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Abstract

Background: Artificial neural networks have achieved unprecedented success in the medical domain. This success depends on
the availability of massive and representative datasets. However, data collection is often prevented by privacy concerns, and
people want to take control over their sensitive information during both the training and using processes.

Objective: To address security and privacy issues, we propose a privacy-preserving method for the analysis of distributed
medical data. The proposed method, termed stochastic channel-based federated learning (SCBFL), enables participants to train
a high-performance model cooperatively and in a distributed manner without sharing their inputs.

Methods: We designed, implemented, and evaluated a channel-based update algorithm for a central server in a distributed
system. The update algorithm will select the channels with regard to the most active features in a training loop, and then upload
them as learned information from local datasets. A pruning process, which serves as a model accelerator, was further applied to
the algorithm based on the validation set.

Results: We constructed a distributed system consisting of 5 clients and 1 server. Our trials showed that the SCBFL method
can achieve an area under the receiver operating characteristic curve (AUC-ROC) of 0.9776 and an area under the precision-recall
curve (AUC-PR) of 0.9695 with only 10% of channels shared with the server. Compared with the federated averaging algorithm,
the proposed SCBFL method achieved a 0.05388 higher AUC-ROC and 0.09695 higher AUC-PR. In addition, our experiment
showed that 57% of the time is saved by the pruning process with only a reduction of 0.0047 in AUC-ROC performance and a
reduction of 0.0068 in AUC-PR performance.

Conclusions: In this experiment, our model demonstrated better performance and a higher saturating speed than the federated
averaging method, which reveals all of the parameters of local models to the server. The saturation rate of performance could be
promoted by introducing a pruning process and further improvement could be achieved by tuning the pruning rate.
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Introduction

Medical Data Privacy
Medical data analysis in health care brings many benefits and
holds great promise for transforming the field. With the help of
a wide range of health care networks, health care organizations
are now able to analyze a vast volume of data with great variety
and velocity to support decision making [1-3]. In addition,
automated machine-learning algorithms could facilitate patients
and physicians to make better informed choices by providing
empirical estimates based on gigabytes of data [4]. Apart from
decision support, medical data analysis could also promote
analytical capability for patterns of use, analysis of unstructured
data, predictive capability, and traceability [3].

However, health care data security and privacy issues have
raised broad ethical and legal concerns in recent years given
the sensitive nature of health information [5]. Health care
research often involves studies of a large amount of data
collected from various sources such as pharmacies, insurance
companies, government agencies, and research institutions. For
instance, to discover new drugs or assess a new therapy, a
research institute may need clinical records provided by
hospitals’ autonomous databases [6]. This direct sharing of
medical data is likely to violate individual privacy and expose
data owners to the threat of illegal data collection [7].

To address this data privacy concern, different countries have
enacted different legislations and policies [8,9], which impose
limitations on data collection and utilization for health care
research. Over the years, many traditional methods for privacy
preserving have been proposed, such as deidentification [10,11],
a hybrid execution model [12], and identity-based
anonymization [13]. However, as pointed out by several authors,
these methods alone could not guarantee the anonymity and
security of medical data [14-16]. Recently developed
machine-learning methods require considerable data to acquire
models with sufficient accuracy [17]. To leverage massive and
diverse datasets and promote machine-learning models, the
issue of balancing privacy and regulatory requirements has to
be addressed [18].

Federated Learning
In conventional deep learning, all training data are shared with
a central server that performs the analysis. Having no control
over this process, the clients that contribute the data may have
to upload their sensitive information to the server without a
guarantee of its security of privacy. Furthermore, the learned
model is generally not directly available to the client so that
they have to reveal the inputs to the cloud when using the model
[19], risking privacy leakage in both the training and using
processes. Federated learning can address this problem by
introducing some algorithmic techniques that distribute the
learning process to local devices so that the clients could keep
their data private and obtain a local model for future use.

Federated optimization has been studied by Konečný et al
[20,21] for distributed optimization in machine learning. This
work introduced a setting for distributed optimization in which
none of the distinctive assumptions [21] is satisfied, making

federated learning a feasible alternative to other methods. The
proposed framework is different from conventional distributed
machine learning [22-27] owing to the huge number of clients,
extremely unbalanced/nonindependent and identically
distributed data obtainable for each client, and poor network
connections [28]. To address the latter constraint, Konečný et
al [28] proposed two approaches to reduce the uplink
communication costs: structured updates and sketched updates.
McMahan et al [29,30] advocated for federated stochastic
gradient descent (SGD) and federated averaging algorithms as
feasible approaches for the federated learning of neural networks
based on iterative model averaging. As an alternative to
protecting a single data point’s contribution to a learning a
model [31], Geyer et al [32] proposed an algorithm for
client-sided federated optimization to hide the specific
contributions of individual clients during training. Further,
methods to strengthen the reliability of federated learning, such
as secure aggregation [33], essentially need synchronization on
a rigid set of devices so that only a simple summation of the
updates from users is consumed by the server side of the
algorithm [34]. Applications based on federated learning
algorithms have been proposed in several domains, ranging
from content suggestions [35] to next-word prediction [36].
Bagdasaryan et al [37] focused on the vulnerability of federated
learning. This work showed that the federated learning algorithm
is vulnerable to a model-poisoning attack, which is different
from poisoning attacks that target only the training data.

Besides the direct leakage of privacy mentioned above,
participants in the distributed system may indirectly reveal some
information about sensitive data via the weights uploaded to
the server in the training process.

To address both direct and indirect privacy leakage of health
care data, we developed the stochastic channel-based federated
learning (SCBFL) method, which enables local participants to
manipulate their data confidentially while benefitting the
model’s performance from the server with only a small
proportion of the locally trained gradients revealed stochastically
to the central model.

Methods

Principle of the SCBFL Approach
Based on the observation that different features do not contribute
equally to the training process and that the importance of each
feature may vary from one dataset to another, SCBFL (Figure
1) was developed as a privacy-preserving approach that seizes
the most vital information from the local training results only
by uploading a small fraction of gradients stochastically. The
intuition behind this method is that the biological neural circuit
follows the law of use and disuse, and the strongest neurons for
an individual are those that constitute an active circuit in the
learning process, suggesting that the neurons in one artificial
neural network are not independent throughout a specific
training process. Thus, we could consider the collaborative
effect of neurons in each channel (similar to a biological neural
circuit) when selecting parameters for a server update: if a
channel of neurons changes substantially in a training loop, we
can assume that it is a strong neural circuit in the network,

JMIR Form Res 2020 | vol. 4 | iss. 12 | e17265 | p. 2http://formative.jmir.org/2020/12/e17265/
(page number not for citation purposes)

Shao et alJMIR FORMATIVE RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


corresponding to a sensitive feature in the input sets, whereas
the neural channels showing little change in one training loop
should be regarded as deteriorated channels, whose information
could be kept private with minimal effect on the server’s final
performance. Choosing the channels with the most substantial
variation enables SCBFL to only upload a small percentage of
the gradients in each training loop while achieving comparable
accuracy to the federated averaging method without uploading

the integrate local weights to the server, as will be demonstrated
in the Results section.

The update algorithm plays an essential role in SCBFL. In each
global loop, SCBFL computes the norms of channels in
gradients that result from the local training process, calculates
the α-percentile of the norms, and then sifts out the channels
with greater variation in the gradients than the percentile, in
which α is the update rate set by the local participant. The sifted
parameters are then used for the server update.

Figure 1. Schematic of the stochastic channel-based federated learning (SCBF) model.

To facilitate the description of the algorithm, suppose there are
N features as input and an L-layer deep neural network is
conducted with m1, m2,…, mL neurons in each layer. For
convenience, we denote m0=N as the input dimension, and we
denote the weight matrix as W=[W1, W2,…WL] and the bias
matrix as B=[B1, B2,...BL]. The shapes of the weight matrix and
bias matrix could be expressed as follows:

Where l=1,2,…L, and ml is the number of neurons in the lth
layer.

The update algorithm includes five steps:

1. Train the local model: The local models are trained separately
on their own datasets, and each model results in a gradient
matrix showing the change in the weight matrix during each
training loop. The gradient matrix G has the same shape as the
weight matrix W. Since the influence from the bias matrix is

JMIR Form Res 2020 | vol. 4 | iss. 12 | e17265 | p. 3http://formative.jmir.org/2020/12/e17265/
(page number not for citation purposes)

Shao et alJMIR FORMATIVE RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


negligible compared to that of the weight matrix, the changes
in bias are omitted for the sake of efficiency.

2. Compute channel norms: Considering that a channel must
go through a neuron in each layer and correlates to an
L-dimensional vector comprising the index of these neurons,
the results of a channel’s norm could be saved in an
L-dimensional tensor T, each element of which equals a channel
norm. The shape of T should be:

In addition, is the ith channel, in which

is the index of the tensor that correlates the
neurons this channel goes through in each layer. The Euclidean
norm of each channel is calculated by

and is saved in the L-dimensional tensor T:

3. Sort norms: Given a fixed upload rate α (also referred to as
“update rate” in this paper), we could straighten the gradient
tensor to a vector and sort it, computing the α-quantile qα as a
threshold for the channel selection.

4. Process gradients: There are two ways to process the
gradients. With negative selection, the channels with norms
below the α-quantile are discarded and the remaining parameters
are selected for the update. With positive selection, the channels
with a norm above qα are selected and the remaining parameters
are set to zeros.

In our preliminary trials, both selection methods worked well.
Considering that different neural channels may include the same
neurons, positive selection tends to behave better than negative
selection due to the preference to upload more parameters with
the same update rate. Taking positive selection as an example,
for each element Tt1, t2,…,tL in tensor T, which corresponds to
a specific channel, the gradients are processed with respect to
the rank of this channel’s norm, as shown in the following form:

5. Update server: Finally, the processed gradient matrix G̃ is
uploaded to the server, and the server will update its parameters
by adding gradients G̃ to its original weights (Figure 2).

The server update algorithm is executed every global loop, and
our experiment showed that with only 10% of local channels
revealed, the server could have comparative performances to
those of the federated averaging methods with higher speed to
reach saturation. Before the next training loop begins, the local
model downloads the server’s latest weights. The download
rate was set to 100% since we suppose that the server weights
could be shared publicly, which could be adjusted according to
the application scenarios.

Figure 2. Pseudocode of the server update.

Pruning Process
Training a model with privacy-preserving methods could be
time-consuming, especially when the training sets are enormous.
To address this problem, we introduced a neural network
pruning process to SCBFL that could prune off the redundant
nodes in the neural network based on the validation set, thus
saving a substantial amount of time. This work is done circularly
in the first several global loops until the distributed system

reaches a suitable scale, so that SCBFL with pruning
(SCBFLwP) learns from the datasets more efficiently.

Neural network pruning (Figure 3) is not a novel concept. Yang
[38] proposed a method to prune connections based on the
magnitude of weights. He et al [39] used a channel-pruning
method to accelerate a deep convolutional neural network. Han
et al [40] introduced a growing-and-pruning approach for a
fuzzy neural network. Moreover, Srinivas [41] proposed a
systematic method to prune one neuron at a time, addressing
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the problem of pruning parameters in a trained neural network
model.

Given the fact that each neural network has a computation
process consisting of multiplication, addition, and activation,
neurons whose output consists mostly of zeros may have little
effect on the output of subsequent layers, not to mention the
final results [31]. Removing these redundant nodes from the
model will do little harm to the accuracy of the network but will
save abundant execution time.

Average percentage of zeros (APoZ) [42], which measures the
percentage of zeros in the activations of a neuron under rectified
linear unit (ReLU) mapping, is used to evaluate the redundancy

of neurons in the network. is denoted as the output of the

cth neuron in the ith layer. Let M denote the output dimension

and N denote the total quantity of validation examples. 
of the cth neuron in the ith layer is then defined as:

where f(·)=1 if true and f(·)=0 if false.

SCBFLwP (Figure 4) then decides which neurons will be pruned
according to APoZ using validation sets: those having the
highest APoZ will be pruned, the number of which is a fixed
percentage of the total number of neurons left in each global
loop.

Figure 3. Neural network pruning.

Figure 4. Pseudocode of stochastic channel-based federated learning with pruning (SCBFwP).

Distributed Learning Setting
We propose a privacy-preserving federated learning method
based on the neural network. Federated learning could be
executed on a distributed system such as a mobile device to
achieve collaborative deep-learning goals with little risk of
privacy leaks. Each device trains its model on the local dataset
for several epochs in each global loop and only stochastically
uploads a small percentage of the model weights to the server
to achieve good performance in the server without sharing the
local data or the overall model weights.

In our trial, we implemented a distributed system with 5 clients
contributing to one server. Preliminary experiments were
conducted to determine the proper structure for the proposed
model. Through manual tuning, we found that the model
achieves the best performance with high efficiency using 3
layers. Therefore, for each local client, we constructed an
artificial neural network for binary prediction of mortality with
3 fully connected layers including 64, 32, and 1 neuron in the
corresponding layers using ReLU activation at hidden layers
and sigmoid activation at the output layer. We also added a
dropout layer between the second and third hidden layers to
reduce overfitting.
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Regarding the parameters of communication between server
and clients, the download rate was set to 100% for each client
model, supposing the parameters of the server are shared
publicly. The update rate was set to 30% for both the
channel-based federated learning method and distributed
selective SGD method. To enhance the influence of the latest
update parameters, we chose 0.8 as the decay rate. As for the
training process, we trained each model for 100 global loops
and 5 epochs in each loop with the batch size set to 32.

We used the SGD algorithm to optimize our neural networks.
Concerning the configuration of SGD, the learning rate is a
hyperparameter that controls how much to adjust the model in
response to the estimated error each time when the model
weights are updated. Our experiments on testing models with
various learning rates suggested that the proper learning rate
was around 0.01 to guarantee both good performance and stable
results.

In addition to the configuration of the model, the importance
of performance measurement has long been recognized. With
respect to the assessment of a classification model, area under
the receiver operating characteristic curve (AUC-ROC) and
area under the precision recall curve (AUC-PR) are reliable
metrics: the higher the AUC value, the better the model is at
distinguishing between patients in terms of mortality and
survival.

Dataset for the Experiment
The data used in our experiment were provided by hospitals,
comprising 30,760 admissions with status information
represented by alive or dead. To explore the relationship
between mortality and admissions, we developed a model that
takes the medications as inputs and predictions of binary
mortality as the output. The cohort was managed for 2917
different medications in total. Information on whether a patient
took each of the medications after admission was adopted as a
binary input feature. We used 60% of the dataset for training,
10% as the validation set, and 30% as the test set. The training
set was equally divided into five parts as local training sets.

Statistical Analysis
The performances of models were evaluated by the AUC-ROC
and AUC-PR, which are both typically used for measuring the
performance of a classifier. To better understand the ROC curve,
the concept of a confusion matrix first needs to be introduced.

A confusion matrix is a table consisting of four different
combinations of prediction and ground truth, which are the true
positive (TP), false positive (FP), false negative (FN), and true
negative (TN). TP means that the model predicts the sample as

positive and it is in fact positive. The value of TP can be
calculated by counting the number of correct positive
predictions. The other three parameters can be interpreted in a
similar manner. With the help of a confusion matrix, more
performance indicators can be defined, including the true
positive rate (TPR), also known as recall and sensitivity, the
false positive rate (FPR), and precision, which are calculated
as follows:

TPR=TP/TP+FN (8)

FPR=FP/TN+FP (9)

Precision=TP/TP+FP (10)

The ROC curve is plotted with TPR against FPR at various
classification thresholds, where TPR is on the y-axis and FPR
is on the x-axis. Lowering the classification threshold means
that the model will predict more samples as positive, thus
increasing both FPR and TPR. As an alternative to ROC, the
PR curve is plotted with precision against recall (TPR) at various
classification thresholds. When datasets are imbalanced or
skewed, the PR curve is a preferred alternative to the ROC
curve. Both curves provide a visualization of model performance
at different thresholds, and the AUC measures the entire
two-dimensional area under these curves, providing an aggregate
measurement of performance across all possible thresholds.
Ranging in value from 0 to 1, AUC-ROC and AUC-PR can be
interpreted as the possibility that the model ranks a positive
sample more highly than a negative sample.

Results

Performance of the SCBFL Model
The update rate controls the number of selected channels whose
nonzero part is uploaded to the server in each global loop,
playing a vital role in affecting the final performance. To choose
a suitable update rate for our distributed system, we
implemented SCBFL models with different update rates ranging
from 10% to 100%. Neural network pruning was used in this
step to accelerate the training process. The performances are
plotted in the first row of Figure 5. The result showed that even
with 10% of the channels uploaded to the server, the SCBFL
model achieved an AUC-ROC of 0.9776 and an AUC-PR of
0.9695, which outperformed the model that shared all of the
parameters with the server. In addition, using a wide range of
upload rates only led to a 0.01319 amplitude change in
AUC-ROC and a 0.02739 amplitude change in AUC-PR, which
facilitated the configuration process with stably high
performance.
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Figure 5. Performances of stochastic channel-based federated learning (SCBF) models. The top two graphs show the performances of SCBF with
pruning (SCBFwP) using different update rates, and the bottom two graphs show the comparison between the performances of SCBF and federated
averaging (FA). The left column shows the area under the receiving operating characteristic curve (AUC-ROC) and the right column shows the area
under the precision-recall curve (AUC-PR) as performance metrics.

Table 1 compares the effectiveness of the SCBFL method with
that of federated averaging, which is widely used in distributed
systems and implements the federated learning by averaging
the gradients obtained from local training processes [36]. For
this comparison, we set the update rate to 30% for SCBFL and
conducted both methods for federated learning on the same
datasets for 100 global loops without pruning. As shown in
Figure 5, our model reached saturation at the 20th global loop,

which was faster than that obtained with federated average,
which reached saturation at the 60th global loop. The
performance of SCBFL consistently exceeded that of federal
averaging. In the 4th global loop, SCBFL achieved a 0.05388
higher AUC-ROC and 0.09695 higher AUC-PR than those of
federated averaging. After 100 global loops, the AUC-ROC and
AUC-PR of SCBFL was 0.0033 and 0.0032 higher than that of
federated averaging, respectively.

Table 1. Saturated performances of stochastic channel-based federated learning compared with federated averaging.

AUC-PRbAUC-ROCaMethod

0.97630.9825SCBFLc

0.97310.9821Federated averaging

aAUC-ROC: area under the receiver operating characteristic curve.
bAUC-PR: area under the precision-recall curve.
cSCBFL: stochastic channel-based federated learning.

As shown in Figure 6, when the upload rate for the channels
was set to 30%, 45% of the parameters were uploaded to the
server using positive selection. With half of the parameters

unrevealed to the server, the model achieved better performance
and higher saturating speed.
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Figure 6. Trans-information for upload processes using different methods. The stochastic channel-based federated learning with pruning (SCBFwP)
method could save 85% of the trans-information compared to federated averaging (FA), and stochastic channel-based federated learning (SCBF) could
save 55% compared with FA.

Performance of SCBFLwP
To speed up the training process and reduce the size of the
neural network, we conducted network pruning for several loops
after pretraining the model. In our trials, we set the pruning rate
for each global loop to 10%, which represents the proportion
of neurons to be pruned in the training loop. The total proportion

of neurons to be pruned in the first several loops was set to 47%,
which determines the final scale of the pruned model. Table 2
summarizes the performance of the SCBFLwP method for
different update rates. Figure 7 compares the AUC-ROC and
AUC-PR values of the SCBFL and federated averaging models
with and without pruning.

Table 2. Saturated performances of stochastic channel-based federated learning with pruning with different update rates.

AUC-PRbAUC-ROCaUpdate rate

0.96950.977610%

0.96860.977220%

0.96970.977730%

0.96040.976840%

0.96950.978050%

0.96820.977460%

0.96880.977470%

0.97030.978180%

0.96760.977490%

0.96850.9775100%

aAUC-ROC: area under the receiver operating characteristic curve.
bAUC-PR: area under the precision-recall curve.
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Figure 7. Performance of stochastic channel-based federated learning with pruning (SCBFwP). The top two graphs show the comparison between
stochastic channel-based federated learning (SCBF) and federating averaging (FA) with and without pruning. The middle graphs show the performance
of SCBFwP with different pruning rates. The performances of SCBFwP with different numbers of total pruned neurons are shown in the bottom two
graphs. The left column shows the area under the receiver operating characteristic curve (AUC-ROC) and the right column shows the area under the
precision-recall curve (AUC-PR) as performance metrics.

As shown in Table 3, the AUC-ROC for SCBFL with pruning
was reduced by 0.0048 and the AUC-PR was reduced by
0.006814. There was a reduction of 0.0012 in AUC-ROC and

of 0.0047 in AUC-PR for the federated averaging method
compared to federated averaging with pruning.
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Table 3. Saturated performances of stochastic channel-based federated learning (SCBFL) and federated averaging (FA) with and without pruning.

AUC-PRbAUC-ROCaMethods

0.97310.9821FA

0.97630.9825SCBFL

0.96830.9809FAwPc

0.96940.9776SCBFLwPd

aAUC-ROC: area under the receiver operating characteristic curve.
bAUC-PR: area under the precision-recall curve.
cFAwP: federating averaging with pruning.
dSCBFLwP: stochastic channel-based federated learning with pruning.

Moreover, the best performance was achieved by SCBFL after
100 loops of training with an AUC-ROC of 0.9825 and an
AUC-PR of 0.9763 (Table 3). The highest evaluation in the first
5 loops was obtained by the SCBFL model with pruning.

To assess the stability of our model with the pruning rate and
total pruned fraction (also called the total pruned rate), we
executed the models of SCBFLwP controlling the variate. First,
we fixed the total pruned fraction to 50% and ran the programs
with different pruning rates ranging from 10% to 50% (Table

4). As shown in Figure 7, with an increase in the pruning rate,
the final performance improved and saturated more quickly
under most circumstances. However, there were also exceptions
with higher performances at a 10% pruning rate for both
AUC-ROC and AUC-PR, and lower performances at a 40%
pruning rate for AUC-PR. In the graphs in the bottom row of
Figure 7, we fixed the pruning rate to 10% and executed pruning
for different times ranging from 1 to 6 (Table 5). The total
pruned fractions were calculated and are annotated in the
corresponding labels.

Table 4. Saturated performances of stochastic channel-based federated learning with pruning when the total pruned proportion was fixed and the
pruning rate for each training loop changed.

AUC-PRbAUC-ROCaPruning rate/loop

0.96610.976510%

0.95680.973020%

0.96620.976330%

0.94650.969340%

0.96630.976950%

aAUC-ROC: area under the receiver operating characteristic curve.
bAUC-PR: area under the precision-recall curve.

Table 5. Saturated performances of stochastic channel-based federated learning with pruning when the pruning rate for each training loop was fixed
and the total pruned proportion changed.

AUC-PRbAUC-ROCaTotal pruned proportion

0.97310.976910%

0.97220.979719%

0.97250.979527%

0.97140.978934%

0.97030.978141%

0.96970.977847%

aAUC-ROC: area under the receiver operating characteristic curve.
bAUC-PR: area under the precision-recall curve.

As shown in Figure 6, the SCBFLwP could save 85% of the
trans-information compared to federated averaging. For SCBFL,
when the upload rate for channels was set to 30%, 45% of the
parameters were uploaded to the server using positive selection.

Running Time
SCBFL preserves the privacy of data by adding a channel-based
upload algorithm, which will lead to an increased burden of
calculations when applied to a complex neural network.
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However, this problem could be addressed by introducing a
pruning process in several global loops. To illustrate this, the
times consumed by SCBFL and federated averaging before and

after pruning described in the last section are compared in Table
6. The pruning process could reduce 57% of the time for SCBFL
and 48% of the time consumed by federated averaging.

Table 6. Time consumed by stochastic channel-based federated learning (SCBFL) and federated averaging with and without pruning.

Time (seconds)Methods

8679Federated averaging

4508Federated averaging with pruning

19,696SCBFL

8469SCBFL with pruning

Table 7 shows that models with lower update rates tended to
consume less time than those with larger update rates, indicating

that choosing a lower rate for the update could better preserve
the privacy as well as save time.

Table 7. Time consumed by stochastic channel-based federated learning with pruning with different update rates.

Time (seconds)Update rate

833910%

854520%

846930%

798740%

835950%

12,57760%

927870%

11,46280%

13,16990%

13,030100%

Table 8 shows that different pruning rates for each global loop
can equally save time. In addition, the model will consume more
time if the number of pruned neurons is too small due to the

executing time of the pruning process. With a fixed pruning
rate, the time consumed by the model tended to decrease by
reducing the model size.

Table 8. Time consumed by stochastic channel-based federated learning with pruning using different pruning rates for each loop or different total
pruned proportions.

Time (seconds)Pruning parameter

Pruning rate/loop

11,14410%

856120%

11,85230%

838940%

12,00050%

Total pruned

25,75510%

22,71719%

17,57927%

15,90934%

805041%

846947%
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Discussion

Principal Results
The proposed SCBFL method computes the norms of channels
in gradients resulting from the local training output after each
global loop, calculates the α-percentile of the channel norms,
and then sifts out the channels that have greater variation in the
gradients compared with the percentile for the server update.
In this method, the server seizes the information from the
uploading channels with the biggest variation, achieving
comparative performance to the state-of-the-art method
(federated averaging), which has to convey the entire local
weights to the server when updating. Figure 1 shows the
relationship between the server and clients, and demonstrates
the process of the server update. This confirms the intuition
behind SCBFL: the importance of a feature differs when training
on different datasets, and thus important information can be
extracted from the channels through which features with the
greatest variation pass. We could infer that less than 10% of the
channels contain the most fundamental information and that
ignoring the remaining information does little harm to the
learning of models.

It is important to train a small-scaled deep-learning model with
high processing speed. The results showed that network pruning
could speed up the training process and accelerate convergence
while maintaining higher performance. As expected, pruning
47% of the neurons from the network decreased the final
performance due to the simplified model structure. The reduction
in performance is negligible in many application situations but
the acceleration in both saturating and training speed is quite
beneficial, as discussed further below. Overall, these results
demonstrate that SCBFL is a reliable choice for federated
learning, and that the SCBFLwP method might be a better choice
when a quicker saturating speed is desired.

The graphs in the first row of Figure 7 show an obvious decline
in the performance of SCBFLwP, which indicates an overpruned
phenomenon for our trials. This indicates a tradeoff between
time efficiency and the final accuracy. However, by tuning the
pruning rate for each global loop and the total pruned rate of
the model, we could achieve better performance. This is because
if only the redundant neurons are pruned, the model could
promote its learning efficiency without retaining useless
information.

Figure 7 also shows that the performance of SCBFL improved
when the times of pruning were reduced. The results with a
fixed pruning rate were more stable than those with a fixed total
pruned rate, indicating that more attention should be paid to the
selection of the pruning rate for each step when building models,
and it is stable for a SCBFL model to adjust the times of neural
network pruning. Therefore, after choosing a suitable pruning
rate, we could appropriately increase the loops in which the
model was pruned to shorten the execution time with little effect
on the final performance.

Differential Privacy Preservation
Differential privacy [23,43-46], as a strong criterion for
privacy-preserving, is defined when the probability of a given

output does not primarily depend on the involvement of a data
point in the inputs [19]. This is useful because conventional
deep learning has raised substantial privacy concerns, which
may prevent a company from collecting data for model training.
A model-inversion attack may extract parts of the training data
through a deep-learning network, as demonstrated by Fredrikson
et al [47]. One might attempt to reduce the risk of privacy
leakage by adding noise to the parameters that result from the
training process. However, it is hard to achieve a balance
between performance and privacy preservation since stronger
noise offers protection for privacy as well as worse performance.
Therefore, we have been seeking methods that can help to
preserve local privacy during the training process.

To address this issue, the SCBFL method realizes the function
of differential privacy preservation by protecting the two sources
of potential privacy leakages from federated learning: the actual
values of uploaded gradients from the local participants and the
mechanism by which these gradients are chosen [19]. By setting
a threshold to select the parameters of gradients channel-wise,
the actual values uploaded to the server are stored in a sparse
tensor that is processed from SGD, a stochastic training process
that has already been used for many privacy-preserving cases
[48,49]. In addition, the participant could independently choose
the update rate for their models, thus making it hard to track
the selection of the channels used for the update, especially
when they are trained individually using different datasets.

Limitations
We proposed an update algorithm that plays a vital role in
SCBFL. This algorithm involves calculation of the α-percentile
of the norms and searching for channels with greater variation
in the gradients than the percentile. Given the massive size of
input features, the model structure has to be extended to reach
high performance. However, as is the case for most
deep-learning models with complex structures, the time
complexity will increase with the expansion of model size.
Although the neural network pruning method has been
introduced to reduce the executing time, the performance of the
model will slightly decrease because of the simplified model
structure. Moreover, differential privacy could be further
conducted with our models to evaluate the privacy-preserving
ability quantitatively.

Comparison With Prior Work
A large and representative dataset is usually required to train a
neural network model. The dataset may contain sensitive
information and the models should not expose the private
information. Conventional methods that rely on a centrally
trained model have a higher risk of privacy leakage. In
conventional deep learning, the owners of the data cannot
control the learning objective and have no idea of what can be
inferred from their data. The federated averaging method
represented progress in this regard by using iterative model
averaging. Nevertheless, this approach still involves the
exposure of all model parameters. The proposed SCBFL method,
which improves server performance by uploading only a
proportion of gradients, could address both direct and indirect
privacy leakage concerns. In addition, an inverse-model attack,
which extracts information from the uploaded parameters, could
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be hindered by the stochastic nature of our upload algorithm
taking advantage of SGD. We found that even with only 10%
of the channels uploaded to the server, the SCBFL model
achieved an AUC-ROC of 0.9776 and an AUC-PR of 0.9695,
outperforming the models that share all parameters with the
server. As shown in our trials, after 100 global loops, the
AUC-ROC and AUC-PR of SCBFL was 0.0033 and 0.0032
higher than that of federated averaging, respectively. Therefore,
we could conclude that our method achieves comparative
performance to the federated averaging method but with a higher
saturating speed.

Conclusions
We proposed a privacy-preserving approach for distributed
systems whose models are trained based on any type of neural
network. Our methodology involved development of a
channel-based update algorithm for the server, enabling the
system to achieve state-of-the-art performance without forcing

the participants to reveal their inputs or model weights to the
server. Addressing both direct and indirect privacy leakage
concerns, our model uploads a fraction of channels in the
gradients from local models to the server and could achieve
better performance with only 10% of the channels uploaded,
thereby reducing the redundancy of gradients while preserving
privacy. Inverse-model attack, which analyzes information from
the uploaded parameters, could be obstructed by the stochastic
nature of our upload algorithm taking advantage of SGD.
Moreover, we introduced a neural pruning process to the model,
which could accelerate the training process and saturating speed
with little sacrifice to the final performance. Experimental
validation showed that neural network pruning could efficiently
speed up the training process as well as the saturation of
performance. Moreover, better performance was achieved when
tuning the pruning proportion to cut off the redundant neurons
in several training loops.
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