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Abstract

Our ability to infer a speaker’s emotional state depends on the processing of acoustic parameters such as fundamental frequency (F0)
and timbre. Yet, how these parameters are processed and integrated to inform emotion perception remains largely unknown. Here we
pursued this issue using a novel parameter-specific voice morphing technique to create stimuli with emotion modulations in only F0
or only timbre. We used these stimuli together with fully modulated vocal stimuli in an event-related potential (ERP) study in which
participants listened to and identified stimulus emotion. ERPs (P200 and N400) and behavioral data converged in showing that both
F0 and timbre support emotion processing but do so differently for different emotions: Whereas F0 was most relevant for responses
to happy, fearful and sad voices, timbre was most relevant for responses to voices expressing pleasure. Together, these findings offer
original insights into the relative significance of different acoustic parameters for early neuronal representations of speaker emotion
and show that such representations are predictive of subsequent evaluative judgments.

Key words: vocal emotion perception; timbre; fundamental frequency (F0); parameter-specific voice morphing; event-related
potentials (ERPs)

Introduction
It is well established that listeners readily infer a speaker’s emo-
tional state based on the speaker’s voice acoustics (Banse and
Scherer, 1996; Juslin and Laukka, 2003). Yet, after over 30 years
of research, and in some contrast to the accuracy with which
listeners infer vocal emotions, the identification of emotion-
specific acoustic profiles has been only partially successful (Banse
and Scherer, 1996; Juslin and Laukka, 2003; Brück et al., 2011).
Specifically, it remains uncertain how different vocal cues such
as fundamental frequency and timbre are processed in the lis-
tener’s brain to inform emotional inferences (Frühholz et al.,
2016; Frühholz and Schweinberger, 2021). Here, we review past
efforts and identify important conceptual and methodological
challenges (Scherer, 1986; Gobl, 2003; Patel et al., 2011). We
address these challenges by complementing earlier work with
a parameter-specific voice morphing approach that specifically

manipulates individual vocal cues. We focus on fundamental fre-
quency contour and timbre to understand the mechanisms by
which they influence neural integration and subsequent behav-
ioral responses in vocal emotions.

The role of different acoustic parameters in vocal
emotion perception
That listeners can infer emotions from voices with remarkable
accuracy has prompted the assumption that different emotions
are characterized by distinct patterns of acoustic parameters
(Banse and Scherer, 1996; Juslin and Laukka, 2003; Paulmann and
Kotz, 2018). To date, the literature has focused on four groups
of parameters including (i) fundamental frequency contour (F0),
(ii) amplitude, (iii) timbre and (iv) temporal aspects. Indeed, all
these parameters have been found to be important in signaling
emotional quality (Juslin and Laukka, 2003). However, despite
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enormous efforts, a potential mapping of vocal parameters to
specific emotions remains elusive. For instance, anger, fear and
happiness have all been linked to a high F0mean and variability, a
large amplitude and a fast rate of articulation, whereas the oppo-
site was found for sadness (Banse and Scherer, 1996; Juslin and
Laukka, 2003; Brück et al., 2011; Lima and Castro, 2011; Lausen
and Hammerschmidt, 2020). These findings seem to reflect that
vocal parameters signal unspecific arousal rather than more dif-
ferentiated emotional states and thus fail to account for listener
performance (Brück et al., 2011). Here, we consider this appar-
ent paradox, suggesting that methodological challenges inherent
in the study of natural speech may preclude insights into the
functional significance of different acoustic parameters. In what
follows, we will outline these challenges focusing on difficulties
associated with the interpretation of correlational data, the selec-
tion of relevant parameters and the partial redundancy of vocal
cues.

Past research typically measured a set of acoustic parameters
and used the obtained measures to study differences between
emotional categories or to predict listener responses (Banse and
Scherer, 1996; Juslin and Laukka, 2003; Lima and Castro, 2011).
However, this approach is intrinsically correlational and does not
allow for causal inference. Therefore, Arias et al. (2021) explicitly
called for voice manipulation techniques to gain control over the
acoustic properties expressing vocal emotions. An experimental
elimination of the natural covariation between specific auditory
parameters and emotion quality could prove particularly benefi-
cial in research on event-related potentials (ERPs), where dissoci-
ating sensory from emotional responses poses a major challenge
(Paulmann et al., 2013; Schirmer et al., 2013). Parameter-specific
voice morphing has been recently established as a suitable tool
to study how different acoustic cues facilitate the perception of
speaker age, gender and identity (Skuk et al., 2015, 2020; Kawahara
and Skuk, 2019). Applications in the domain of vocal emotion per-
ception are still sparse but offer great potential (Nussbaum et al.,
2022; von Eiff et al., 2022).

When choosing the vocal parameters under study, the major-
ity of research focused onmeasuring F0, a perceptually dominant
parameter, which is relatively easy to measure. However, it has
been widely acknowledged that other parameters, in particular
timbre, may be equally important but have been rarely considered
(Banse and Scherer, 1996; Gobl, 2003; Patel et al., 2011). Defined
as ‘the difference between two voices of identical F0, intensity
and temporal structure’ (ANSI, 1973), timbre reflects a complex
combination of several parameters, including formant frequency
and bandwidth, high spectral energy and spectral noise (Juslin
and Laukka, 2003; Lima and Castro, 2011). Timbre perception
is likely based on an integration of all its features (Piazza et al.,
2018), and previous works that studied timbre suggest a central
role of this parameter in voice processing (Gobl, 2003; Skuk et al.,
2015; Tursunov et al., 2019; Nussbaum et al., 2022). In particular,
Grichkovtsova et al. (2012) found that both timbre and prosodic
contour carry unique information for different emotions.

Finally, the idea that universal acoustic patterns signal discrete
emotions discounts a central aspect of our perceptual system:
flexibility. In fact, Spackman et al. (2009) showed that marked
vocal and expressive differences between speakers have little
impact on listeners’ ability to infer emotions, suggesting that
listeners flexibly adapt their inferential processes to a speaker’s
overall vocal profile. Conceptually, this flexibility is captured
in Brunswiks’ lens model (Brunswik, 1956), in which acoustic
cues are understood as probabilistic and partly redundant. Cru-
cially, decoders are thought to rely on these cues in a partly

interchangeable manner (Juslin and Laukka, 2003). Thus, sim-
ply comparing different acoustic parameters with respect to their
significance or predictive value for emotional judgments can be
very misleading if their contribution is implicitly assumed to be
non-redundant. Instead, this can be made explicit by exploring to
which degree a particular vocal parameter carries unique infor-
mation that cannot be transported by other parameters. Notably,
this may be achieved by creating voices expressing emotions
through only one parameter while other parameters are held at a
non-informative neutral level.

Electrophysiological correlates of vocal emotion
perception
Although distinct neural networks involved in the processing of
different acoustic parameters have been discussed for voice and
speech perception, e.g. a lateralization of pitch and timing infor-
mation (Poeppel, 2001; Belin et al., 2011), this has rarely been
linked to emotional processing. Likewise, while current models
on the neural processing of vocal emotions emphasize the impor-
tance of monitoring and integrating relevant acoustic cues in real
time (Frühholz et al., 2016), it is not yet understood how this takes
place for specific vocal parameters in different emotions. To this
point, research using electroencephalography (EEG) highlights
different processing stages that unfold dynamically across time
(Schirmer and Kotz, 2006; Paulmann and Kotz, 2018). The initial
analysis of acoustic features presumably already modulates the
N100 component, whereas subsequent emotional salience has
been linked to later processes at around 200ms following stim-
ulus onset as indexed, for example, by the P200 (Schirmer et al.,
2005; Paulmann and Kotz, 2008; Paulmann et al., 2013; Pell et al.,
2015; Schirmer and Gunter, 2017). Finally, top-down and goal-
directed vocal analyses seem to involve mechanisms associated
with theN400 or the late positive component (Paulmann andKotz,
2018). All these ERP components, especially the N100 and the
P200, are sensitive to changes in vocal parameters such as pitch
and loudness, but to date, it is unclear how these acoustics are
integrated specifically to derive emotional meaning (Paulmann
and Kotz, 2018).

Aims of the present study
Although the importance of individual acoustic parameters for
emotion perception is widely recognized, these parameters have
been rarely pursued experimentally and, to the best of our knowl-
edge, not in the context of functional neuroimaging. The present
study sought to address this gap and to answer the following two
questions: (1) What are the unique contributions of F0 vs tim-
bre to the perception of specific vocal emotions and (2) how does
the neural processing of these parameters unfold in time? To this
end, we used parameter-specific voice morphing to create F0-only
and timbre-onlymorphs, which contained emotional information
in only one of these parameters. Additionally, we created Full
morphs, which encompassed emotional information from both
F0 and timbre. Participants listened to all stimuli in random order
and were asked to classify speaker emotion, while their EEG was
being recorded.

For the emotion classification performance, we predicted that
compared to a condition with full emotional information, accu-
racy in both parameter-specific conditions would be inferior since
both F0 and timbre carry unique information important for suc-
cessful emotional decoding. However, we speculated that the
relative importance of F0 vs timbre would differ as a function of
emotion. With respect to the EEG, we were particularly interested
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in evidence regarding the temporal pattern of F0 vs timbre pro-
cessing. In an exploratory cluster-based permutation analysis, we
examined a time range from 0 to 500ms following voice onset to
detect potential modulations in both earlier (N100/P200) and later
(N400) ERP components, speculating that suchmodulations could
be relevant in predicting parameter-specific behavioral responses.

Method
Listeners
Based on prior behavioral data (Grichkovtsova et al., 2012), we
conducted a power analysis using the R-package ‘Superpower’
(Lakens and Caldwell, 2019) with a medium effect size f= 0.13,
an alpha level of 0.05 and a power of 0.80 for the interaction
of Emotion and Morph Type on recognition accuracy, result-
ing in a required sample size of 36. We collected data from 44
healthy native German speakers with no hearing impairments,
as confirmed by a short audio test (Cotral-Labor-GmbH, 2013). All
participants were students at the Friedrich Schiller University of
Jena. Sessions lasted about 2.5h. Participation was compensated
with course credit or 8.50€/h. The experiment was approved by
the ethics committee of the Friedrich Schiller University of Jena.

The data from five participants had to be excluded (three had
>3% of missing trials and two had <80% correct in the word nam-
ing task). The final sample consisted of 39 participants [27 females
and 12 males, aged 18–29 years (M=22.41; Mdn=22; SD=2.92),
2 left-handed].

Stimuli
Original audio recordings
We selected original audio recordings from a database of vocal
actor portrayals provided by Sascha Frühholz from the Depart-
ment of Cognitive and Affective Neuroscience of the University of
Zurich, similar to the ones used in Frühholz et al. (2015). For the
present study, we used three pseudowords (/molen/, /loman/ and
/belam/) with expressions of happiness, pleasure, fear, sadness
and neutral. We opted for two positive and two negative emotions
for various reasons, including that previous studies often focused
on happiness as the only positive emotion and that comparing
only one positive and one negative emotion would have enabled
only valence-based (i.e. positive vs negative) insights. Stimuli
were validated after applying the voice morphing procedure in
an independent rating study with 20 raters, including more emo-
tions and morph levels. Based on these ratings, we selected
two positive and two negative emotions with different degrees
of intensity [happiness vs pleasure: t(19)=9.57, p<0.001, with
M=3.40±0.06 and M=2.88±0.07; fear vs sadness: t(19)=6.58,
p<0.001, M=3.01±0.06 and M=2.78±0.07; on a rating scale
ranging from1 to 4]. For the complete documentation of the rating
study, refer to Supplemental Material on https://osf.io/sybrd/.

Voice morphing
Using the Tandem-STRAIGHT software (Kawahara et al., 2008,
2013), we created morphing trajectories between each emo-
tion and the neutral expression of the same speaker and pseu-
doword. After manual mapping of time and frequency anchors
at key features of a given utterance pair (e.g. onset and off-
set of vowels), vocal samples on an emotion/neutral continuum
were synthesized via weighted interpolation of the originals; for
a more detailed description see Kawahara and Skuk (2019). Cru-
cially, Tandem-STRAIGHT allows independent interpolation of
five different parameters: (i) F0 contour, (ii) timing, (iii) spectrum

level, (iv) aperiodicity and (v) spectral frequency; the latter three
are summarized as timbre.

Three types of morphed stimuli were created (Figure 1). ‘Full-
Morphs’ were stimuli with all Tandem-STRAIGHT parameters
taken from the emotional version (corresponding to 100% from
the emotion and 0% from neutral), with the exception of the
timing parameter, which was taken from the neutral version
(corresponding to 0% emotion and 100% neutral). ‘F0-Morphs’
were stimuli with the F0 contour taken from the emotional ver-
sion, but timbre and timing taken from the neutral version.
‘Timbre-Morphs’ were stimuli with all timbre parameters taken
from the emotional version, but F0 and timing from the neutral
version. In addition, all original neutral stimuli were included as
an extra non-emotional reference category. Note that the timing
was kept constant across all conditions to allow a pure compari-
son of F0 vs timbre. In total, this resulted in 8 (speakers) × 3 (pseu-
dowords) × 4 (emotions) × 3 (morphing conditions)+24 neutral
(8 speakers × 3 pseudowords)=312 stimuli. For analysis purposes,
we collapsed data across speakers and pseudowords.

Using Praat (Boersma, 2018), we normalized all stimuli to a root
mean square of 70dB sound pressure level (duration M=670ms,
min=411ms, max=878ms). Please refer to https://osf.io/sybrd/
for a detailed summary of acoustic parameters, some examples
of the sound files and a rating study validating the stimuli.

Design
Experimental setup and EEG recording
After providing informed consent and completing a short audio
test (Cotral-Labor-GmbH, 2013), participants were prepared for
the EEG-recording and subsequently started the emotion clas-
sification experiment using E-Prime 3.0 (Psychology Software
Tools, Inc., 2016). The EEG was recorded using a 64-channel
BioSemi Active II system (BioSemi, Amsterdam, Netherlands)
with electrodes being attached with a cap on the 10–20 sys-
tem (for EEG channel locations refer to https://osf.io/sybrd/).
This system works with a ‘zero-ref’ setup with a common mode
sense/driven right leg circuit instead of ground and reference
electrodes (for further information, https://www.biosemi.com/
faq/cms&drl.htm). The horizontal electrooculogram (EOG) was
recorded from two electrodes at the outer canthi of both eyes, and
the vertical EOG wasmonitored with a pair of electrodes attached
above and below the right eye. All signals were recorded with
direct current (120Hz low-pass filter) and sampled at a rate of
512Hz. During the EEG recording, participants were seated in a
dimly lit, electrically shielded and sound-attenuated cabin (400-
A-CT-Special, Industrial Acoustics™, Niederkrüchten, Germany)
with their heads on a chin rest to ensure a constant distance of
90 cm to the computer screen. The sound stimuli were presented
via in-ear headphones (Bose® MIE2 mobile headset).

Experimental task
The participants’ task was to classify the stimulus emotion as
happiness, pleasure, fear or sadness. There was no neutral
response option; to avoid that, participants would choose neu-
tral whenever theywere unsure about their response. Assignment
of response keys and response hands to emotion categories was
counterbalanced across participants, using four different key
mappings (Supplementary Table S2 on https://osf.io/sybrd/).

Each trial started with a white fixation cross centered on a
black screen. After 1000±100ms, the cross changed into green
and a vocal stimulus started playing. Behavioral responses were
recorded from voice onset until 3000ms after voice offset. As soon

https://osf.io/sybrd/
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Fig. 1. Schematic illustration of the different parameter-specific voice morphs.

Note. Parameters encompassing emotional information were morphed using 100% from the emotional utterances and 0% from the neutral one, and parameters
encompassing neutral information vice versa, respectively.

as a response was given, the fixation cross changed to gray, sig-
naling the logging of the response. The cross remained on screen
until the end of the response window. In case of no response
(omission error), the final trial slide (500ms) was a feedback
screen prompting participants to respond faster; otherwise, the
screen turned back. Then the next trial started.

Because emotion judgments are subjective, judgment accu-
racy may not be ideal to gauge a participant’s conscientiousness.
Therefore, we added a second task on 10% of the trials. Here,
participants were prompted to identify the last pseudoword by
pressing one of four response options (/molen/, /namil/, /loman/
and /belam/). Please note that we added the /namil/-response
option to have a label for each of the four keys on screen. In fact,
we only used three different pseudowords, so /namil/ was never
the correct response. A participant’s data entered data analysis
only if word identification accuracy was 80% or more. The exper-
iment started with 10 practice trials presenting stimuli not used
for the actual task. Subsequently, all 312 experimental stimuli
were presented once in randomorder and then again in a different
random order, resulting in 624 trials. Individual self-paced breaks
were encouraged between blocks of 78 trials. The total duration
of the experiment was about 50–60min. After the experiment,
participants completed a set of questionnaires that entered an
exploratory analysis reported in https://osf.io/sybrd/.

Data processing and analysis
Trials with omitted or preemptive responses (<200ms) were
excluded from the analysis of behavioral data. Mean accuracy and
confusion data were analyzed using R version 4.0.2 (R Core Team,
2020).

All trials entered EEG data analysis, which was done using
EEGLAB (Delorme and Makeig, 2004) in Matlab R2020a (MAT-
LAB, 2020). Raw EEG recordings were downsampled to 250Hz
and re-referenced to the average reference. Then the data were
low-pass filtered at 30Hz, high-pass filtered at 0.1Hz (both filters
−6dB/octave, zero-phase shift) and epoched using a time inter-
val of −200 to 1000ms relative to voice onset. Epochs were then
visually scanned for noisy channels and other unsystematic arti-
facts, such as drifts or muscle movements. The cleaned data were
1Hz high-pass filtered and subjected to an independent compo-
nent analysis. The resulting component structure was applied to
the preprocessed data with the 30 to 0.1Hz filter settings. Compo-
nents reflecting typical artifacts (e.g. eye movements, eye blinks
or ECG activity) were removed before back-projecting information
from component space into EEG channel space. Next, the data

were baseline corrected with a window of −200 to 0ms relative
to stimulus onset, and channels that had been removed earlier
due to noise were interpolated using a spherical spline procedure
(one channel in two participants and two channels in two par-
ticipants). The resulting data were again scanned visually and
residual artifacts and epochs were removed. Remaining epochs
were submitted to a current source density (CSD) transformation
using the CSD toolbox in EEGLAB (Kayser, 2009; Kayser and Tenke,
2006). This transformation returns essentially reference-free data
which optimize the segregation of spatially overlapping sources
(Kayser and Tenke, 2015). An analysis with the original average-
referenced data replicates the results reported here and can be
found in the aforementioned OSF repository. ERPs were derived
by averaging epochs for each condition and participant. A mini-
mum of 40 trials and an average of 47.48 trials per condition (out
of a possible maximum of 48) and participant entered statistical
analysis.

In order to assess the effects of F0 and timbre on the ERPs, we
calculated difference waves by subtracting from the Full condi-
tion either F0 or timbre conditions, for each emotion separately.
This resulted in two difference waves per emotion (DiffFull-F0 and
DiffFull-Timbre) and was done to enable a more meaningful visual
examination of the data and of how the removal of only one
parameter affected the ERP when compared with the full con-
dition. Please note that a comparison between DiffFull-F0 and
DiffFull-Timbre ismathematically equivalent to a simple comparison
of F0 and timbre conditions. To explore the divergence between
DiffFull-F0 and DiffFull-Timbre for both topography and time course
of ERP deflections, we performed a cluster-based permutation
test on all 64 electrodes using the FieldTrip toolbox (Maris and
Oostenveld, 2007; Oostenveld et al., 2011). The latency range was
set from 0 to 500ms, which offsets before the participants’ mean
behavioral response (MRT =1489ms, with 99% of trials between
697 and 2911ms). The analysis was done separately for each emo-
tion using the Monte Carlo method with 1000 permutations and
minimum cluster size of two channels. Based on the obtained
cluster results, we then selected a frontocentral region of inter-
est (ROI) including nine channels [F1, Fz, F2, FC1, FCz, FC2, C1, Cz
and C2] in latency ranges of the P200 [150, 250] and an N400-like
negativity [300, 400] for further visualization and exploration. The
behavioral and preprocessed EEG data together with respective
analysis scripts are accessible on https://osf.io/sybrd/.

Note that averages included trials with both correct and incor-
rect emotion identifications, while previous studies used correct
trials only (Schirmer et al., 2013). In the current dataset, the rate
of misclassifications was fairly high, and an exclusion of these

https://osf.io/sybrd/
https://osf.io/sybrd/
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Fig. 2. Mean proportion of correct responses per Emotion and Morph Type.

Note. Whiskers represent 95%-CIs. Gray dots represent individual participants’ data. The dotted line represents guessing rate at 0.25.

Fig. 3. Confusion data for each Emotion separately for the three Morph Types.

Note. Numbers represent the proportion of classification responses per Emotion and Morph Type. Hap=happiness, Ple=pleasure, Fea= fear, Sad= sadness,
Neu=neutral.

trials would have resulted in a substantial reduction of signal-
to-noise ratio and statistical power. However, to ensure that our
results were not biased by the inclusion of incorrect trials, we also
repeated analyses based on correct trials only. The results repli-
cated the pattern based on all trials, except that the difference in
the N400-like negativity was slightly reduced for fearful stimuli.
For a detailed report of effects sizes in different subsets of trials,
please refer to the materials on https://osf.io/sybrd/.

Results
Behavioral data—proportion of correct
classifications
The mean proportion of correct responses was averaged sepa-
rately for Emotion, Morph Type and participants. As there was
no response option for ‘neutral’, neutral stimuli were excluded
from analysis. An initial 4 × 3 analysis of variance with the within-
subject factors Emotion and Morph Type revealed main effects
of Emotion; F(3, 114)=45.42, p<0.001, ω2 =0.53, 95%-CI [0.40,
0.62], εHF =0.983; and Morph Type; F(2, 76)=295.67, p<0.001,
ω2 =0.88, 95%-CI [0.83, 0.91], εHF =0.896; which were further
qualified by an interaction; F(6, 228)=57.80, p<0.001, ω2 =0.59,
95%-CI [0.52, 0.64], εHF =0.753 (Figure 2). Post hoc comparisons of
the differentMorph Types for each Emotion revealed the following
pattern: For all emotions, performance in the Full condition was
better than in the F0 and timbre conditions, |ts(38)|≥4.41, p val-
ues≤0.001, Cohens d>0.72 [0.36, 1.07]. The only exception was
the F0-sadness condition which differed from the Full-sadness
condition only marginally, t(38)=1.88, p=0.067, d=0.31 [−0.02,

0.63]. Importantly, the relative contributions of F0 and timbre
differed. Specifically, comparing F0 vs timbre revealed a larger
impact of F0 on recognizing happiness, t(38)=10.48, p<0.001,
d=1.70 [1.20, 2.19]; fear, t(38)=5.98, p<0.001, d=0.97 [0.58,
1.35]; and sadness, t(38)=2.06, p=0.046, d=0.33 [0.01, 0.66].
In contrast, a larger impact of timbre was seen for pleasure,
t(38)=−3.28, p=0.002, d=−0.53 [−0.19, −0.87].

In addition to the proportion of correct responses, we cal-
culated confusion data for each Emotion per Morph Type, this
time including the neutral stimuli. The response matrices are
displayed in Figure 3. The full statistical analysis is provided on
https://osf.io/sybrd/.

ERP data
Nonparametric cluster-based permutation test
Cluster-based permutation tests were run to compare the Full
minus F0 and Full minus Tbr difference waves separately for
each emotion in a time window from 0 to 500ms. The results are
visualized in Figure 4. For happiness, the cluster-based permuta-
tion test revealed a significant difference between the F0 and the
Timbre condition (p<0.05), in a pronounced frontocentral clus-
ter between 130ms and the end of the analyzed time range at
500ms. Additionally, two bilateral temporal clusters appeared at
an onset latency of around 230ms. For pleasure, a frontocentral
cluster was observed in the time range of 150–200ms and for fear
in a later time range of 300–400ms, which seemed lateralized to
the left. For sadness, no clusters of significant differences were
observed. Please note that the spatial-temporal pattern of these
clusters has to be interpreted with caution, since cluster-based

https://osf.io/sybrd/
https://osf.io/sybrd/
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Fig. 4. Scalp topographies of the contrast between the difference waves DiffFull-F0 and DiffFull-Timbre for each emotion separately from 50 to 500ms.

Note. Clusters of significant differences are indicated by the black asterisks. The black rectangle in the bottom right scalp shows the electrodes included into the
ROI-based analysis. Color scheme developed by Adam Auton (2021).
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Fig. 5. ERPs separately for Emotion and Morph Type, averaged across nine channels.

Note. Averages are collapsed across [F1, Fz, F2, FC1, FCz, FC2, C1, Cz and C2]. Gray shaded areas illustrate the time window of the P200 [150, 250] and the
N400-like negativity [300, 400].

permutation tests do not allow a definite conclusion about where
an effect begins and ends in space and time, but only indicate that
there is a difference within a given spatiotemporal window (Maris
and Oostenveld, 2007).

Analysis of the frontocentral ROI
To explore the frontocentral cluster in more detail, ERPdata were
averaged across an ROI of nine channels [F1, Fz, F2, FC1, FCz, FC2,
C1, Cz and C2] (Figure 5). The difference between F0 and tim-
bre was quantified by comparing mean amplitudes in the time
windows of the P200 [150, 250] and the N400-like negativity [300,
400]. To compare the contrasts across emotions, we quantified
them in terms of effect sizes (Cohen’s d). Since the ROI was pre-
selected based on significant clusters, we refrained from further
null hypothesis significance testing.

P200. The contrast of F0 vs timbre revealed a strong effect for
happiness, d=0.70, 95%-CI: [0.34, 1.05] and an effect in the oppo-
site direction for pleasure, d=−0.53 [−0.19, −0.86], whereas effects
for fear and sadness were negligibly small, with d=−0.05 [−0.36,
0.27] and d=0.03 [−0.28, 0.34], respectively.

N400-like negativity. In the time window of the N400-like nega-
tivity, the strong effect in happiness persisted, d=0.87 [0.50, 1.24],
while the effect in pleasure ceased, d=0.10 [−0.21, 0.41]. For fear
and sadness, medium effects were observed, with d=0.41 [0.08,
0.73] and d=0.38 [0.06, 0.70], respectively.

Parameter effects on ERP amplitude predict parameter effects
on behavior. To model the relationship between behavior
and ERPs, we calculated performance and amplitude dif-
ferences between F0 and timbre for corresponding stimuli
and averaged them across the two stimulus presentations.
A cumulative link mixed model (calculated with the ‘oridi-
nal’ Package in R, Christensen, 2015) with the syntax Accu-
racyF0-Timbre ∼Emotion+P200F0-Timbre +N400F0-Timbre + (Emotion
+P200F0-Timbre +N400F0-Timbre|Participant) revealed that parame-
ter differences in the amplitude of the N400-like negativity pre-
dicted the relative predominance of F0 over timbre in emotion
recognition (β=0.004±0.002, z=2.042, p=0.041). Thus, the big-
ger the F0 vs timbre amplitude difference in the N400-like neg-
ativity, the bigger was the performance difference between F0
and timbre. In additional exploratory analyses, we split the N400-
like negativity into an early [300–350] and later [350–400] interval
and observed that the predictive power was driven by the later
interval (β=0.004±0.002, z=2.336, p=0.019), but not the early

one (β=0.002±0.002, z=1.277, p=0.202). The P200 effect was
non-significant (P200: β=−0.002±0.002, z=−1.004, p=0.315).

Discussion
This study explored the relative contributions of timbre and F0
to the perception of vocal emotions and pursued the tempo-
ral course underpinning emerging vocal representations. Task
performance and the ERPs underlined the importance of both
parameters, while revealing their unique processing contribu-
tions as a function of emotion. The following paragraphs outline
these contributions and present a discussion of how they inform
extant models of vocal emotion perception.

The unique contribution of F0 and timbre in
vocal emotion processing
While much research has pursued the functional significance of
F0, considerably less attention has been directed to timbre (Banse
and Scherer, 1996; Juslin and Laukka, 2003). Yet, based on the
recurring finding that F0 correlates with perceived arousal (Brück
et al., 2011), timbre was suggested to signal valence. This view
was supported by machine-based classification approaches and
behavioral data from nonverbal vocalizations (Tursunov et al.,
2019; Anikin, 2020). The present data disagree with this per-
spective. A functional link between F0 and arousal should have
led to more confusions across valence in the F0-only condi-
tion. In other words, participants should have mixed up high
arousal emotions with other high arousal emotions (i.e. happi-
ness and fear) and low arousal emotions with other low arousal
emotions (i.e. pleasure and sadness; refer to the rating data on
https://osf.io/sybrd/). Likewise, a functional link between timbre
and valence should have led to more confusions across arousal
in the timbre-only conditions. Mix-ups should have happened
primarily within rather than across positive (i.e. happiness and
pleasure) and negative emotions (i.e. fear and sadness). Neither
pattern was observed in the present confusion data (Figure 3).
Instead, all emotions tended to be confused most often with
sadness.

Other proposals exist that better match the available evidence.
For example, Gobl (2003) speculated that F0 expresses stronger
emotions, while timbre may more effectively signal milder affec-
tive states. While the present data cannot directly speak to this,
they accommodate such functionality. F0 effects were most pro-
nounced for happiness and fear, which were rated high in inten-
sity (for details, refer to the rating data in https://osf.io/sybrd/).

https://osf.io/sybrd/
https://osf.io/sybrd/
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For emotions of lower intensity, such as sadness and pleasure, F0
effects were either reduced or absent. Similarly, Grichkovtsova
et al. (2012) found prosody contour (including F0) to be more
important for the recognition of happiness, whereas timbre
seemed more important for sadness. Although our findings
slightly diverge, they align with the fact that timbre seemed more
relevant for weaker emotions.

Nevertheless, we reason that a framework linking F0 and
timbre to rigid functional meanings is overly simplistic. Such a
framework fails to account for the variability and flexibility in
producing and perceiving vocal emotions. Very different styles of
emotional expression can result in comparable recognition per-
formance (Gobl, 2003; Spackman et al., 2009), underlining the
perceivers’ ability to adjust reliance on different vocal parameters
when extracting emotional meaning. Another important aspect is
the potential interaction of vocal parameters. Timbre and F0 nat-
urally co-vary (Arias et al., 2021). Thus, when studied in isolation,
one does not only eliminate the impact of the controlled vocal
parameter but also their joint contribution. On the one hand,
this would be particularly detrimental if important changes in
one vocal parameter depend on coherent changes in the other
(Grichkovtsova et al., 2012). On the other hand, one could also
assume that one parameter is particularly important for emo-
tional signaling while the other is naturally less informative. If so,
the importance of timbre in the present pleasure stimuli could be
partly due to the natural lack of information in F0 contour (Anikin,
2020).

Electrophysiological correlates of F0 vs timbre
processing
How are vocal parameters analyzed and integrated in the brain to
extract the emotional salience of voices? Althoughmuch debated,
this process is still poorly understood (Paulmann and Kotz, 2018).
We sought to shed light on this question by explicitly comparing
the divergence of the two parameter-specific conditions from the
Full emotion condition to study the relative importance of F0 vs
timbre.

We found that happy voices elicited a smaller P200 amplitude
in the timbre relative to the F0 condition, whereas vocal pleasure
elicited an opposite effect, in line with the observed performance
data. For the N400-like negativity, parameter-specific effects were
observed for happiness, sadness and fear, with larger amplitudes
for timbre relative to F0, again in line with the behavioral results.
Of importance is that the N400 amplitude difference between
timbre and F0 positively predicted the associated performance
difference in the behavioral data.

These findings add to our understanding of the functional
significance of the P200 and the N400. With emotional qual-
ity and acoustic cues being confounded in natural stimuli, it
has been difficult to ascertain whether these components reflect
emotional processing or are subjectmerely to basic acoustic influ-
ences (Paulmann et al., 2013; Schirmer and Gunter, 2017). In
the present study, we employed stimuli with controlled acous-
tics and the intriguing resemblance between the behavioral and
ERP results implies that emotional rather than acoustic processes
shaped the P200 and the N400. Together, these findings agree
with conclusions drawn from acoustically uncontrolled studies
(Paulmann and Kotz, 2008; Schirmer et al., 2013) and corrobo-
rate existing models of vocal emotional processing (Schirmer and
Kotz, 2006; Frühholz et al., 2016). Moreover, the finding that ampli-
tude differences in the N400 (but not the P200) predicted overt
emotion identification suggests that this process was fairly inde-
pendent from early automatic responses and shaped instead by

later more controlled processes such as conceptual processing of
emotional meaning (Paulmann and Kotz, 2018). Note that for this
study we adopted an exploratory approach and identified com-
ponents based strictly on their timing and polarity. Moreover,
regarding the N400, we wish to clarify that although this compo-
nent was originally described in the context of lexical integration
and semantic incongruity (Kutas and Hillyard, 1980), it has since
been pursuedmore broadly including, for example, in the context
of perceptual and semantic picture priming (Barrett et al., 1988;
Barrett and Rugg, 1989), face processing (Wiese et al., 2017) and
emotional processing (Paulmann and Pell, 2010). Thus, somewhat
different N400 components, varying with regard to timing and
scalp topography, have been documented and linked to a range
of processes. For a more detailed discussion of this, please refer
to Kutas and Federmeier (2011).

The observed ERP modulations suggest an emotion-specific
time course in the neural processing of voices, with an earlier
onset of emergent representations for happiness and pleasure
when compared with sadness and fear. Similarly effects have
been reported for static faces (Schindler and Bublatzky, 2020).
However, in contrast to static faces, the acoustics in voices evolve
over time and may unfold their emotional information simply
as a function of when and how a given cue becomes available.
Thus, to what extent the latency differences we observed in this
present study reflect relative differences in the ease or accessibil-
ity of positive and negative emotions or are tied strictly to acoustic
stimulus constraints awaits further research.

Directions for future research
The present study presents a novel approach to the long-standing
question of how the brain represents a speaker’s emotional state.
While it offers important new insights, it also generates a num-
ber of important questions. One such question concerns potential
considerations associated with voice morphing. Although this
technique results in stimulus materials of high quality, it also
inevitably leads to parameter combinations that are unlikely
to occur in natural voices, potentially making morphed stimuli
sound less natural or human-like (Grichkovtsova et al., 2012; Skuk
et al., 2015). Note that this concern is not specific to parameter-
specific voice morphing but is equally prevalent in experiments
using parameter-specific facial morphs (Sormaz et al., 2016). The
extent to which both facial and vocal naturalness can be per-
ceived and might influence emotion processing deserves further
research. Another question concerns whether and how a listen-
ers’ goals might shape parameter-specific processes. For example,
it would be interesting to investigate under which circumstances
the present effects replicate. Would they be still observable if
participants were not instructed to explicitly identify the emo-
tions? Based on the present findings, one would expect the N400
to be more malleable to task effects than the P200. Finally, an
interesting direction for future research would be to pursue indi-
vidual differences. For example, Schneider et al. (2005) distin-
guished ‘fundamental pitch listeners’ and ‘spectral listeners’ with
profound structural and functional differences in the auditory
cortex. Likewise, there may be ‘F0 listeners’ and ‘timbre listen-
ers’ who rely to different degrees on these parameters in vocal
emotions.

Summary and conclusion
The present study demonstrated that the relative contributions
of timbre and F0 to vocal emotion processing vary as a function
of emotional category, with F0 being more important for happy,
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fearful and sad expressions and timbre being more important for
pleasure. Furthermore, the relative importance of vocal cues for
behavioral performance was mirrored in the ERPs at time points
overlapping with the P200 and the N400. Indeed, N400 effects
significantly predicted overt judgments delineating an important
link between parameter-specific neural and behavioral processes.
Thus, future research may leverage on parameter-specific voice
morphing as a useful tool when studying how the human brain
translates voice acoustics into emotional meaning.
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