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Abstract

Learning to be skillful is an endowed talent of humans, but neural mechanisms underlying behavioral improvement remain
largely unknown. Some studies have reported that the mean magnitude of neural activation is increased after learning,
whereas others have instead shown decreased activation. In this study, we used functional magnetic resonance imaging
(fMRI) to investigate learning-induced changes in the neural activation in the human brain with a classic motor training task.
Specifically, instead of comparing the mean magnitudes of activation before and after training, we analyzed the learning-
induced changes in multi-voxel spatial patterns of neural activation. We observed that the stability of the activation
patterns, or the similarity of the activation patterns between the even and odd runs of the fMRI scans, was significantly
increased in the primary motor cortex (M1) after training. By contrast, the mean magnitude of neural activation remained
unchanged. Therefore, our study suggests that learning shapes the brain by increasing the stability of the activation
patterns, therefore providing a new perspective in understanding the neural mechanisms underlying learning.
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Introduction

From using chopsticks to playing piano, a certain amount of

training is required. However, functional magnetic resonance

imaging (fMRI) studies provide contradicting findings on the

neural mechanisms underlying learning. After training, the mean

magnitude of neural activation in a region of interest can be either

increased [1,2,3,4,5,6,7], decreased [2,3,6,8,9,10,11] or even

unchanged [12]. We argue that one possible interpretation of

these inconsistent findings is that learning-induced changes are not

homogenous in that the activation of some neurons is increased

and the activation of others is decreased (for a review, see [13]).

Accordingly, fMRI studies based on the mean magnitudes of

neural activation averaged across voxels may show inconsistent

findings.

Neurophysiological studies on monkeys have unequivocally

demonstrated the heterogeneous nature of changes in neuronal

activation after training. In these studies, training generally

increases the selectivity of neurons to trained stimuli or tasks,

but the increased selectivity is achieved in different manners. One

method is to sharpen the tuning curve of either the least responsive

neurons [14,15,16] or the most informative neurons [17,18].

Another method is to modify the magnitude of neuronal activation

by either decreasing the responses for untrained stimuli [19] or

increasing the responses for trained stimuli [14,15,17]. Therefore,

when learning-induced neuronal changes are examined at the

population level, contradictory results that are similar to those

observed in the fMRI studies are observed. That is, the neural

activation is either decreased [20,21], increased [22,23,24] or

unchanged [25].

In this study, we proposed a new approach to investigate the

neural mechanisms underlying learning at a finer scale using

a multi-voxel pattern analysis (MVPA) [26]. This new approach is

derived from two previous findings. First, learning modifies the

tuning of activation patterns for task-relevant features

[27,28,29,30]. Second, MVPA is suitable for revealing heteroge-

neous neural activation, such as the orientation map in the

primary visual cortex [31]. Therefore, if motor training leads to

heterogeneous changes in the primary motor cortex (M1), we

expect significant changes in the activation patterns for trained

(versus untrained) finger-tapping movements, even without signif-

icant changes in the mean magnitudes.

Methods

Participants
Ten college students (aged 21–30 years; 4 males) were recruited

from Beijing Normal University, Beijing, China. All participants

were right-handed, and none were professional typists or

musicians. The experimental protocol was approved by the

Institutional Review Board of Beijing Normal University. Written

informed consent was obtained from each participant before the

experiment.

Behavior Training
A classic finger-tapping task [1] was used in the behavioral

motor training. In a finger-tapping training session, the partici-
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pants were instructed to perform a tapping movement with the

fingers in a specific order (e.g., from little finger, to index finger, to

ring finger, and to middle finger) as accurately and quickly as

possible in 30 sec with the left hand (i.e., the non-dominant hand).

No visual feedback was provided throughout the session. The

entire session was videotaped, and two observers who were

unaware of the objective of this study independently calculated the

number of correctly completed sequences in the session by

watching the video recordings. The number of correctly complet-

ed sequences was used as an index for motor performance in the

session. Each participant completed forty sessions per day for five

consecutive days, which generated 200 total sessions for each

participant. The participants took a short break between sessions

and a long break between the first and second half of 40 sessions.

There were two tapping sequences (Order one: 4(little), 1(index),

3(ring), and 2 (middle); Order two: 2 3 1 4) in which one order was

the to-be-trained sequence and the other was the untrained

sequence. One-half of the participants were assigned to the first

tapping sequence, and the other half were assigned to the second

sequence. The participants’ performance for both tapping

sequences was examined before and after training, whereas only

one sequence was trained during the training period.

fMRI Experiment
There were two fMRI scan sessions for each participant that

were performed before and after the behavioral training

(Figure 1A). Each fMRI session consisted of (1) a one blocked-

design localizer run and (2) seven slow event-related-design

experimental runs.

In the localizer scan, the participants were instructed to

randomly tap their fingers to localize the M1. In a block, the

instruction, either ‘‘left hand’’ or ‘‘right hand,’’ was displayed on

the screen for 15 sec. The participants performed random finger-

tapping movements with the hand that corresponded to the

instruction until the instruction disappeared. The order of the

blocks for the left- and right-hand movements were randomly

mixed and counterbalanced with a 15 sec rest (i.e., no tapping)

between each tapping block. There were four blocks for each hand

movement.

In the experimental scan, the participants were instructed to

perform finger tapping movements using either the trained

sequence or the untrained sequence with the left hand (i.e., the

trained hand). In a trial, the order of the sequence (e.g., 4, 1, 3, 2)

was presented on the center of the screen for 750 ms followed by

flickering dots at 4 Hz. The participants tapped their fingers in

a sequence based on the instructions for the rhythm of the

flickering dots (i.e., one tap at the presence of one flickering dot).

Because the participants tapped during both the trained and

untrained sequences at identical speeds, the total amount of motor

movements was matched for the two sequences. Therefore, the

differences observed between the performances for the two

sequences during the fMRI scan cannot be accounted for by the

difference in either the speed of tapping or the amount of motor

movements. The trials consisting of the trained and untrained

sequences were randomly mixed. Between each trial, a blank

screen with a fixation point jittered between 16.5 sec and 19.5 sec

to ensure that the hemodynamic activities returned to baseline.

There were nine trials for the trained and untrained sequences in

each run, which generated sixty-three total trials per condition

(i.e., seven total runs).

MRI Acquisition
MRI data were acquired on a Siemens 3T Trio scanner

(MAGENTOM Trio, a Tim system) with a 12-channel phased-

array head coil at the BNU Imaging Center for Brain Research,

Beijing, China. T2*-weighted functional images were acquired

with a gradient-echo, echo-planar imaging (EPI) sequence

(TR=1.5 sec, TE= 30 ms, FA=90 degrees,

FOV=2006200 mm, matrix = 64664, number of slices = 25,

and voxel size = 36364 mm). T1-weighted structure images were

also collected with a magnetization-prepared rapid gradient-echo

(MPRAGE) sequence (TR/TE/TI= 2.53 sec/3.45 ms/1.1 sec,

FA= 7 degrees, voxel size = 16161 mm) for each participant.

fMRI Data Analysis
Functional data were analyzed with the fMRI Expert Analysis

Tool (FEAT) implemented within FMRIB’s Software Library

(FSL) (http://www.fmrib.ox.ac.uk) and in-house MATLAB codes.

Data preprocessing was applied with default options in FEAT,

including head motion correction with a six-parameter affine

transformation implemented in MCFLIRT (Motion Correction

using FMRIB’s Linear Image Registration Tool), brain extraction,

Figure 1. Experimental procedure and behavioral results. A) Participants were instructed to practice sequential finger-tapping movements for
five consecutive days. Pre- and post-training behavioral tests were conducted to measure the improvement of behavioral performance in finger
tapping. FMRI scans were conducted before and after motor training to examine the learning-induced changes in neural activation. B) Behavioral
performance was measured as the number of correct sequential finger-tapping movements per 30 sec for both the trained and untrained sequences
occurring before and after motor training. The error bars indicate 61 standard error of the mean (S.E.M.).
doi:10.1371/journal.pone.0053555.g001
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spatial smoothing on a Gaussian kernel (5 mm full width at half

maximum) and a high-pass temporal filter (a Gaussian-weighted

running line filtering with a cutoff of 100 sec). Time-series

statistical analyses were conducted using FILM (FMRIB’s

Improved Linear Model) with local autocorrelation corrections.

Each run was modeled separately for each participant.

The localizer runs were modeled by a boxcar convolved with

a gamma hemodynamic response function and its temporal

derivative. Each participant’s motor region specific to left-hand

finger tapping was localized with the contrast of left-hand tapping

versus right-hand tapping; the reverse contrast was used to define

the motor region for right-hand finger tapping.

For the experimental runs, a gamma hemodynamic response

function and its temporal derivative were used to model each slow

event. Each participant’s BOLD response to each sequence was

defined with the contrast of the trained sequence versus the

fixation and the contrast of the untrained sequence versus the

fixation respectively. In addition, each participant’s functional data

were registered to his/her high-resolution structure images and

then to the standard space images (Montreal Neurological Institute

MNI-152 template) using FLIRT (FMRIB’s Linear Image

Registration Tool) of FSL.

We used M1 as an ROI for further ROI-based analyses because

it is the most studied region in motor-sequence training [1,32] and

because it provides fine-tuned representations for finger move-

ments [33,34,35]. Specifically, M1 in the right hemisphere

(corresponding to the left hand) was defined by intersecting the

functional activation (p,10212, uncorrected) in the localizer run

and the anatomic M1 label derived from maximum probabilistic

maps (thresholded at 25%) of the Juelich Histological Atlas [36]

implemented in FSL. In an identical manner, M1 in the left

hemisphere served as a control region but with the contrast of the

tapping movement of the right hand versus that of the left hand.

To calculate the learning-induced changes in the activation

patterns for the trained sequence, MVPA was performed on the

beta value across voxels in M1. First, all experimental runs were

divided into even and odd runs, and the beta value of each voxel

was averaged across the even and odd runs for each tapping

sequence. Second, the correlations between the activation pattern

based on the averaged beta values in the even and odd runs were

calculated. Specifically, the within-sequence correlation was

calculated between the even and odd runs for the trained

sequence, whereas the between-sequence correlation was calcu-

lated in an identical manner but between the trained and

untrained sequences. The difference between the within- and

between-sequence correlations indicated the similarity in the

spatial patterns of neural activation between the even and odd

runs that were specific to the trained sequence, or the stability of

the activation pattern for the trained sequence. Finally, the

training effect was measured as the change in stability of the

activation pattern for the trained sequence between the post- and

pre-training scans. In addition, the training effect for the untrained

sequence was calculated in an identical manner.

In addition to the ROI-based analysis, we also performed

a searchlight analysis across the entire brain to examine learning-

induced changes in activation patterns in the brain. In the analysis,

the searchlight was a roving small ROI across the entire brain

volume [37]; the size of the cubic searchlight was 76767 voxels,

and in turn, every voxel of the brain was the center of the

searchlight. The training effect was calculated in an identical

manner as that in the ROI-based analysis, and a two-tailed t-test

between the trained and untrained sequences was calculated to

generate a t-map of the entire brain.

Finally, we used a traditional univariate method to measure

learning-induced changes based on the mean magnitudes of neural

activation. Initially, the beta values of all voxels within an ROI

were extracted for each condition, run, and participant. Sub-

sequently, the beta values were averaged across voxels and runs for

each condition and participant. Finally, the training effect was

calculated as the difference between the mean magnitude in the

post-training scan and that in the pre-training scan.

Results

Training Improves Behavioral Performance on Finger
Tapping
Before training, the mean speed of correct finger tapping was

21.2 and 21.7 times per 30 sec for the to-be-trained and untrained

sequences, respectively. After training for five consecutive days, the

speed of the trained sequence was 38.0 times per 30 sec, whereas

the speed of the untrained sequence remained unchanged (22.0

times per 30 sec) (Figure 1B). A two-way ANOVA of tapping

sequence (trained versus untrained) by training (pre- versus post-

training) showed a significant main effect of training (F(1,

9) = 90.5, p,0.001) and a significant main effect of tapping

sequence (F(1, 9) = 70.1, p,0.001). Importantly, the two-way

interaction of tapping sequence by training was significant (F(1,

9) = 39.7, p,0.001), which indicated that the improved behavioral

performance was specific to the trained sequence. Post hoc t-tests

confirmed this observation, with the performance on the trained

sequence being significantly higher after training than before

training (t(9) = 8.7, p,0.001, Cohen’s d = 3.30) and no significant

change for the untrained sequence (t(9) ,1, Cohen’s d = 0.09). An

ANOVA on accuracy revealed a similar pattern, with a significant

two-way interaction of tapping sequence by training (F(1,

9) = 20.6, p = 0.001). Post hoc t-tests further revealed that there

was no significant difference in accuracy between two sequences

before the training (t(9) ,1, Cohen’s d =20.21), whereas the

accuracy for tapping the trained sequence was significantly higher

than that for the untrained after the training (t(9) = 7.0, p,0.001,

Cohen’s d= 2.54). Next, we investigated the neural mechanisms

underlying the learning-induced behavioral changes.

Motor Training Improves the Stability of Activation
Patterns in M1
The primary motor cortex (M1) involved in finger tapping

movements was defined as the intersection between the functional

activation induced by random finger-tapping movements of the

trained hand (i.e., the left hand) in the localizer scan and the

anatomic M1 label in the Juelich Histological Atlas (the MNI

coordinates of the peak voxel in the right M1: x= 36, y=230,

z = 62) (Figure 2A).

To examine the learning-induced changes in M1, we calculated

the similarity of activation patterns between the even and odd runs

for the trained sequence, which indicates the stability of activation

patterns (see Methods). The training effect was thus defined as

changes in the stability of activation patterns between the post-

and pre-training scans. We observed that in the right M1, which

corresponds to the trained hand, motor training significantly

increased the stability of the activation pattern induced by the

trained sequence (t(9) = 3.3, p = 0.01, Cohen’s d= 1.05) and not

the untrained sequence (t(9) ,1, Cohen’s d =20.01) (Figure 2B).

Notably, the learning-induced change in the stability of the

activation patterns for the trained sequence was significantly larger

than that for the untrained sequence (t(9) = 2.7, p = 0.02, Cohen’s

d = 0.86).

Stability of Activation Patterns
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By contrast, in the left M1, which corresponds to the untrained

hand (MNI coordinates of the peak voxel in the left M1: x=242,

y =220, z = 56), we did not observe learning-induced changes in

the stability of the activation patterns for either the trained (t(9)

,1, Cohen’s d =20.05) or untrained sequences (t(9) = 1.0,

p = 0.33, Cohen’s d = 0.36). Moreover, there was no significant

difference in the training effect between the trained and untrained

sequences (t (9) ,1, Cohen’s d =20.22).

To further examine whether the learning-induced change in the

stability of activation patterns was specific to the right M1, we

performed a searchlight analysis across the entire brain. The

searchlight analysis revealed a cluster of voxels in the right M1

showing that the increase in the stability of the activation pattern

was specific to the trained sequence after training (p,0.01;

uncorrected) (MNI coordinates of the peak voxel in the cluster:

x = 52, y =218, z = 58) (Figure 3). Not surprisingly, the cluster

identified by the searchlight analysis was partially overlapped with

M1 that was used in the ROI-based analysis (percentage of

overlap: 39%; the distance between the peak voxel in the cluster

and that in M1:1.33 cm; Figure 3). No other continuous cluster

(cluster size .20 voxels) was observed in other cortical regions of

the brain. Of note, with a smaller size (56565 voxels) and the

sphere-shape searchlight, we observed the similar result.

Finally, we examined whether the behavioral motor training

changed the mean magnitude of neural activation in M1. The

training effect was defined as changes in the mean magnitude

between the post- and pre-training scans. No learning-induced

changes in the mean magnitude were observed for either the

Figure 2. ROI-based Analyses. A) The right primary motor area (M1) that corresponds to the trained left hand from a typical participant (MNI
coordinates: x = 40, y =214, z = 46; t value = 18.3). M1 was defined as the intersection between the functional activation in the localizer scan and the
anatomic M1 label in the Juelich Histological Atlas. B) Learning-induced changes in the stability of activation patterns in the M1 for both trained and
untrained sequences. C) Learning-induced changes in the mean magnitudes of neural activation for both the trained and untrained sequences. The
error bars indicate 61 S.E.M. An asterisk indicates p,0.05.
doi:10.1371/journal.pone.0053555.g002
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trained (t(9) ,1, Cohen’s d= 0.04) or untrained sequences (t(9)

,1, Cohen’s d =20.30) (Figure 2C). Moreover, there was no

significant difference in the training effect between the trained and

untrained sequences (t(9) = 1.9, p = 0.09, Cohen’s d = 0.62).

Discussion

In this study, we used fMRI to investigate whether motor

training shaped the stability of activation patterns in the primary

motor cortex. Behaviorally, we showed that the performance on

sequential finger tapping movements was significantly improved

after the training, and the training effect was specific to the trained

sequence. Neurally, both ROI-based MVPA and the searchlight

analysis revealed that the stability of activation patterns, or the

similarity of the activation patterns between the even and odd

runs, significantly increased for the trained sequence but not for

the untrained sequence. In addition, the learning-induced change

was only observed in M1 that corresponded to the trained hand

but not the untrained hand. By contrast, we did not observe

significant changes in the mean magnitudes of neural activation in

M1 after motor training. In short, our study provides direct

evidence showing learning-induced changes in activation patterns,

even without detectable changes in the mean magnitudes of neural

activation.

The finding that motor training shaped activation patterns in

M1 extends previous studies based on mean magnitudes of neural

activation in motor training tasks. In these studies, both the

increased [1,5,38,39] and decreased neural activations [1,32] in

M1 were reported because of motor training. Two stages of

learning processes have thus been proposed to address these

apparently inconsistent findings [32,40]; see also [41]. At the early

stage of training, which can be as brief as a few minutes, the mean

magnitude of neural activation in M1 is typically decreased. By

contrast, when the duration of motor training is extended to

several weeks, the mean magnitude of neural activation in M1 is

often increased. The duration of motor training in our study (five

days) was between the early and late stages; therefore, it is not

surprising that we did not observe changes in the mean

magnitudes of neural activation in M1. Importantly, our study

may provide insight on how motor training shapes M1 between

the early and later stages. During this period, motor training may

increase the stability of neural representation in the M1 for the

trained motor behavior, without showing an evident change in the

mean magnitudes of neural activation at the regional (or

population) level. The increased pattern stability may lead to

better retrieval of motor memory. As a result, the behavioral

consistency in tapping, such as trial-by-trial variability in response

time, may be improved [42].

Previous studies have shown that the greater stability of

activation patterns is associated with conscious (versus uncon-

scious) experiences [43], better memory retrieval [44] and better

behavioral performance in face recognition [45]. This close link

between pattern stability and behavioral performance suggests that

greater pattern stability may serve as a neural marker for a more

refined and efficient representation that leads to better behavioral

performance. Therefore, the increased pattern stability after

training in our study provides a new insight on the underlying

mechanism for learning-induced changes in the brain (see also

[46]). That is, neural representations for trained stimuli can be

established and refined through modulation on pattern stability by

training. Importantly, previous studies have shown that neural

representations differ in sparseness that stimuli can be represented

either by response magnitude of a small number of sharply-tuned

neurons (sparse coding) [47,48,49] or by concerted activity pattern

distributed across a large population of broadly-tuned neurons

(population coding) [50]. Accordingly, more stable and refined

representations after training might be manifested either as less

variability in local neuronal response amplitude or regional

average response amplitude [42,51] or as more similar spatial

activation patterns across multiple voxels [46]. Therefore,

homogenous and independent changes of neuronal tunings many

lead to increased stability of mean response amplitude; in contrast,

heterogeneous and interrelated changes of neuronal tunings may

result in increased stability of activation patterns. Because

Figure 3. Searchlight Analyses. A cluster of voxels in the right M1 show the increased stability of the activation pattern for the trained sequence
(MNI coordinates: x = 52; y =218; z = 58; t value= 4.76). The inset figure shows the overlap between the cluster identified by the searchlight analysis
and the M1 identified in the localizer scan (outlined in cyan).
doi:10.1371/journal.pone.0053555.g003
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representations in the motor cortex are largely in population

coding [52,53], it is not surprising that we observed the increased

stability of activation patterns after motor training.

Future fMRI studies with a higher spatial resolution and more

scan sessions at multiple time intervals during training may help to

illustrate how learning shapes the brain by changing both the

mean magnitudes and spatial patterns of neural activation.
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