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Abstract: Nonsteroidal anti-inflammatory drugs (NSAIDs) such as aspirin and indomethacin (IND)
are the most commonly prescribed for inflammation or pain. However, widespread use causes several
adverse effects, such as gastric ulcers, upper gastric system bleeding, and erosions. Carnosic acid
(CA) is an important natural antioxidant found in rosemary (Rosmarinus essentials) and exhibits a
protective effect by suppressing oxidative stress and inflammation. This study aimed to investigate
the impact of CA on IND-induced gastric ulceration. Wistar male rats received CA (100 mg/kg)
or esomeprazole (ESP) (20 mg/kg, standard drug) by oral gavage for 14 days, after that gastric
ulceration was induced by oral administration of 100 mg/kg IND. CA pretreatment attenuated both
gross morphological lesions and histopathological alterations. CA strongly reduced IND-induced
oxidative stress, verified by a decrease in MDA (p < 0.001) and TOS levels (p < 0.05). Furthermore, an
IND-dependent increase in CAT (p < 0.001) and GPx (p < 0.01) activities, as well as a reduction in GSH
levels (p < 0.01), were ameliorated by CA pretreatment. CA also attenuated inflammatory damage
by suppressing IL-1β (p < 0.01), IL-6 (p < 0.01), and TNFα (p < 0.001) production and increasing
Nrf2/HO-1 (p < 0.05) expressions. In conclusion, CA shows a gastroprotective effect by reducing
oxidative stress and attenuating inflammation.

Keywords: indomethacin; gastric ulcer; carnosic acid; inflammation; oxidative stress

1. Introduction

Non-steroidal anti-inflammatory drugs (NSAIDs) are widely prescribed for treat-
ing pain, fever, and inflammation. However, long-term use of the NSAIDs, such as in-
domethacin (IND) or aspirin, can cause gastric ulceration by various mechanisms, including
injury through inhibition of prostaglandin (PG) synthesis, reduction in local blood flow,
regional irritation, and inhibition of tissue regeneration [1,2]. The pathogenesis of gas-
tric ulcerative lesion formation is multifactorial and has not been fully clarified. Even
though several synthetic anti-ulcerative drugs are currently available, they can exhibit
mild to severe side effects [3]. For example, omeprazole, a proton-pump inhibitor (PPI)
that blocks the release of gastric acid, may facilitate Clostridium difficile infection [4], in-
duce hypomagnesemia [5], or diminish anticoagulant drug efficiencies such as that of
clopidogrel [6]. However, other PPIs, including ilaprazole, were shown not to disturb
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clopidogrel metabolism [7]. Another PPI, ranitidine, widely utilized for the treatment of
gastroesophageal reflux and peptic ulcer disease, is indicated as a probable human carcino-
gen for some cancer types [8]. Indeed, studies suggest that ranitidine degradation results
in the formation of high levels of a carcinogen, N-nitroso dimethylamine [9]. Therefore, it
is necessary to identify non-toxic, easily accessible anti-ulcerative drugs [10].

Many studies have shown that gastric injury may occur due to increased reactive oxy-
gen species (ROS) release, attenuated cell proliferation, and enhanced inflammation [11–13].
Therefore, controlling ROS generation and anti-inflammatory response is essential for
abrogating gastric ulceration.

Various plant-derived natural substances are effective in treating human disease.
Rosmarinus officinalis L. is a popular culinary plant used in different parts of the world,
exhibiting anti-inflammatory, antioxidant, antiangiogenic, and even anticancer effects.
Rosmarinus officinalis L activity has been associated with various mechanisms, such
as increased gene expression involved in modifying the immune response and specific
metabolic pathways [14]. Carnosic acid (Salvin), structurally a phenolic diterpene, was
initially isolated from Rosmarinus officinalis L. and Salva Officinalis L. leaves [15]. Notably,
CA content depends on cultivating conditions. It is increased when plants are stressed, e.g.,
during drought [16]. To this diterpene, antioxidant and antimicrobial properties have been
attributed, resulting in its examination for medical application in several pathologies [17,18].
Since the link between oxidative stress and gastric ulceration is well established, CA-acid,
due to its antioxidative properties, is a plausible medication candidate.

Previous studies have determined that CA exhibits higher antioxidant activity com-
pared to commonly used synthetic antioxidants [19,20]. CA was found to scavenge ROS
produced in the chloroplasts in plants, resulting in the synthesis of diterpene alcohols,
primarily isorosmanol [21]. Furthermore, it has been suggested that CA removes ROS from
plant membranes, facilitating their stability and protecting cell homeostasis [21–23].

Various studies have emphasized that CA-rich plant extracts have an anti-inflammatory
effect by suppressing the release of inflammatory cytokines, including interleukin (IL)-1β,
TNFα, and IL-6 in several cell types, including macrophages, but also in animal mod-
els [24–28]. Moreover, CA attenuates TNF-α downstream signaling by downregulating
the inhibitor of nuclear factor κ-B (NF-κB) in combination with the enhancement of HO-1
expression [29]. Furthermore, due to augmenting the activity of the erythroid-derived
2-related factor 2 (Nrf2) transcriptional factor, CA attenuates TNF-α and nitric oxide (NO)
inflammatory response [30].

Notably, Nrf2 is a key transcription factor in regulating the cellular antioxidant re-
sponse. Thus, Nrf2 downstream cascades are the primary protection mechanism that
inactivates oxidative stress [31]. Indeed, the expression of genes encoding proteins in-
volved in the antioxidant defense system and cytoprotective such as HO-1 are partly
regulated by the Nrf2. ROS can oxidize the lipid and protein components of the cell,
damaging the gastrointestinal tract barrier and thus enhancing gut permeability resulting
in an inflammatory response [32]. Therefore, antioxidant enzymes like CAT or GPx, have a
significant role against oxidative stress-induced ulcers. A possible mechanism of CA action
is depicted in Figure 1A.

In the present study, we aimed to clarify the effects of CA in an IND-induced gastric
ulcer model by investigating macroscopic, microscopic, and biochemical parameters. Thus,
we examined the impact of CA on IND-induced TAS, TOS, IL1β, IL-6, TNF-α, Nrf-2,
HO-1, MDA, and GSH levels as well on CAT and GPX activities and gastric lesions in
gastric tissues.
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Figure 1. (A) Putative Mechanism of CA Action. (B) Diagram showing the design and time-course 
of experimental procedures (ESP, Esomeprazole at 20 mg/kg; vehicle, distilled water (98%); CA, 
Carnosic acid at 100 mg/kg; IND, Indomethacin at 100 mg/kg). All drugs were administrated by oral 
gavage. Data are reported as seven animals per group. 
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Figure 1. (A) Putative Mechanism of CA Action. (B) Diagram showing the design and time-course
of experimental procedures (ESP, Esomeprazole at 20 mg/kg; vehicle, distilled water (98%); CA,
Carnosic acid at 100 mg/kg; IND, Indomethacin at 100 mg/kg). All drugs were administrated by
oral gavage. Data are reported as seven animals per group.

2. Materials and Methods
2.1. Chemicals and Reagents

Carnosic acid (Sigma-Aldrich International, Darmstadt, Germany). Indomethacin
(Endol 25 mg; 25 cap., DEVA Holding A.S., Istanbul, Turkey); Esomeprazole (Nexium 40 mg;
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28 tablets, AstraZeneca Pharmaceutical Company, Istanbul, Turkey) were obtained. ELISA
kits measuring IL-1β, IL-6, and TNF-α were obtained from Elabscience, TX, USA. TOS and
TAC assays were purchased from Rel Assay Diagnostics, Gaziantep, Turkey. Hematoxylin
Eosin (H&E) was obtained from (Merck, Darmstadt, Germany). The following antibodies
were utilized: Nrf2 (Anti-Nrf2 antibody, Abcam, Boston, MA, USA, Catalog #: ab31163),
HO-1 (Anti-HO-1 antibody, Abcam, Boston, MA, USA, Catalog #: ab13243). Fluorescein-5-
Isothiocyanate (FITC; Abcam, secondary antibody, Boston, MA, USA, Catalog #: ab6785)
and Texas Red (secondary antibody, Abcam, Boston, MA, USA, Catalog #: ab6719).

2.2. Animals

In this study, twenty-eight adult male albino Sprague-Dawley rats weighing between
250–300 g were used. The study was approved by Atatürk University Experimental
Animal Ethics Committee with the number (E-42190979-000-2200190400). During the
experiment, animals were fed rat chow and tap water ad libitum. The animals were
housed in polypropylene cages, under a 12-h light/12-h dark regime, at 22 ± 0.5 ◦C and
appropriate humidity.

2.3. Experimental Design

The dosage of the tested agents was chosen according to the previous studies [33,34].
Rats were divided into four experimental groups each consisting of seven animals: control
(no treatment was applied), IND-ulcerated animals (Gastric ulcer model, 100 mg/kg IND),
IND + ESP (20 mg/kg ESP), IND + CA (100 mg/kg CA) [33,35]. CA, IND and ESP were
dissolved in saline with 5% NaOH. CA (100 mg/kg CA) and ESP (20 mg/kg of ESP) were
administered by oral gavage daily for 14 days. The control and IND (100 mg/kg IND)
groups were given saline in the same way and volume. Gastric ulcer was induced on day
14 of the experiment by administering 100 mg/kg IND to animals of all groups except the
control as summarized in Figure 1.

2.4. Generation of Gastric Ulcer Model

The gastric ulcer model was induced as described previously [36]. Briefly, all animals
fasted 24 h before drug administration. Except for the control group, ulcers were induced
by administering IND to the three experimental study groups, namely IND, IND+ ESP and
IND + CA. The same volume of physiological saline was administered to the experimental
animals as to the control group. 50 mg/kg ketamine and 5 mg/kg xylazine were adminis-
tered to rats 6 h after IND administration. Anesthetized rats were euthanized by cervical
dislocation, after which tissue samples were collected. Specifically, the stomach was opened
along the greater curvature and washed with physiological saline at 4 ◦C. Washed stomach
tissues were stored in tubes containing 10% formalin for histological procedures and at
−800 ◦C for biochemical determination until analyses. Hematoxylin-eosin staining of the
taken tissues was evaluated histopathologically and immunohistochemically.

2.5. Macroscopic Examination

The macroscopically examined gastric tissues were opened with the help of scissors,
the mucosal layers were examined, and macroscopic images of the stomach tissues were
taken. The gastric ulcer index was determined by utilizing the ToupView, Olympus
program [12].

2.6. Ulcer Index and Preventive Index

The ulcer index and preventive index measurement were calculated using the method
described by ElAshmawy et al. (2016) [12]. The ulcer score for each group was the mean
number of ulcers in each group (total number of ulcers divided by the total number of rats),
n = 7. The preventive index was calculated as the following: ulcer index of the ulcerated
group − ulcer index of treated group × 100)/ulcer index of the ulcerated group.
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2.7. Histopathology

Tissue samples collected at the end of the evaluation were fixed in 10% formaldehyde
solution for 48 h and embedded in paraffin blocks at the end of routine tissue follow-up
procedures. Sections of 4 µm thickness were taken from each block, and the preparations
destined for histopathological examination were stained with hematoxylin-eosin (HE) and
examined with a light microscope (Olympus BX 51, JAPAN). A semiquantitative scoring
system was used for histopathological evaluation as follows: -, no staining; +, mild staining;
++, moderate staining; +++, strong staining [37].

2.8. Immunohistochemical Analyse

Tissue sections taken on adhesive (poly-L-Lysin) slides for immunoperoxidase analysis
were deparaffinized and dehydrated. Then, endogenous peroxidase was inactivated by
incubating the sections in 3% H2O2 for 10 min. In continuation, the tissues were boiled in
1% antigen retrieval (citrate buffer (pH + 6.1) 100) solution and allowed to cool at room
temperature. Sections were incubated with protein block for 5 min to prevent nonspecific
background staining in tissues. Then, the primary antibody (IL33, Cat No: orb6205,
Dilution Ratio: 1/100, UK) was applied to the tissues and incubated in accordance with the
manufacturer’s instructions. 3-3′ Diaminobenzidine (DAB) chromogen was used for the
development of the color stain. The stained sections were examined with a light microscope
(Zeiss AXIO GERMANY).

2.9. Double-Immunofluorescence Assays

Tissue sections prepared on adhesive (poly-L-Lysin) slides for immunoperoxidase
analysis were deparaffinized and dehydrated. Then, endogenous peroxidase was inac-
tivated by keeping it in 3% H2O2 for 10 min. Subsequently, the tissues were boiled in
1% antigen retrieval (citrate buffer (pH + 6.1) 100) solution and allowed to cool at room
temperature. Sections were incubated with protein block for 5 min to prevent nonspecific
background staining. In continuation, the primary antibody (Nrf-2 Cat No: ab89443, Dilu-
tion Ratio: 1/100, UK) was applied to the tissues and incubated per the manufacturer’s
instructions. Immunofluorescence secondary antibody was used as a secondary marker
(FITC Cat No: ab6785 Diluent Ratio: 1/1000) and kept in the dark for 45 min. Subsequently,
the second primary antibody (HO-1 Cat No: ab189491, Dilution Ratio: 1/100, UK) was
dripped onto the tissues and incubated following the manufacturer’s instructions. A sec-
ondary immunofluorescence antibody was used as a secondary marker (Texas Red Cat No:
ab6719 Diluent Ratio: 1/1000 UK) and kept in the dark for 45 min. In continuation, DAPI
with mounting medium (Cat no: D1306 Dilution Ratio: 1/200 UK) was dripped onto the
sections and kept in the dark for 5 min, and the sections were covered with a coverslip. The
stained sections were examined under a fluorescent microscope (Zeiss AXIO GERMANY).

2.10. Determination of Oxidative Markers and Antioxidant Enzyme

Gastric tissues were homogenized in ice-cold PBS and centrifuged at 3000× g for
10 min. The supernatant was collected for measurement of catalase (CAT), glutathione
peroxidase (GPx), glutathione (GSH), malondialdehyde (MDA) and Total Antioxidant
Status (TAS)-Total Oxidant Status (TOS) levels. Protein quantification was performed
using a BCA Protein Assay Kit (Pierce, Rockford, IL, USA). The levels of GSH, and lipid
peroxidation levels (malondialdehyde (MDA) as well as GPx and SOD activities were
measured using commercial kits according to the manufacturer’s instructions (Elabsicience,
Nanjing, China). The TAS-TOS were quantified based on the manufacturer’s guidelines by
using commercial kits [38,39].

2.11. Determination of Inflammatory Markers and Cytokines

IL-1β, IL-6, and TNF-α cytokine levels were measured in gastric tissue using a rat
ELISA kit, as instructed. Briefly, samples were incubated at 37 ◦C for 90 min after addition
to the plates. The wells were then emptied and biotinylated detection Ab working solutions
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were added and incubated for an additional 60 min. The plate was washed and incubated
at 37 ◦C for 30 min by adding horseradish peroxidase conjugate working solution. Finally,
substrate reagent and stop solution were added, respectively, and the plate was read at
570 nm using the Multiskan™ GO Microplate Spectrophotometer reader (Thermo Scientific,
Waltham, MA, USA).

2.12. Statistical Analysis

SPSS 13.00 program was used for statistical analysis SPSS (SPSS for Windows, Inc.,
Chicago, IL, USA). The Shapiro–Wilk test for normality and the Levene test for homogene-
ity were performed. One-way analysis of variance (ANOVA) was used for the comparison
of the groups in parametric conditions and the Tukey test was used for the post-hoc com-
parison. The nonparametric Kruskal–Wallis test was used for the analysis of the differences
between the groups in the semiquantitative data obtained in the histopathological examina-
tion, and the Mann–Whitney U test was used for the comparison of the paired groups. In
order to determine the intensity of positive staining from the pictures obtained as a result of
immunohistochemical and double immunofluorescence staining, five random areas were
selected from each image and evaluated in the ZEISS Zen Imaging Software program. Data
were statistically defined and presented as mean and standard deviation (mean ± SD) for
% area. p < 0.05 was considered significant.

3. Results
3.1. The Effects of CA on IND-Induced Gastric Tissue Macroscopic Alterations

The gastric tissues of the control animals exhibited normal gross morphology (Figure 2A)
and Table 1. The IND-administered animals showed prominent mucosal folds and severe
erosion; whereas pronounced ulceration and bleeding foci were observed in the gastric
mucosa (Figure 2B) and Table 1. The macroscopic examination of ESP pretreated group
(20 mg/kg) stomachs, revealed mild edema in the serosa, whereas mild erosion and
bleeding foci in the gastric mucosa were observed. Based on macroscopic findings, the
calculated ulcer score was significantly lower in the IND + ESP (p < 0.05) compared with
the IND group (Figure 2C) and Table 1. These data verified the protective effect of ESP
on gastric ulceration. Macroscopic gastric examination of CA (100 mg/kg) pretreated
IND-administered animals revealed mild edema in the serosa, with mild parallel erosion of
the mucosa. Furthermore, limited ulceration and bleeding foci were determined. Based on
macroscopic findings, the calculated ulcer score was significantly lower in the IND + CA
(p < 0.05) compared with the IND group (Figure 2D) and Table 1. Moreover, the protective
effect of CA was equal to that of ESP (Figure 2) and Table 1.

Table 1. Effects of CA on IND-induced macroscopic gastric injuries. Ulcer Score, Ulcer Index and
Effect of Carnosic acid (Preventive Index).

Ulcer Score Ulcer Index Preventive Index

Control - - -
IND 29.00 ± 0.86 a 2380 -
IND + ESP 1.45 ± 0.76 b 140 %91.39
IND + CA 1.84 ± 0.69 b 170 %87.65

Data for ulcer scores are expressed as means± SE (n = 7 rats/group), and letters in columns (a,b) show a statistical
difference compared to the IND-group (p < 0.05).

The calculated Ulcer Score, Ulcer Index, and the effect of CA (Preventive Index) are
presented in Table 1.
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Figure 2. Photomicrograph showing the effect of CA on the gross morphology of the gastric mucosa
of ulcerated rats. (A) Negative control group showed no injury of the gastric mucosa (B) IND-
ulcerated rats (C) IND- treated rats pretreated with ESP (IND + ESP) (20 mg/kg) (D) IND- treated rats
pretreated with (IND + CA) 100 mg/mL; IND: Indomethacin, ESP: Esomeprazole, CA: Carnosic acid.

3.2. Histopathological Evaluation of CA Effects

The histopathological examination of hematoxylin and eosin-stained (H&E) gastric
sections obtained from the control mice revealed normal histological structure (Figure 3A).
Examination of the sections obtained from the IND group showed severe erosion of the
mucosa, reaching down to the lamina muscularis. Furthermore, hemorrhagic infiltration,
edema in the submucosa, and severe hyperemia of the vessels were observed (Figure 3B).
Pretreatment with ESP (20 mg/kg) exhibited a significant protective effect on the tissue
architecture. Thus, mild erosion in the mucosal layer, mild degeneration and necrosis of
the mucosal epithelium, and mild hyperemia in the vessels were detected in the sections
obtained from the ESP pretreated group (Figure 3C). The gastroprotective effect of CA was
confirmed by histological analysis. Indeed, CA (100 mg/mL) exerted protective effects
similar to ESP and partially ameliorated IND effects. Specifically, mild erosion of the
mucosal layer, mild degeneration and some necrosis in the mucosal epithelium, and mild
hyperemia in the vessels were detected (Figure 3D). The results of the histopathological
evaluation are presented in Figure 3 and Table 2.
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Figure 3. Photomicrographs showing the effect of CA on stomach sections of IND-administered
rats stained with haematoxylin–eosin. (H&E) (A) Stomachs of negative control rats, (B) IND-
administered rats (C), IND-administered rats pretreated with ESP (20 mg/mL) (IND + ESP) (D) and
IND-administered rats pretreated with CA. IND: Indomethacin, ESP: Esomeprazole, CA: Carnosic
acid. Bar: 100 µm.

Table 2. Effects of CA on IND-induced microscopic gastric injuries.

Erosion Ulceration Oedema in the Serosa Bleeding and Hyperemia

Conrtol - - - -
IND +++ +++ +++ +++
IND + ESP + + + +
IND + CA + + + +

Scoring of histopathological findings observed in stomach tissues.

3.3. The Effect of CA on TNF-α Expression

In continuation, the expression of TNF-α in rat tissue sections was evaluated by
immunohistochemistry and the results are presented in Figure 4 and Table 3. Gastric
tissues of control rats were negative for Tnf-α expression (Figure 4A). Tissues collected
from IND-administered animals showed intense Tnf-α expression, especially in areas of
eroded gastric glands (arrow), interstitial space, surrounding vessels, and in the cytoplasm
of invading inflammatory cells (Figure 4B). Gastric tissue from IND-administered rats
pretreated with ESP showed moderate TNF-α reaction in the eroded areas, in the interstitial
space and around the vessels (Figure 4C). Moderate Tnf-α immunoreactivity was detected
in the eroded gastric glands, interstitial space and in the vicinity of vessels in gastric
tissues collected from IND-administered rats pretreated with CA (Figure 4D). These data
demonstrate that CA protects against adverse IND effects. The immunohistochemical
findings are summarized in Table 3.

Table 3. Effects of CA on IND-induced TNF-α, Nrf-2 and HO-1 expressions.

Tnf-α Nrf-2 HO-1

Conrtol 20.27 ± 0.18 a 44.85 ± 1.65 a 40.12 ± 1.26 a

IND 79.25 ± 2.92 b 30.41 ± 0.77 b 25.37 ± 0.49 b

IND + ESP 39.22 ± 1.12 c 83.71 ± 1.85 c 77.19 ± 2.17 c

IND + CA 38.93 ± 1.66 c 80.97 ± 2.19 c 75.6 ± 2.49 c

a,b,c; Different letters on the same line represent a statistically significant difference. (p < 0.05).
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3.4. Biochemical Results 

Figure 4. Gastric tissue, Nrf-2 expression (FITC), HO-1 Expression (Texas Red), D-IF, 4′,6-Diamidino-
2-Phenylindole (DAPI), Fluorescein Isothiocyanate (FITC), IND: Indomethacin, ESP: Esomeprazole,
CA: Carnosic acid. Bar: 100 µm.

3.4. Biochemical Results
3.4.1. Gastric Tissue Oxidant and Antioxidant Parameters

To further clarify the effect of CA on IND-induced gastric ulceration MDA, TOS,
GSH and TAS levels were measured and CAT and GPx activities were determined. As
shown in Table 4 IND administration significantly increased MDA levels compared to the
control animals (p < 0.0001). Notably, rats pre-treated with both ESP and CA exhibited
significantly reduced MDA levels compared to just IND-administered rats, (p < 0.0001),
respectively. Similar to MDA findings, TOS levels measured in the IND group were
significantly higher compared to the control (p < 0.01). Pretreatment with ESP and CA
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caused a significant decrement in TOS levels (p < 0.01). IND treatment strongly reduced
TAS levels compared with the control group. This decrease was significantly reverted by
CA and ESP pretreatments (p < 0.05). These data show that CA attenuates oxidative insult
similarly to ESP.

Table 4. Effects of CA on the oxidant and antioxidant parameters in gastric tissues of ulcerated rats.

Groups/Parameters Control IND IND + ESP IND + CA

TAS (U/mg protein) 1.04 ± 0.03 0.66 ± 0.05 * 1.12 ± 0.12 # 0.78 ± 0.10 *,#
TOS (µmol H2O2 Equiv/L) 4.39 ± 0.33 5.66 ± 0.18 * 4.76 ± 1.90 # 4.50 ± 2.56 #
CAT (U/mg protein) 1110.73 ± 207 597.10 ± 91.57 *** 1062.21 ± 128.56 ### 1081.57 ± 139.27 ###
MDA (nmol/mg protein) 6.89 ± 0.96 21.32 ± 1.48 *** 9.12 ± 1.79 *,### 6.38 ± 0.09 ###
GSH (nmol/mg protein) 0.28 ± 0.04 0.13 ± 0.02 ** 0.24 ± 0.03 ## 0.19 ± 0.03 *,#
GPx (U/mg protein) 103.26 ± 12.99 46.20 ± 12.23 ** 73.18 ± 7.24 **,### 88.21 ± 10.93 **,###

Data are expressed as mean± SEM (n = 7/group). * p < 0.05, ** p < 0.01, *** p < 0.001 versus control group, # p < 0.05,
## p < 0.01, ### p < 0.001 versus IND group. TAS: total antioxidant status; TOS: total oxidant status; CAT: catalase;
GSH: glutathione; GPx: glutathione peroxidase; IND: indomethacin; ESP: esomeprazole; CA: carnosic acid. Data
are expressed as mean ± SD.

In line with these findings, IND administration caused a decrease in CAT and GPx ac-
tivities and GSH levels, while pretreatment with ESP and CA reverted the downregulation.
Specifically, the decrease in CAT and GPx activities in the IND group was attenuated in
ESP and CA treatment groups, respectively, (p < 0.001 and p < 0.01). Likewise, the marked
reduction of GSH levels in the IND group was ameliorated in IND + ESP and IND + CA
groups (p < 0.01) (Table 4).

3.4.2. Inflammation Markers

As shown in Table 5, IND administration causes a significant increase in the expression
of inflammatory markers such as IL-1β, IL-6 and TNF-α compared to the control group.
Pretreatment with CA or ESP strongly attenuated the IND effect.

Table 5. Effects of CA on inflammatory markers in gastric tissues of ulcerated rats. Data are expressed
as ± SEM, n = 7.

Groups/Parameters Control IND IND + ESP IND + CA

IL-1β (nmol/mprotein) 26.08 ± 2.10 39.38 ± 1.74 ** 26.50 ± 0.81 **,## 32.52 ± 1.22 **,##
TNFα (ng/L) 64.50 ± 10.41 163.7 ± 17.70 *** 103.3 ± 4.328 ***,### 152.1 ± 16.28 ***,###
IL-6 (U/mg protein) 21.78 ± 3.15 41.63 ± 3.24 ** 29 ± 3.03 **,### 36.67 ± 2 **,##

** p < 0.01, *** p < 0.001 versus control group, ## p < 0.01, ### p < 0.001 versus IND group). IL-1β: interleukin 1 beta;
TNFα: tumor necrosis factor alpha; IL-6: interleukin 6; IND: indomethacin; ESP: esomeprazole; CA: carnosic acid.

4. Discussion

NSAIDs are widely used in the treatment of pain, fever, and inflammation. Indeed,
NSAIDs administration due to their widespread usage and easy availability is one of
the most common causes of gastric ulceration. IND, an NSAID, triggers ulcer formation
by inhibiting prostaglandin production and causing excessive production of free oxygen
radicals [40].

The current study evaluated the effect of CA in an IND-induced gastric ulceration
model. The induction of gastric ulceration was executed by the oral administration of IND
(100 mg/kg bw). Well in accordance with previous investigations, IND administration
caused hemorrhagic macroscopic lesions and a high ulcer index. Furthermore, ulcerated an-
imals exhibited typical histological changes including mucosal thickness decrease, erosion
of the gastric glands, damage to the integrity of the gastric mucosa, submucosal edema,
and inflammatory cell infiltration [41,42].

Pretreatment with CA exhibited a macroscopic gastroprotective effect which was
confirmed by microscopic histopathological findings. Notably, the amelioration of the
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macroscopic ulcer scores by CA was found to be quite similar to ESP, a verified gastropro-
tective drug.

ROS are produced during cell metabolism under both physiological and pathological
processes [43]. However, excessive ROS release is exhibited in the disease [44,45]. Organ-
isms defend against ROS adverse effects with specific antioxidant systems, composed of
enzymes and endogenous scavengers. Indeed, CAT and SOD enzymes are characterized as
the first line of defense against oxidative stress. SOD neutralizes superoxide and produces
hydrogen peroxide (H2O2), and CAT eliminates H2O2 harmful effects by converting it into
water [46]. When excessive ROS are released, these defense mechanisms are overwhelmed.
IND was previously shown to decrease CAT activity [12,47], which is verified in the present
study. Furthermore, here we show that exogenous CA treatment upregulated the CAT lev-
els of IND-ulcerated animals. The observed increased CAT activity upon CA administration
may be due to CA antioxidant effects or may be a direct effect on CAT expression. Indeed,
previous studies showed that CA application increases CAT activity [48,49]. Increased CAT
activity, will prevent lipid peroxidation and tissue destruction documented by attenuated
IND-induced lesions in CA-pretreated animals [50].

As ROS production increases, the levels of scavengers e.g., GSH and other endogenous
antioxidants, decrease, facilitating oxidative tissue damage [51]. The results of this study
show that CA pretreatment of IND-administered animals increases their GSH levels similar
to the control drug ESP, confirming CA scavenger properties.

GPx catalyzes the reduction of both hydrogen peroxide and lipid peroxides and
protects cellular proteins against pathological changes. However, in our study, IND-
administered animals exhibited GPx depletion, which promotes ROS generation and oxida-
tive stress generation. The final result of GPx failure is a dysregulation of the functional and
structural integrity of cell and organelle membranes [52]. CA reverted GPx downregulation
in IND-administered animals. In summary, pre-treatment with CA reduced MDA and TOS
levels and strengthened the cellular antioxidant defense mechanism by increasing, CAT
and GPx activities and GSH and finally, TAS levels.

Exogenous antioxidant intake supports the defense system by scavenging ROS and
reducing oxidative damage. Most endogenous antioxidants are encoded by Nrf2-KEAP1
system [53]. It has been suggested that CA contributes to antioxidant activity by increasing
Nrf2 expression in different tissues [54]. Thus, Yang et al. [33] show that administering
CA in an ulcerative colitis model ameliorated oxidative stress by increasing Nrf2 and
antioxidant enzyme expressions. Indeed, enhancing the Nrf2 pathway can potentially
reduce oxidative damage and ulcer formation.

The current study shows for the first time that CA increases Nrf2 and the Nrf2 down-
stream target HO-1 expressions and reduces oxidative damage in animals subjected to
IND insult.

The second aim of this study was to examine the effects of CA on the levels of pro-
inflammatory markers in the gastric tissue of IND-induced rats. It is well established that in
gastritis and peptic ulcer, a massive infiltration of activated neutrophils is evident, as well
as an upregulation of pro-inflammatory cytokines release such as TNF-α and IL-1 [55,56].
Moreover, NSAIDs were shown to increase neutrophil IL-6 secretion in the damaged gastric
mucosal tissues. Indeed, the migration of neutrophils to the damaged area is considered a
precursor of damage [23,57].

Here, we show that CA exerts a potent anti-inflammatory effect as it attenuated
IND-dependent increase of TNFα, IL1β, and IL6 expression in rat gastric tissues. The atten-
uation of pro-inflammatory factors was correlated with the preservation of gastric mucosa
histological structure and with decreased oedema and inflammatory cells infiltration.

Our study presents several limitations. Firstly, one CA dose and treatment duration
were examined. Therefore, dose dependency and the effective dose period of administration
need to be established. Furthermore, even though animal models provide important input,
extrapolation to humans requires further extensive study.
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5. Conclusions

The aim of this study was to investigate the impact of CA on IND-induced gastric
ulceration in rats. Pretreatment with exogenous CA suppressed both gross gastric mor-
phological lesions and histopathological alterations. The effects were perpetrated through
the modulation of oxidative stress and the immune response. Thus, CA pretreatment
decreased oxidative stress by increasing CAT and GPx activities, upregulating GSH, and
decreasing MDA. This resulted in the increase of TAS and attenuation of TOS. Furthermore,
CA strongly downregulated the expression of inflammatory markers, including TNFα,
IL1β, and IL6. In summary, CA exerts gastroprotective effects with significant therapeutical
implications. Future studies need to focus on elucidating the specific aspects of the CA
mechanism of action. As a limitation of study, CA protective effects on stomach tissue can
be evaluated for COX, PH and stomach volume.
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