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The soil microbe Corynebacterium glutamicum is a leading workhorse in industrial biotech-
nology and has become famous for its power to synthetise amino acids and a range of bulk
chemicals at high titre and yield. The product portfolio of the microbe is continuously ex-
panding. Moreover, metabolically engineered strains of C. glutamicum produce more than
30 high value active ingredients, including signature molecules of raspberry, savoury, and
orange flavours, sun blockers, anti-ageing sugars, and polymers for regenerative medicine.
Herein, we highlight recent advances in engineering of the microbe into novel cell facto-
ries that overproduce these precious molecules from pioneering proofs-of-concept up to
industrial productivity.

Introduction
Corynebacterium glutamicum is a Gram-positive, non-spore-forming facultative anaerobic bacterium
with a moderate to high GC content belonging to the phylum of actinobacteria [1]. The microbe is tra-
ditionally used to manufacture amino acids through fermentation [2], including the premium products
l-glutamate [3,4], l-lysine [5–7], l-arginine [8], and l-tryptophan [9]. Remarkable efforts in metabolic
engineering have widened the product portfolio of C. glutamicum to over 70 different compounds
[10], including bulk biofuels [11,12], and bulk chemicals such as lactate [13,14], succinate [13,15,16],
cis,cis-muconate [17], cadaverine (diaminopentane) [18–21], aminovalerate [22], glutarate [22–25], and
3-amino-4-hydroxybenzoate [26]. The lessons learned about C. glutamicum have revealed: (i) the mi-
crobe grows quickly to high cell densities, shows no autolysis, and can be easily propagated to a large scale
(≥750 cubic meters). (ii) C. glutamicum produces no endotoxins, does not undergo phage lysis, and is
generally recognised as safe (GRAS), allowing the synthesis of a range of commercial products granted
GRAS status by the United States Food and Drug Administration for the food and pharmaceutical indus-
tries. (iii) It consumes various carbon substrates and can simultaneously utilise substrate mixtures [27–29],
favouring the application of hydrolysed lignocellulosic biomass and even waste materials as eco-friendly
feedstock for fermentation [11,17,27,30]. (iv) C. glutamicum shows a high tolerance to toxic compounds
and other forms of stress [31] due to its robust cell wall, composed of a thick glycan core and, in some
strains, a crystalline surface S-layer [32–34].
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Table 1 Fermentative production of high-value branched chain and non-proteinogenic amino acids using
metabolically engineered C. glutamicum

Product Genotype Substrate
Titre
[g.l−1]

Productivity
[g.l−1 h−1]

Yield [g
g−1] Reference

L-Valine R (JCM 18229)a

�ldhA �ppc �pta

�ackA �ctfA

�avtA ilvNGEC™ + Glucose 150.0 6.3 0.57 [63]

gapA + pyk + pfkA +

pgi + tpi + pCRB-

BNGEC™ + pCRB-DLD

L-Leucine ML1-9b

ΔilvA ΔalaT Δldh Glucose 38.1 0.8 0.30 [69]

ΔltbR ΔpanBC

leuAR

L-Isoleucine IWJ001c

+ pDXW-8-gnd-fbp-pgl Glucose 29.0 0.4 0.14 [70]

γ-Aminobutyrate G01

gad plk, ΔargB ΔproB ΔdapA Glucose 70.6 1.0 n.s.d [78]

ailvNGE, feedback-resistant mutant ilvN (G156E); ilvC™, NAD-preferring mutant ilvC (S34G, L48E, R49F).
bML1-9, classical mutant from screening against L-leucine analogues, leuAR, feedback resistant mutant leuA (R529H, G532D, L535V).
cIWJ001, industrial L-isoleucine producer.
dn.s., not shown.

Supported by a well-established understanding of its genomic repertoire [31,33], powerful engineering tools and
techniques have been developed to systematically analyse and modify C. glutamicum. Systems-wide (multi)omics
approaches [35–37] have allowed experimental studies of the microbe at transcriptome, proteome, metabolome, and
fluxome levels [10,38] and their functional interactions [37,39], while computational simulations have explored the
metabolic pathway capabilities and optimum flux states, and guiding strain engineering [40–42]. For tailored gene
expression, a wide range of low- and high-copy number shuttle vectors, promoters, and control elements, selection
markers, and reporter genes are available [33,43–48]. These techniques have, inter alia, enabled the construction of
genome reduced strains such as C. glutamicum C1*, CR099, and their derivatives, which have emerged as a valuable
chassis for basic research and industrial development [49,50]. Other interesting developments have involved the use
of biosensors to translate intracellular product levels into optical outputs to screen for superior phenotypes [51–53].
Evolutionary approaches have provided strains with elevated tolerance to industrial processing environments, in-
cluding high temperatures [54] and oxidative stress [55], which are important from a production standpoint. Recent
efforts have also enabled the use of C. glutamicum in anodic electro-fermentations [56].

Herein, we review recent achievements in the metabolic engineering of C. glutamicum for the production of
high-value molecules to be used in medical, pharmaceutical, and nutraceutical applications, including amino acids,
(poly)phenols, terpenoids, extremolytes, and medical polymers (Figure 1), extending from valuable proof-of-concept
studies up industrial processes (Tables 1-4).

Pharmaceutical amino acids
Amino acids are essential for health and play an important role as food additives, medically active ingredients, and
building blocks for pharmaceuticals [57]. In 2020, the global amino acid market reached a volume of 9.8 million tons
per year, which is estimated at US$ 21 Billion and is projected to reach US$ 27 Billion in 2027. The top low-price bulk
amino acids for use in food and feed are l-lysine [6], l-glutamate [3], l-tryptophan [9], and l-methionine [41,58].
In addition, C. glutamicum has been successfully engineered to produce amino acids with a higher value, mainly for
pharmaceutical and medical applications, including branched chain and non-proteinogenic derivatives [59] (Table
1).
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Table 2 Fermentative production of high value (poly)phenols, and related natural products using metabolically engineered
C. glutamicum

Product Genotype Substrate/Precursor Titre [mg.l−1] Reference

Cyanidin 3-O-glucoside (C3G) +
pZM1-eftuSUMO-3GT-eftuANS

Catechin 40 [88]

Salidroside MB001(DE3)

DelAro4 C5 mufasOBCD1 Tyrosol 9000 [86]

+ pMKEx2 malE-OsUGT13

Naringenin MB001(DE3)

DelAro4-4clPc p-Coumaric acid 37 [96]

+ pMKEx2 chsPh chiPh

+ pEKEx3 f3hPh flsPd

Dihydrokaempferol MB001(DE3)

DelAro4-4clPc p-Coumaric acid 20 [96]

+ pMKEx2 chsPh chiPh

+ pEKEx3 f3hPh flsPd

Kaempferol MB001(DE3)

DelAro4-4clPc p-Coumaric acid 23 [96]

+ pMKEx2 chsPh chiPh

+ pEKEx3 f3hPh flsPd

Eriodictyol MB001(DE3)

DelAro4-4clPc Caffeic acid 12 [96]

+ pMKEx2 chsPh chiPh

+ pEKEx3 f3hPh flsPd

Dihydroquercetin MB001(DE3)

DelAro4-4clPc Caffeic acid 7 [96]

+ pMKEx2 chsPh chiPh

+ pEKEx3 f3hPh flsPd

Quercetin MB001(DE3)

DelAro4-4clPc Caffeic acid 10 [96]

+ pMKEx2 chsPh chiPh

+ pEKEx3 f3hPh flsPd

Resveratrol MB001(DE3)

DelAro3 p-Coumaric acid 158 [96,97]

+ pMKEx2

stsAh 4clPc

Mono-O-methylated pinostilbene MB001(DE3)

DelAro4

+ pMKEx2 p-Coumaric acid 3 [96]

stsAh 4clPc

+ pEKEx3

malEEc-omtVv

Di-O-methylated pterostilbene MB001(DE3)

DelAro4

+ pMKEx2 p-Coumaric acid 42 [96]

stsAh 4clPc

+ pEKEx3

malEEc-omtVv

Pinosylvin MB001(DE3)

DelAro3 +pMK2 stsAh 4clPc Cinnamic acid 121 [97]

Piceatannol MB001(DE3)

DelAro3 +pMK2 stsAh 4clPc Caffeic acid 56 [97]

Noreugenin MB001(DE3)

DelAro4-4clPc Glucose 53 [94]

C5 mufasOBCD1 PO6-iolT1 Δpyc

+ pMKEx2-pcsAaCg-short

Continued over
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Table 2 Fermentative production of high value (poly)phenols, and related natural products using metabolically engineered
C. glutamicum (Continued)

Product Genotype Substrate/Precursor Titre [mg.l−1] Reference

Raspberry ketone MB001(DE3)

DelAro4-4clPc C5 mufasOBCD1 p-Coumaric acid 100 [100]

PO6-iolT1 Δpyc ΔldhA

+ pMKEx2-basRpCg-curAEcCg

+ pEKEx3-udhAEcCg

Zingerone MB001(DE3)

DelAro4-4clPc C5 mufasOBCD1

PO6-iolT1 Δpyc ΔldhA Ferulic acid 70 [100]

+ pMKEx2-basRpCg-curAEcCg

+ pEKEx3-udhAEcCg

Benzylacetone MB001(DE3)

DelAro4-4clPc C5 mufasOBCD1

PO6-iolT1 Δpyc ΔldhA Cinnamic acid 11 [100]

+ pMKEx2-basRpCg-curAEcCg

+ pEKEx3-udhAEcCg

6-Methlysalicylate MB001(DE3)

DelAro4-4clPc C5 mufasOBCD1 Glucose 41 [103]

+ pMKEx2 malEEc-chlB1Sa

MB001 is a variant prophage-free, genome reduced strain of C. glutamicum [146], while MB001(DE3) is a derivative of MB001 with the addition of a
chromosomally encoded T7 based expression system [147]

Table 3 Fermentative production of terpenoids using metabolically engineered C. glutamicum

Product Genotype Substrate Titre [mg.l−1]
Productivity [mg.l−1

h−1] Reference

Astaxanthin ASTA* Glucose 22 0.46 [107]

(+)-Valencene VLC6 Glucose 41 1.7 [112]

Patchoulol PAT3 Glucose 60 0.42 [110]

CoQ10 UBI413 Glucose 0.4 0.004 [113]

Table 4 Fermentative production of high-value extremolytes using metabolically engineered C. glutamicum

Product Genotype Substrate Titre [g.l−1]
Productivity [g.l−1

h−1] Yield [g g−1] Reference

Ectoine ATCC 13032 lysCfbr

ectABCopt.
Sugar and molasses 65.2 1.2 0.19 [119]

Hydroxyectoine ECT-2 Glucose 0.4 - - [123]

α-Glucosylglycerol �otsA IMglgA +
pEKEx3-ggpSP

Sucrose 2.1 - 0.14 [129]

L-Pipecolic acid PIPE 4 Glucose and sucrose 14.4 0.2 0.20 [128]

The branched chain amino acids L-valine, L-leucine, and L-isoleucine
The amino acid l-valine is an important precursor of antibiotics [60,61] and herbicides [62]. Engineered C. glutam-
icum strains accumulate l-valine to a titre of 227 g.L−1 under oxygen deprivation within only 48 h [63]. Although
the reported value was corrected for volume increase and dilution effects during fed-batch production and the ef-
fective concentrations reached during the process were approximately 2-fold lower [64], the achieved performance is
undoubtedly impressive (Table 1). Producing strains are characterised by enhanced biosynthesis controlled by aceto-
hydroxyacid synthase (AHAS, ilvNGE), disrupted routes to undesired by-products (lactate, succinate), an amplified
glycolytic pathway, and optimised redox balancing using an NAD-preferring mutant of acetohydroxyacid isomerore-
ductase (AHAIR, ilvC™) during production [57,60]. Transcriptomics and proteomics furthermore have revealed that
up-regulation of the branched chain amino acid exporter genes brnFE promotes l-valine secretion capability [65],
displaying a promising target for future metabolic engineering interventions [66].
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Figure 1. Metabolic pathway map illustrating high-value bioactive ingredients for food, agricultural feed materials, human

health, and well-being products, provided by Corynebacterium glutamicum cell factories

Furthermore, it was also possible to generate l-leucine-producing strains of C. glutamicum characterised by the
overexpression of feedback-resistant variants of the central enzyme 2-isopropylmalate synthase (IPMS, leuA) and a
fine-tuned redistribution of precursor supply [57,67]. For example, overexpression of a mutated leuA variant (amino
acid exchanges R529H, G532D) was combined with deletion of ltbR (leuBCD), PTS-independent glucose uptake
via IolR deletion, and an attenuated flux through citrate synthase (gltA), strategies yielding a strain that achieved 24
g.l−1 l-leucine within 72 h in a fed-batch process [68]. The best performance was achieved by metabolic engineering
of a classically generated mutant strain (ML1-9), obtained by screening of structural l-leucine analogues [69]. The
producer overexpressed a feedback resistant leuA gene variant with three amino acid exchanges (R529H, G532D, and
L535V) but lacked ltbR to increase expression of leuBCD and lacked alaT, panBC, and ilvA to increase precursor
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availability (Table 1). It achieved a titre of 38.1 g.L−1 and l-leucine production, which using this strain, could achieve
quantities up to industrial scales (150 m3) [69].

Interesting engineering strategies transformed deregulated l-lysine producers into l-isoleucine producers. As an
example, the expression of several gene copies of hom, encoding a feedback-resistant l-homoserine dehydrogenase,
and ilvA, encoding a deregulated l-threonine dehydratase, yielded 13 g.l−1 l-isoleucine [68]. Metabolic engineering
of the industrial l-isoleucine producing strain IWJ001 channelled carbon into the pentose phosphate pathway for
enhanced NADPH supply and increased the production up to 29 g.l−1 l-isoleucine [70].

The neurotransmitter γ-aminobutyrate
γ-Aminobutyrate (GABA) is a non-proteinogenic amino acid of four carbons, which exhibits recognised blood pres-
sure lowering activity and is used in pharmaceuticals and functional foods [71–73]. Biochemically, it is derived from
l-glutamate via pyridoxal phosphate (PLP) dependent l-glutamate decarboxylase (GAD), suggesting C. glutamicum
with its known l-glutamate production potential as promising host, although the microbe is also able to use GABA
as sole carbon and nitrogen source [74]. Heterologous expression of l-glutamate decarboxylase (gadAB) from Es-
cherichia coli in wild-type C. glutamicum ATCC 13032 yielded a producer which accumulated 8 g.l−1 GABA within
96 h [72]. Subsequently, the impact of GABA catabolism and re-uptake was assessed, leading to the discovery of the
GABA specific transport protein GabP [75]. A gabP deletion mutant showed 12.5% higher GABA production than the
parental strain. Expression of a mutant l-glutamate decarboxylase with a broader pH optimum under the control of a
strong synthetic promoter (H36) then leveraged production to 38.1 g.l−1 [76]. Subsequently, additional expression of
xylA from E. coli provided strains that simultaneously utilised glucose and xylose and accumulated GABA up to a titre
of 35.5 g.l−1, using an empty fruit bunch biosugar solution as a carbon source [77]. An elegant approach decoupled
GABA production from the requirement for external PLP, an otherwise expensive ingredient [78]. The cofactor was
simply regenerated by expressing PLP kinase from Lactobacillus plantarum GB 01-21. Combined with heterologous
expression of GAD from the same donor and disruption of pathways to relevant by-products (l-arginine, l-proline,
l-lysine), this strategy has yielded the best GABA producer to date (Table 1). The engineered C. glutamicum strain
achieved 70.6 g.l−1 GABA [78]. An alternative pathway to GABA was established in putrescine-producing C. glu-
tamicum by expressing the E. coli genes putrescine transaminase (patA) and γ-aminobutyraldehyde dehydrogenase
(patD), which enabled a titre of 5.3 g.l−1 [79].

The microbial sunscreen shinorine
Shinorine (mycosporine-glycine-serine) belongs to the group of mycosporine and mycosporine-like amino acids
which are small, water soluble compounds with a cyclohexenone or cyclohexenimine scaffold. Naturally, these
molecules are synthesised by cyanobacteria, fungi, and in micro- and macroalgae. They efficiently absorb UVA and
UVB light, capture reactive oxygen species (ROS), protect macromolecules and cells and act as microbial sunscreens,
which are promising for skin care cosmetics [80,81]. The biosynthesis of shinorine requires the intermediate sedo-
heptulose 7-phosphate which is converted to dimethyl 4-deoxygadusol and 4-deoxygadusol, and is followed by the
addition of a glycine to form mycosporine-glycine and the final attachment of l-serine, involving a non-ribosomal
peptide synthetase (NRPS) homologue [81]. Heterologous shinorine production in C. glutamicum therefore involves
a modification of the pentose phosphate pathway to increase sedoheptulose 7-phosphate supply, specifically, the dele-
tion of transaldolase (tal) and the overexpression of 6-phosphogluconate dehydrogenase (gnd) [81]. Plasmid-based
expression of the shinorine operon genes (amir4256-amir4259) from Actinosynnema mirum then yielded the com-
pound at a titre of 19 mg.l−1 [81].

Plant polyphenols
Plant polyphenols are naturally found in fruits, vegetables, cereals, and beverages [82–84], and comprise several
thousand compounds [83,85]. Studies suggest that long-term consumption of a diet rich in plant polyphenols offers
protection against different cancers, cardiovascular diseases, diabetes, osteoporosis, and neurodegenerative diseases
[82–84], opening opportunities for the application of polyphenols as pharmaceuticals, nutraceuticals, and food ad-
ditives [86]. Microbial production normally outcompetes traditional extraction from plant tissues, given drawbacks
such as low yield, seasonal variation, and product instability, associated to the latter [87,88]. In comparison with other
tested hosts, C. glutamicum shows superior natural robustness against toxic aromatics [89], making it a promising
host for the production of aromatic molecules [88,90,91] (Table 2). This trait can be partially attributed to the com-
plex catabolic network for aromatic compounds in C. glutamicum, which needs to be modified prior to establishing
polyphenol biosynthesis in this organism [91,92]. Furthermore, because plant polyphenol synthesis requires large
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amounts of malonyl-CoA [93], the central metabolism of C. glutamicum was extensively re-engineered to meet
the increased demands for this metabolite [94,95]. Additional challenges arose from the fact that implementation of
pathways for polyphenols synthesis requires the functional expression of plant-derived enzymes in bacteria, which are
often characterised by incomplete posttranslational modification or formation of inclusion bodies due to incorrect
protein folding [82–84,86,88,90,96,97].

Flavonoids
Flavonoids are characterised by two benzene rings linked to a pyrane or pyrone ring, and derivatives result from sub-
stitution with hydroxyl groups, including alkylated and/or glycosylated moieties [88,96]. Recently, several flavonoids
were successfully produced in recombinant C. glutamicum [88,96,97] (Table 2). For example, the production of the
anthocyanin cyanidin 3-O-glucoside from catechin was achieved by co-expression of anthocyanidin synthase from
Petunia hybrida and 3-O-glucosyltransferase from Arabidopsis thaliana enabling a production titre of 40 mg.l−1,
when UDP-glucose was supplied [88].

Stilbenoids
Stilbenoids are hydroxylated diarylethenes, characterised by an ethylene moiety with one phenyl group on each side.
Most stilbenoids are synthesised in plants as response to infection or injury. Studies suggest that resveratrol, the most
prominent and commercially relevant stilbenoid, mediates health-promoting effects against a range of different can-
cers and supports the immune system and antioxidative defence mechanisms [90]. The first resveratrol producing
C. glutamicum variants carried genes for 4-coumaroyl-CoA ligase (4CL) obtained from Petroselinum crispum and
stilbene synthase (STS) from Arachis hypogaea and allowed an accumulation of up to 158 mg.l−1 of resveratrol when
supplemented with p-coumaric acid [96,97] (Table 2). Alternatively, a synthetic reverse β-oxidative pathway was es-
tablished in C. glutamicum, which allowed the synthesis of resveratrol from inexpensive 4-hydroxybenzoate without
supplementation of the much more costly p-coumaric acid [98]. Furthermore, resveratrol can be directly produced
from glucose without addition of any precursor molecules. However, in addition to the heterologous expression of
genes conferring 4CL and STS activity, these strains required a tyrosine ammonia-lyase activity for the non-oxidative
elimination of the primary amino group of l-tyrosine provided by microbial metabolism [97,99].

Plant phenols
Salidroside, active against neurodegenerative diseases
A success story in bacterial plant phenol synthesis is the production of salidroside, a compound found in many
raspberry species and active against the pathological processes of neurodegenerative diseases [84,86]. In a recom-
binant C. glutamicum variant, a titre of 9 g.l−1 salidroside from supplemented tyrosol was achieved by improving
UDP-glucose supply and the heterologous expression the glycosyltransferase gene from Oryza sativa [84,86] (Table
2). Furthermore, three flavouring phenylbutanoids raspberry ketone, zingerone, and benzylacetone, can be synthe-
sised by supplementing phenylpropanoid precursors using an engineered C. glutamicum strain [100]. The key to
success was the functional implementation of the curcumin reductase CurA from Escherichia coli which possesses
unknown benzalacetone reductase activity, required for phenylbutanoid synthesis.

6-Methylsalicylate, a flavouring agent
Corynebacterium glutamicum was also engineered for the synthesis of 6-methylsalicylate (6-MSA), the methyl ester
of salicylic acid found in many plant species, particularly wintergreens [101]. Despite applications as a fragrance
or flavouring agent, 6-MSA can also be used in high concentrations as an analgesic and rubefacient to treat joint
and muscular pain [102]. The key to the synthesis of 41 mg.l−1 6-MSA from glucose with C. glutamicum is the
functional expression of 6-MSA synthase ChlB1 from Streptomyces antibioticus [103], which is a larger (186 kDa)
type I polyketide synthase (Table 2).

Terpenoids
Terpenoids comprise carotenoids that are natural yellow- to red-coloured pigments found in plants, fungi, algae, and
bacteria [11,71]. They function as light-harvesting photo protectants, membrane stabilisers, and hormone precursors
[11]. Chemically, terpenoids consist of isoprene units and are classified according to the length of their carbon back-
bone [71]. Due to their beneficial effects on humans and in animal health, in particular due to their antioxidative
properties, terpenoids are applied as pharmaceuticals and nutraceuticals in the healthcare industry [11,104].
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Carotenoids
Most carotenoids contain 40 carbon atoms [105]. The two most prominent representatives are β-carotene, a precur-
sor of pro-vitamin A [105] and astaxanthin, one of the most abundant marine carotenoids and one of the strongest
natural antioxidants [106,107]. Naturally, C. glutamicum contains the glycosylated C50 carotenoid decaprenoxan-
thin as a yellow pigment and, correspondingly, carotenoid biosynthetic genes of the non-mevalonate pathway, in-
volving isopentenyl pyrophosphate as a central intermediate [104]. Native carotenoid biosynthesis is controlled by
the GGPP-responsive transcriptional repressor CrtR [108] and is increased via CrtR upon exposure to light [109].
Recent efforts have enabled the production of carotenoids in C. glutamicum with, including the use of lycopene
cyclase (crtY) obtained from Pantoea ananatis allowing the production of β-carotene (Table 3). Upon additional
heterologous expression of β-carotene ketolase (crtW) from Brevundimonas aurantiaca and hydroxylase (crtZ) (P.
ananatis) the recombinant strain produced astaxanthin at a rate of 0.4 mg.l−1 h−1, providing a promising alternative
to current algae-based production [106]. Translational fusion of the membrane proteins CrtW with CrtZ improved
the production of astaxanthin by 7-fold [107].

Sesquiterpenes
The C15 sesquiterpenes are volatile, which contributes to their use as flavouring agents and fragrances. (+)-Valencene
and patchoulol are fragrances present in plant essential oils. Replacement of the endogenous GGPP synthase by E.
coli FPP synthase combined with heterologous expression of the plant patchoulol synthase gene from Pogostemon
cablin enabled the production of 60 mg.l−1 patchoulol [110] (Table 3). For (+)-valencene production, expression of
codon-optimised valencene synthase from the cedar Callitropsis nootkatensis [111] was used instead of patchoulol
synthase and upon the use of photocaged IPTG as an optogenetic switch the growth-inhibiting (+)-valencene could
be produced to 41 mg.l−1 [112].

Coenzyme Q10
Coenzyme Q10 (CoQ10) serves as an electron carrier in aerobic respiration and exerts antioxidative effects when used
as supplements in patients with various diseases. It is an interesting compound. C. glutamicum was the first microbe
not natively synthesising CoQ10 that was engineered for CoQ10 production [113] (Table 3). A carotenoid-deficient
strain with increased supply of the precursor FPP was constructed to synthesise decaprenyl diphosphate (DPP) and
was the first CoQ10 precursor to express the DPP synthase gene ddsA isolated from Paracoccus denitrificans.
Metabolic engineering of the shikimate pathway provided para-hydroxybenzoate (pHBA) as the second CoQ10 pre-
cursor. Using ubi genes from E. coli allowed the prenylation of pHBA with DPP followed by decarboxylation, hy-
droxylation, and methylation reactions to yield CoQ10 [113].

Pyrazines
Pyrazines are monocyclic aromatic rings with two nitrogen atoms, widely used as flavouring agents. C. glutamicum
is capable of synthetising these molecules endogenously [114]. Feeding experiments with deuterated acetoin resulted
in the incorporation of 2H labelling in tri-methylpyrazine and tetra-methylpyrazine [114]. Together with specifically
created C. glutamicum deletion mutants these experiments allowed elucidation of the biosynthetic pathways that
produce pyrazines in detail. More recently, heterologous strains of C. glutamicum, which expressed mevalonate ki-
nase from S. aureus and C. kroppenstedtii and 3-hydroxy-3-methylglutaryl-CoA reductase from S. aureus, allowed
the synthesis of up to 5 g.l−1 tetra-methylpyrazine [115].

Extremolytes
Extremolytes are small molecules, found in extremophilic bacteria and archaea [68]. They are crucial for adapting
their lifestyle to hot, sour, or salty environments due to their protective properties [116,117]. They stabilise and protect
macromolecules, membranes, cells, and tissues [118]. Typically, extremolytes are active against different stresses, mak-
ing them multi-functional agents for the cosmetic, medical, and food industries [116,117]. Chemically, extremolytes
comprise a diverse group and include sugars, polyols, heterosides, amino acids, and their derivatives.

The industrial flagship extremolyte small molecule ectoine
Ectoine (S-2-methyl-1,4,5,6-tetrahydropyrimidine-4-carboxylic acid) is the industrial flagship molecule among ex-
tremolytes [119,120]. Discovered in the halophilic bacterium Halorhodospira halochloris [116,117], ectoine has
been produced at a scale of several tons per year and achieves prices up to of 1000 US$ kg−1 [121]. Its applications
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include the preservation and protection of the skin against cell damage and aging, treatment of atopic dermatitis,
lung inflammation, allergic rhinitis, and Alzheimer’s disease, and acts to stabilise proteins, DNA, and RNA [119,120].
Presently, the halophilic microbe Halomonas elongata is used for the industrial production of ectoine. The estab-
lished ‘bacterial milking’ process is based on intracellular ectoine accumulation in high-salt medium (15% salt), fol-
lowed by transfer of the cells to a low salinity solution (3% salt), which then promotes ectoine release due to an osmotic
down-shock reaction [116]. In addition to the costly industrial process, corrosive damage to conventional stainless
steel fermenters and connected devices caused by the salt concentrations have recently stimulated the development of
low-salt production strategies [119,120]. Thereby, C. glutamicum has emerged as the world’s best microbial ectoine
producer (Table 4). Pioneering studies have engineered the overproduction of ectoine (plus its derivative hydroxyec-
toine) in a strain of C. glutamicum, which expressed the ectABCD operon from Pseudomonas stutzeri [119], and
relied on a biosynthetic involving pathway aspartate semialdehyde as the central precursor. The use of a constitutive
promoter decoupled gene expression from its native control by high osmolarity [121,122] and the deletion of the lysine
exporter abolished l-lysine as a by-product [119]. The tailored strain ECT-2 achieved an ectoine tire of 4.5 g.l−1 from
glucose without the use of a high-salinity medium [123]. Subsequently, metabolic engineering of alternative pathways
supplied elevated levels of aspartate-semialdehyde, de-repressed glucose metabolism, and abolished lactate secretion
[124], which were all beneficial for ectoine formation. The obtained mutant C. glutamicum Ecto-5 achieved an ec-
toine titre of 22 g.l−1 together with 6 g.l−1 l-lysine as a by-product [124]. More recently, ectoine production could
be enhanced even further. For this purpose, the conventional polycistronic operon design was replaced by a mono-
cistronic design to individually control the expression of each of the three genes [119]. A library of 185,193 possible
variants of synthetic pathways under randomly distributed expression control was transformed into a chassis strain
C. glutamicum, which expressed a feedback resistant aspartokinase to increase supply of aspartate-semialdehyde but
lacked the l-lysine exporter to prevent l-lysine secretion. Screening of hundreds of clones finally yielded the strain
C. glutamicum ectopt , which formed 65 g.l−1 ectoine in a fed-batch process, almost without any by-products [119].

L-Pipecolic acid, a pharmaceutical building block and cell protectant
l-Pipecolic acid (piperidine 2-carboxylic acid, PA) serves as chiral building block for therapeutic agents [125], and
recently its value as a cell-protecting compatible solute has been revealed [126]. Because pipecolic acid is derived
from l-lysine, l-lysine overproducers were engineered for l-pipecolic acid production by a synthetic pathway involv-
ing oxidative deamination, dehydration, and reduction by l-lysine 6-dehydrogenase (deaminating) from Silicibacter
pomeroyi and endogenous pyrroline 5-carboxylate reductase [127] (Table 4). Upon abolishment of the export of the
precursor l-lysine and the improvement of expression of the pathway genes, l-pipecolic acid was produced to a titre of
14.4 g.l−1 [128]. The cell-protective properties of l-pipecolic acid as an osmo-protectant could also be demonstrated
for the recombinant C. glutamicum strain [126].

Glucosyl-glycerol, an anti-aging sugar derivative
Glucosyl-glycerol (glycoin, R-2-O-α-d-glucopyranosyl-glycerol) is naturally produced in marine cyanobacteria and
has promising anti-aging activity for use in cosmetics and pharmaceuticals. A recent study described glucosyl-glycerol
overproduction in recombinant C. glutamicum [129]. For this purpose, a two-step biosynthetic pathway using
the cyanobacterium Synechocystis spp. was introduced. Interestingly, production occurred only in osmotically
stressed cells. The elimination of routes to trehalose and glycogen synthesis, competition for ADP-glucose, and
nitrogen-limiting conditions finally allowed a α-glucosyl-glycerol titre of 2 g.l−1 to be achieved (Table 4). This pro-
cess displayed a promising proof-of-concept but work is needed to achieve the high performance of a highly selective
enzyme catalytic process, which is now used industrially for α-glucosyl-glycerol manufacturing [116].

Hyaluronic acid
Hyaluronic acid is a naturally occurring polymer. It consists of linear chains of double units of d-glucuronic acid
(GlcA) and N-acetyl-d-glucosamine (GlcNAc) with more than 30,000 repeats [130,131] and plays an important role
in maintaining structural integrity of cells, tissues, and body fluids [132]. Hyaluronic acid exerts various medical
properties. It has been used as a surgical aid in ophthalmology, for joint disease, and wound healing, including skin
and cartilage repair [131,133,134]. The market value is estimated at US$10 billion [133]. To overcome the inherent
limitations of classical hyaluronic acid extraction from rooster combs and bovine eyes with regards to product safety,
reproducibility, and costs [130], significant efforts have been made to develop microbial-based production. The first
attempts involved the use of the natural producer Streptococcus bacterium, and provided 7 g.l−1 hyaluronic acid
[130] but presented the disadvantage of the potential pathogenicity of the strain [133]. More recently, low levels of
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hyaluronic acid production have been established in E. coli (3.8 g.l−1), Lactococcus lactis (1.8 g.l−1), and Bacillus
subtilis (6.8 g.l−1) [133,134]. Recently, C. glutamicum revealed remarkable hyaluronic acid production capacity. By
engineering and evaluation of eight different organisations of the hyaluronic acid operon hasABCDE and further
strain optimisation, it was possible to produce 28.7 g.l−1 of hyaluronic acid from glucose in a fed-batch fermentation
process [133–135].

Conclusions and outlook
C. glutamicum has emerged as a potent host to produce molecules for human health and well-being, and has greatly
expanded its role from a traditional producer of amino acids, chemicals, and materials to a multi-functional mi-
crobial production platform. Different success stories have been highlighted in this study, which demonstrate the
product capacity of chemically diverse and complex molecules for high-value applications, using entire pathways or
synthetic pathway assemblies from various organisms (Tables 1-4). In addition to amino acids, plant (poly)phenols,
terpenoids, extremolytes, and medical polymers, have been showcased here. C. glutamicum was recently shown to
produce antibiotics such as roseoflavin [136], vitamins such as d-pantothenate [137] and vitamin B2 [138], and di-
agnostic biomarkers for the characterisation of various cancer types such as l-2-hydroxyglutarate [139], N-alkylated
amino acids such as N-methyl-l-alanine [140], and N-ethyl-sarcosine [141], as well as chlorinated or brominated
l-tryptophans [142,143] for the synthesis of peptide drugs, promising an even wider portfolio in the future. In ad-
dition, the functional expression of type I polyketide synthase, renders C. glutamicum a promising microbial cell
factory to produce type I polyketide synthase-derived high-value molecules. Its valuable native and engineered traits,
low nutritional requirements, and capacity for producing chemicals at high titre and yields from second [39] and
third generation renewables [144,145], and simultaneous use of sugar mixtures [29], together with a demonstrated
robustness [17] ensure the establishment of simple manufacturing processes using C. glutamicum all over the world.
In the near future, we can expect a further widening of the product portfolio as well as the establishment of next-level
cell factories with increased titres, yields, and rates towards an accelerated commercialisation.

Summary
• Corynebacterium glutamicum is an efficient cell factory for high-value natural products.

• More than 30 accessible compounds have been developed.

• Applications include food, feed, cosmetics, and medical industries.

• Production is enabled by efficient expression of synthetic pathways.
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