANK-binding kinase 1, NLRP6 the NACHT, 
LRR, and PYD domains-containing protein 6, PI3K p85 Phosphati-
dylinositol 3-kinase (PI3K) regulatory subunit p85, AKT3 AKT Ser-
ine/Threonine kinase 3
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adaptor TRIF to recruit adaptors TBK1 and IKKε complex 
for inducing IRF3 activation leading to final type I IFN pro-
duction in DCs [39]. Our group identified RNA helicases 
DHX9 and DHX33 as RNA sensors of reovirus to initiate 
MAVS mediated type I IFN signaling pathway in myeloid 
DCs [36, 106]. Later, another RNA helicase DHX15 was 
reported by our group to sense reovirus dsRNA for inducing 
MAVS-dependent type I IFN production in DCs [37] and 
IECs and thereby protect mice from intestinal inflammation 
induced by infection with enteric RNA viruses including 
reovirus and rotavirus in mice [10].

Noncanonical RNA sensor PARP9

Recently, our group identified poly(ADP-ribose) polymerase 
9 (PARP9) as a noncanonical sensor for RNA viruses in 
DCs and found PARP9 deficient mice had enhanced sus-
ceptibility to infections with enteric reovirus because of 
impaired type I IFN production in mice [46]. Mechanisti-
cally, PARP9 recognizes and binds viral dsRNA between 
1100 and 1400 bp from reovirus, with resultant recruitment 
and activation of the downstream phosphoinositide 3-kinase 
(PI3K) and AKT3 pathway, independent of MAVS. PI3K/
AKT3 then activated the IRF3 and IRF7 by phosphorylat-
ing IRF3 at Ser385 and IRF7 at Ser437/438 leading to type 
I IFN production [46].

Role of type III IFN pathway mediated 
by PRRs sensing enteric RNA viruses

Type III IFN is particularly important in responding to intes-
tinal antiviral responses and controlling virus-induced intes-
tinal inflammation in IECs of the intestinal tract. Although 
RIG-I and MDA5 have been proposed to induce type III 
IFN in response to some enteric RNA viruses in DCs, only 
RNA helicase DHX15 has been identified to sense enteric 
RNA viruses for inducing type III IFN signaling pathway in 
IECs both in vitro and in vivo, which is discussed below in 
detail (Fig. 3).

RNA helicase DHX15

IECs are the predominant type III IFN producing and 
responsive cell type in the intestinal tract [54]. Several 
groups have reported antiviral effects of type III IFN IFN-λ 
against rotavirus [54, 107, 108], reovirus [10, 107] and 
norovirus [109–111] in intestine both in vitro and in vivo. 
MDA5 is required for type I IFN production by IECs dur-
ing norovirus infection in mice [98]. The RNA helicase 

DHX15 induces type III IFN production using a similar 
pathway as in producing type I IFN [10, 37]. Recently, 
DHX15 was reported by our group to sense long dsRNA of 
reovirus for inducing MAVS-dependent type III IFN pro-
duction in IECs and protect mice from intestinal inflamma-
tion induced by infection with enteric RNA viruses includ-
ing reovirus and rotavirus in mice [10]. DHX15 operates 
independently of RIG-I and MDA5 to recruit NLRP6 and 
MAVS complex followed by TBK1/IKKε mediated IRF3/7 
activation resulting in type III production as well as ISGs 
in IECs [10, 67]. In addition, mice lacking NLRP6 failed 
to control replication of norovirus in the gastrointestinal 
tract by reducing type III IFN in mice [67].
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Fig. 3   The RNA helicase RNA sensor DHX15 sense enteric RNA 
viruses to trigger type III IFN signaling pathway. Infection by enteric 
RNA viruses, including rotavirus, reovirus and norovirus, releases 
dsRNA in the cytoplasm. The RNA helicase RNA sensor DHX15 in 
the cytoplasm recognizes the RNA molecules and trigger the activa-
tion of downstream cascades through their adaptors leading to the 
induction of type III IFN in IECs of the intestinal tract
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Role of inflammasome pathway mediated 
by PRRs sensing enteric RNA viruses

Three members of the RNA helicase family have been 
identified to sense enteric RNA viruses and trigger inflam-
masome activation signaling pathways in IECs and mac-
rophages, which are discussed below in detail (Fig. 4).

RNA helicase DHX33

The RNA helicase DHX33 is the first RNA sensor to rec-
ognize dsRNA from enteric reovirus followed by recruit-
ment and activation of NLRP3 inflammasome [40]. The 
NLRP3 recognizes a variety of PAMPs and danger-associ-
ated molecular patterns (DAMPs) produced by virus infec-
tion to trigger inflammasome-dependent antiviral immune 
responses for eliminating virus infection [80]. After bind-
ing reovirus dsRNA with its helicase domain, DHX33 
directly interacts with the NACHT domain of NLRP3 in 
both human and mouse macrophages. The NLRP3 protein 
then recruited with ASC (apoptosis-associated speck-like 
protein containing a caspase recruitment domain) and pro-
caspase-1 to form NLRP3–ASC–pro-caspase-1 complex 
for NLRP3 inflammasome activation and subsequent pro-
caspase-1 cleavage, leading to cleavage of pro-IL-1β and 
pro-IL-18 into mature and secreted IL-1β and IL-18 [40].

RNA helicase DHX15

Recently, DHX15 was reported by our group to sense long 
dsRNA of reovirus for inducing NLRP6 inflammasome 
activation in IECs and protect mice from intestinal inflam-
mation induced by infection with enteric RNA viruses 
including reovirus and rotavirus in mice [10]. NLRP6 is 
predominantly expressed in IECs [112] and is crucial for 
maintaining intestinal homeostasis and a healthy intestinal 
microbiome [113]. However, reovirus was the first enteric 
RNA virus proposed to activate the NLRP6 inflammasome 
through its dsRNA. DHX15 binds long dsRNA of reovirus 
followed by interaction with downstream adaptor NLRP6. 
The NLRP6 protein then recruits ASC and pro-caspase-1 
to form NLRP6–ASC–pro-caspase-1 complex for NLRP6 
inflammasome activation and subsequent pro-caspase-1 
cleavage, leading to cleavage of pro-IL-18 into mature and 
secreted IL-18 in IECs [10]. Given that DHX15 induces 
NLRP6 inflammasome activation after sensing viral RNA, 
it is likely that DHX15 may also sense viral dsRNA from 
norovirus and trigger NLRP6 inflammasome activation 
for controlling norovirus induced intestinal inflammation.

RNA helicase DHX9

Increasing evidence have pointed at critical roles for 
inflammasomes in preventing infection by enteric RNA 
viruses. NLRP9b and NLRP6 are the only two NLRPs 
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Fig. 4   Host PRRs sense enteric RNA viruses to induce inflamma-
some activation signaling pathway. Entering by enteric RNA viruses, 
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plasm. The host PRRs in the cytoplasm, including DHX9, DHX15 
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into active caspase1. The active caspase 1 mediates maturation and 
secretion of IL-18 and IL-1β cytokines by cleavage of pro-IL-18 and 
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cell death termed pyroptosis through cleavage of its substrate Gasder-
min D (GSDMD) into GSDMD N-terminus that forms pores in the 
cellular membrane
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highly expressed in the ileum of intestine [68]. Similar to 
NLRP3, NLRP9b could initiate inflammasome formation 
of NLRP9b, ASC and caspase-1 [114]. Additionally, cas-
pase-1 cleavage was detected in intestine from mice infected 
with enteric rotavirus [68], suggesting that NLRP9b initiates 
inflammasome activation upon rotavirus infection. Com-
pared with wild-type mice, NLRP9b, ASC or caspase-1 
knockout mice have elevated rotavirus loads and more severe 
diarrhea [68], further confirming the critical antiviral role of 
NLRP9b inflammasome. Moreover, mice with NLRP9b defi-
ciency in IECs were more susceptible to rotavirus infection 
[68], indicating the protective function of NLRP9b inflam-
masome is important in IECs. Furthermore, rotavirus infec-
tion induced activation of NLRP9b inflammasome that led 
to IL-18 release and GSDMD-dependent pyroptosis, which 
functions to eliminate rotavirus from intestine in mice [68]. 
Mechanistically, NLRP9b employs DHX9 to sense short 
dsRNA stretches from rotavirus for triggering downstream 
inflammasome activation [68]. DHX9 was previously identi-
fied by our group as an RNA sensor for reovirus to induce 
MAVS-dependent type I IFN production [36].

Concluding remarks

Both type I IFN and especially type III IFN are critical in 
controlling replication of enteric viruses and viral-induced 
intestinal inflammation. Despite the incremental progress 
made in understanding how many PRRs recognize enteric 
RNA viruses to mediate type I IFN production in IECs, 
DCs and macrophages, there are few PRRs identified that 
sense enteric RNA viruses for type III IFN production and 
inflammasome activation in IECs. Given the immunologi-
cal importance of IECs in host defense, more efforts should 
be made to identify more specific PRRs of enteric RNA 
viruses in IECs and reveal how those intestinal PRRs sense 
enteric RNA viruses and trigger other signaling pathways 
that control infection of enteric RNA viruses in IECs in the 
future. Pyroptosis is well known to control bacterial infec-
tion, but mechanism used to control enteric RNA viruses and 
underlying mechanisms are poorly understood. Given the 
critical roles of intestinal microbiota in antiviral immunity, 
the triangle roles of inflammasome, pytoptosis and intestinal 
microbiota during infection of enteric RNA viruses should 
be extensively investigated in future work. Furthermore, 
adaptive immune responses control chronic viral infection 
in the intestine and innate immunity is required for subse-
quent initiation and direction of adaptive immune responses. 
Future efforts should investigate the crosstalk and underly-
ing mechanisms between the innate and adaptive immune 
responses during infection of enteric RNA viruses. Most 
important, SARS-CoV-2-induced COVID-19 pandemic 
is still going on and gastrointestinal symptoms and fecal 

shedding of SARS-CoV-2 RNA are frequently observed 
in COVID-19 patients [6, 20]. Gastroenteritis induced by 
enteric RNA viruses continue to pose a major threat to 
global public health. Therefore, a thorough understanding of 
detailed mechanisms of enteric virus sensing, viral-induced 
intestinal inflammation, and subsequent effects on homeo-
stasis and immune responses in the intestine is critical for 
designing more effective drugs and vaccines that eliminate 
enteric RNA virus infection and treat gastroenteritis.
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