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The brain is an important organ that controls all sensory and motor actions, memory, and emotions. Each anatomical 
and physiological modulation in various brain centers, results in psychological, behavioral, and sensory-motor 
changes. Alcohol and addictive drugs such as opioids and amphetamines have been shown to exert a great impact on 
brain, specifically on the hippocampus. Emerging evidence has indicated that altered hippocampal neurogenesis is 
associated with the pathophysiology of neuropsychological disorders including addiction. The addictive drugs 
impair neurogenesis and undermine the function of neural stem/progenitor cells in hippocampus. This feature was 
claimed to be one of the underlying mechanisms of behavioral changes in patients with addiction. As the impairment 
of stem cells’ function has been proven to be the underlying cause of pathologic neuroadaptations in the brain, the 
administration of stem cell populations has shown promising results for re-modulating of neuronal status in the brain 
and especially in the hippocampus. Among the different types of stem cells, bone marrow derived mesenchymal 
stem cells are the most proper candidates for stem cell therapies. In this review article, the recent studies on the 
effects of addictive drugs on brain neurogenesis, and also the promising potential effects of stem cells in curing 
addiction related hippocampal damages are discussed. 
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ddiction is defined as a chronic disease with 
obligation to take drugs or alcohol, no 

control on restraining intake, and having negative 
emotional feeling during withdrawal period. 
Addiction does not just affect the addict’s life, but 
also it has a huge burden on the society and 
economy. It was revealed that the addictive agents 
have a great anatomical and physiological impact 
on the brain centers, resulting in psychological, 

behavioral, and sensory-motor changes(1). It was 
demonstrated that addictive substances affect 
dopaminergic pathways which connect the ventral 
tegmental area to the prefrontal cortex via limbic 
system in particular in the nucleus accumbens, 
amygdala, ventral pallidum, and hippocampus (2). 

Brain has the ability to produce new neural 
stem/ progenitor cells (NSPCs) during adulthood. 
Hippocampus might be the most plastic region of 
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the brain, where granular cells in the dentate gyrus 
are born in adulthood. The precursors of these cells 
are placed in the subgranular zone (SGZ), the tissue 
between hilus and granule cell layer (3, 4). The 
sensible characteristic of adult-born neurons in the 
hippocampus is their specific electrophysiological 
capability for extreme changes required in early 
stages of maturation. This property is pivotal for 
formation of memories and further physiological 
actions (5). The SGZ provides a proper niche for 
proliferation and differentiation of stem cells in 
dentate gyrus (6). Astrocytes as important cellular 
components of SGZ, play an active role in 
proliferation and neuronal fate commitment of 
NSPCs (7) through release of molecular signals 
such as Wnt (8), Ephrin B2 (9), and sonic hedgehog 
(Shh) (10,11). Moreover, they have been shown to 
play essential roles in neural cell survival, immune 
responding, and modulation and metabolism of 
neurotransmitters (12). Therefore, each stimulant 
that can affect NSPCs or their niche in the 
hippocampus could make a vast modification in the 
memory and behavior. Bulk of studies have found 
the alterations in adult neurogenesis of 
hippocampus in neuropsycho-logical disorders such 
as depression (13), schizophrenia (14), bipolar 
disease (15), and addiction (16). A large amount of 
evidence indicates the changes in adult 
neurogenesis of dentate gyrus in abusing drugs such 
as opioids (17), amphetamines (18), and alcohol 
(19). 

Addictive drugs and alcohol can regulate 
NSPCs by a variety of mechanisms. Some of these 
mechanisms are shared among them (16). For 
example, they regulate adult neurogenesis by 
modulating cell cycling pathways (20), and G 
protein-coupled receptor (GPCR) signaling 
cascades (21). Moreover, molecules involved in 
supporting or inhibiting neurogenesis including 
brain-derived neurotrophic factor (BDNF), 
interleukin 1 beta (IL1β) or vascular endothelial 
growth factor (VEGF), could be influenced by 

some addictive drugs (22). Additionally, they can 
exacerbate mitochondrial function and invoke 
oxidative stress (23). There is an evidence that 4-
hydroxynonenal (HNE), an aldehydic product of 
membrane lipid peroxidation, is a key mediator of 
neuronal apoptosis induced by oxidative stress (24). 

Some signaling molecules and pathways such 
as the mitogen-activated protein kinase (MAPK) 
signaling pathway, cell cycle regulatory molecules, 
and microRNAs (miRNAs) which may function 
independently or act in conjunction with one 
another have been identified to play important roles 
in these modulations (25). 

Although neurons are the principal targets of 
drug addiction, it has recently been shown that 
nearly all drugs of abuse also affect glial cells (26). 
Astrocytes as the most abundant glial cells in brain 
(27) are well characterized for their role in the 
clearance of neurotransmitters, such as glutamate, 
from the synaptic cleft. Synaptic clearance of 
glutamate occurs primarily through the glutamate 
transporter 1 (GLT-1), expressed exclusively on 
astrocytes (28). 

Several lines of evidence indicate that ethanol 
and other drugs of abuse downregulate the 
expression of GLT-1, leading to excessive 
accumulation of glutamate in synaptic cleft. Excess 
glutamate massively stimulates N-methyl-D-
aspartate receptors (NMDARs). Massive 
stimulation of NMDARs leads to an excessive 
cellular influx of ions, particularly calcium, causing 
the activation of proteases, phospholipases, and 
endonucleases that end in cellular death (29). This 
form of neuronal death caused by hyperactivity of 
excitatory amino acids, mainly glutamate, is named 
excitotoxicity. It is one of the other mechanisms 
that have been proposed for alcohol and drug 
induced brain damages (30). Drug relapse observed 
for alcohol and other drugs is causally associated 
with the existence of high levels of extracellular 
glutamate (31). 

Addictive  drugs  also  activate  microglia  and 
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astrocytes via toll-like receptor 4 (TLR4), leading 
to the release of pro-inflammatory cytokines, and 
reactive oxygen species which in turn, promote 
neuronal death in hippocampus and other brain 
regions (32). 

In the first part of this review, the effects of 
drug and alcohol abuse on neurogenesis are 
discussed, then we provide an overview of the 
promising effects of bone marrow derived 
mesenchymal stem cells (BM-MSCs) for the 
treatment of addiction related hippocampal 
damages. 
Drug associated alterations in neurogenesis in 
hippocampus 

The principal centers that are directing the 
feelings and are affected by addictive drugs are 
hippocampus and medial prefrontal cortex. It has 
been indicated that the behaviors of drug seeking 
and relapsing to drug abuse are mediated by these 
centers (33, 34). 

Animal studies showed that self-
administration of drugs attenuates neurogenesis in 
dentate gyrus (1, 35-43). The examples of these 
results include the decrease in proliferation and 
differentiation of NSPCs in dentate gyrus following 
nicotine self-administration (1), and attenuation in 
proliferation of NSPCs after heroin (38) and 
cocaine self-administration (41, 43). Access to 
cocaine augments the differentiation of dentate 
NSPCs, but does not affect their survival (39). 
Acute cocaine exposure was shown to cause a 
significant increase in oxidative stress in human 
NSPCs, which was followed by drastic apoptotic 
effects (44). Further studies demonstrated that 
although the proliferating cells in both SGZ and 
SVZ of rats decreased after 3 weeks of cocaine self-
administration, the effects were reversed by 4 
weeks of withdrawal (39). 

Methamphetamines as another drug have non-
linear effect on the dentate gyrus stem cells.  
In the case of daily self-administration of 
methamphetamine, the survival, proliferation, and 

differentiation of progenitors are decreasing. 
However, intermittent access raises proliferation 
and differentiation, but this type of increase in the 
population of immature neuronal cells does not alter 
survival and neurogenesis of hippocampal 
progenitors, perhaps because of opposing effects on 
proliferation of late progenitors and differentiation 
of post-mitotic neurons (36). Methamphetamine 
delays cell cycle progression from G0/G1-to-S 
phase. This effect could be due to the down-
regulation of cyclin E, and to the decrease of 
epidermal growth factor receptor (EGFR) and 
ERK1/2 phosphorylation which are involved in cell 
proliferation progression (45). Several studies using 
animal models have shown the involvement of 
oxidative stress and excitotoxicity in the 
neurotoxicity produced by methamphetamines (46). 
Neurogenesis in the dentate gyrus decreased 
markedly in amphetamine-treated rats following 
four weeks of withdrawal from amphetamine (47). 

Neuroinflammation is also associated with the 
chronic use of addictive drugs including cocaine, 
opiates, marijuana, and methamphetamine (48). 

It is vital to indicate that all above studies 
show a correlation between daily drug intake and 
alteration in neurogenesis. As the amount of drug 
intake increases, the pathologic effects are more on 
the dentate gyrus neurogenesis. 
Alcohol-associated alterations in the neurog-
enesis in hippocampus 

Alcohol abuse often leads to the alcohol use 
disorder (AUD) that has great deteriorating impacts 
on the brain. Excessive use of alcohol results in 
progressive neurodegeneration in brain that also 
accelerates AUD (49). Alcohol abuse causes 
general changes in white and gray matters in the 
central nervous system (50-52); nevertheless, some 
brain centers are more affected by alcohol abuse. 
Ethanol neurotoxicity greatly disturbs hippocampus 
and frontal cortex (52, 53). The altered integrity of 
hippocampus in alcoholics leads to abnormal 
cognitive functions and psychopathological actions 
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(54, 55), which further results in AUD development  
(55, 56). Studies on human and animal models 
generated valuable information about the effects of 
alcohol abuse on the brain. Examples of alcohol 
effects on the brain structure and function include 
cell loss in corticolimbic regions (57, 58), decrease 
of the complexity of dendritic branching (59), and 
alterations in dendritic spine structure (60, 61). 
Moreover, alcohol self-administration in animal 
models resulted in decrease in survival, 
proliferation and differentiation of NSPCs in 
dentate gyrus in the hippocampus (37, 62, 63). 
Hippocampus is the most pathologically affected 
area of brain by chronic ethanol intake. Ethanol can 
significantly alter the expression of genes involved 
in neural differentiation pathways including axon 
guidance, hedgehog signaling, TGF-b signaling,; 
cell adhesion molecules, and Wnt signaling in 
differentiating human neuronal stem cells (64). 
Cumulative evidence indicates that ethanol 
activates microglia and astrocytes via TLR4, which 
can be evidenced by specific morphological 
changes including increased length and thickness of 
primary processes (65). This activation promotes 
the release of pro-inflammatory cytokines that in 
turn, promote neuronal death in the hippocampus 
and other brain regions (32). 

Withdrawal from ethanol exposure enhanced 
cell proliferation in the hippocampus, resulting in 
initial microglial proliferation followed by the 
production of immature neurons and eventual 
neurogenesis (66, 67). The mechanisms underlying 
ethanol withdrawal-induced aberrant neurogenesis 
in the dentate gyrus are not yet completely 
elucidated. 
The role of stem cells in treatment of addiction 
related hippocampal damages 

What we summarized in above topics are brief 
description of the effects of drugs and alcohol in 
addicted patients on adult neurogenesis. The 
NSPCs are introduced as the main affected cell 
population in addiction. In this part, the potential of 

BM-MSCs for treating injuries to the brain with 
focus on addiction-derived alterations is discussed. 

Stem cells are primary cells with self-renewal 
and differentiation ability (68). The most famous 
multipotent stem cells are MSCs which are 
recognized by their ability to differentiate into 
adipocytes, chondrocytes and osteocytes, and their 
plastic adherence (69). Available results from 
clinical studies support the overall safety of cell 
therapy using MSCs (70). The other extreme 
valuable characteristic of MSCs is the 
immunomodulatory effect of these cells. This 
feature is so beneficial in disorders with 
inflammatory components (71). The MSCs are also 
non-immunogenic; therefore, they can be easily 
obtained from allogeneic sources as they are not 
provoking lymphoproliferative responses (72, 73). 

MSCs have been applied in neurological 
degenerative disorders such as Parkinson’s disease 
(74), Alzheimers disease (75), amyotrophic lateral 
sclerosis (76), and traumatic and ischemic brain 
injuries (77, 78). BM-MSCs have been 
differentiated into neuron-like and glial cells both in 
vivo and in vitro (80-82). There is an evidence for 
crossing the blood barrier of adult rat brain by 
human adipose-derived mesenchymal stromal cells 
(82). The BM-MSCs have also the potential to pass 
through blood brain barrier in hypoxic-ischemic 
encephalopathy animal model (83). 

A considerable body of evidence has revealed 
the potential of BM-MSCs secretome to modulate 
neuronal survival and differentiation. This effect is 
attributed to BM-MSCs secretion of BDNF, GDNF 
(glial derived neurotrophic factor), and basic 
fibroblast growth factor (bFGF). These neuro-
regenerative effects were accompanied by the 
improvement in animals’ memory and motor 
behavior (84). It was revealed that MSCs increase 
hippocampal neurogenesis and neuronal 
differentiation by enhancing the Wnt signaling 
pathway (85). Stromal cell-derived factor 1 (SDF)-
1α as another cytokine released from BM-MSCs is 
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associated with neural protection through anti-
apoptotic based mechanisms (86). Additionally, the 
secretion of BDNF in vivo by BM-MSCs, was 
correlated with the activation of endogenous stem 
cells (87). Secretion of these factors by MSCs not 
only protects neurons from further degeneration and 
enhances neurogenesis, but also acts as immune 
response modulator. The overall expression of pro-
inflammatory cytokines, such as IL-1β, IL-2, IL-12, 
tumor necrosis factor alpha (TNF-α), and interferon 
γ (INF γ) decreased after MSC transplantation. It 
has been shown that MSCs and their released 
cytokines and growth factors protect hippocampal 
neurons from oxidative stress and synapse damage 

induced by amyloid-β oligomers (88). Conditioned 
medium from MSCs also protect CNS neurons 
against glutamate excitotoxicity by inhibiting 
glutamate receptor expression and function (89). 

Besides soluble growth factors and cytokines, 
MSCs also secrete microvesicles and exosomes 
containing mRNAs and/or miRNAs, which are 
believed to mediate cell-to-cell communication 
(90). Exosomes secreted by BMSCs in vitro not 
only mediate communication with neurons and 
astrocytes, but also regulate neurite outgrowth by 
transfering miRNA (miR-133b) into neural cells 
(91). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Fig. 1. Schematic representation of drug effects on brain, and the benefits of stem cell injection. 
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MSCs have shown therapeutic effects on the 
brain pathologies. A crucial finding in mental 
illnesses like bipolar disorder, major depression, 
and schizophrenia is the disturbance of 
neurotrophic factors and immunomodulatory 
systems in the brain. The pro- inflammatory 
cytokines such as TNF-α, IL-6, and IL- 2 are 
increasing and BDNF is decreasing in such 
disorders (92-94). Furthermore, as we specified 
above, there are alterations in anatomy and 
neurogenesis of hippocampus in psychological 
disorders and in individuals with addiction to drugs 
and alcohol (95-97). There are few studies with the 
aim of evaluating the effects of MSCs in psychiatric 
models. Application of MSCs in an animal model 
of depression has led to the improvement in 
hippocampal neurogenesis and depressive 
behaviors (98). In addition, intra-hippocampal 
injection of MSCs improved neurogenesis with no 
behavioral changes in rats, which indicates the 
safety of MSCs transplantation in brain (99). The 
secretion of neurotrophic factors from MSCs and 
the immunomodulatory function of these cells 
could be the possible regenerative mechanism of 
these cells on neurogenesis (100, 101). 

A brief description of the effects of drug on 
brain and the benefits of stem cell injection on 
addicted brains is represented in figure 1. 

Yang et al. transplanted labeled BM-MSCs 
into the hippocampus of alcohol-associated 
dementia animal model. Evaluation of the behavior 
and hippocampus structure of the injected rats 
revealed that their learning and memory function 
were enhanced, alcohol-induced hippocampal 
injures were inhibited in histological examinations, 
the number of apoptotic neural cells was decreased, 
and the activity of total superoxide dismutase was 
increased in the hippocampus. Transplantation of 
BM-MSCs also increased the level of BDNF 
protein (102). 

In a study by Israel et al, alcohol drinking rats 
were injected with human BM-MSCs and adipose 

tissue-derived MSCs intra- cerebro- ventricularly 
(ICV). The results showed that injected MSCs 
survived and became attached to cerebral ventricles. 
Transplanted MSCs reduced 24-h alcohol intake 
and also blocked alcohol relapse-like drinking 
induced in the alcohol deprivation effect condition 
(103). Ezquer et al. showed that administration of a 
single dose of human BM-MSC-spheroids, whether 
ICV or intravenously, greatly reduced neuro-
inflammation, and inhibited chronic alcohol intake 
and relapse-like drinking. Administration of BM-
MSC-spheroids also markedly increased the levels 
of the GLT-1, leading to inhibition of relapse. It 
was also revealed that human BM-MSC-spheroid 
administration in alcoholic rats fully normalized 
astrocyte activation, and decreased MCP1 
expression in the hippocampus, suggesting a potent 
anti-inflammatory effect of BM-MSC-spheroids. 
Furthermore, oxidative stress was normalized by 
MSC- spheroid administration (104). 

Therapeutic promises of BM‐MSCs have been 
overshadowed by concerns regarding their limited 
homing potential or migration to non-target sites 
(105, 106). Although, extensive investigations have 
provided significant potential for enhancing 
targeted stem/progenitor cell homing (107-110) 
there are some limitations that make it difficult to 
apply these findings in clinics, especially in 
neurodegenerative disorders. 
Conclusion 

Several studies indicated the damaging effects 
of drug and/or alcohol abuse on the brain 
neuroanatomy and function. Experiments have 
revealed that addiction leads to impairment in adult 
neurogenesis in behavioral centers of brain 
including hippocampus and medial prefrontal 
cortex. Numerous experiments on animal models 
have shown the effects of addictive drugs such as 
morphine, cocaine, methamphetamines, and alcohol 
on the proliferation, survival and differentiation of 
progenitor cells in the hippocampus. Animal studies 
showed promising results after hippocampal 
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transplantation of BM-MSCs in psychological 
disorders e.g. depression and alcohol abuse.  
More studies on the stem cell therapy of 
psychological defects related to addiction are 
required. 
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