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Genome-wide screens for substrates of the Ire1 nuclease<p>The different genome-scale screens indicate that the <it>HAC1 </it>mRNA is the only substrate for the Ire1 nuclease in yeast.</p>

Abstract

Background: The unfolded protein response (UPR) allows intracellular feedback regulation that
adjusts the protein-folding capacity of the endoplasmic reticulum (ER) according to need. The signal
from the ER lumen is transmitted by the ER-transmembrane kinase Ire1, which upon activation
displays a site-specific endoribonuclease activity. Endonucleolytic cleavage of the intron from the
HAC1 mRNA (encoding a UPR-specific transcription factor) is the first step in a nonconventional
mRNA splicing pathway; the released exons are then joined by tRNA ligase. Because only the
spliced mRNA is translated, splicing is the key regulatory step of the UPR.

Results: We developed methods to search for additional mRNA substrates of Ire1p in three
independent lines of genome-wide analysis. These methods exploited the well characterized
enzymology and genetics of the UPR and the yeast genome sequence in conjunction with
microarray-based detection. Each method successfully identified HAC1 mRNA as a substrate
according to three criteria: HAC1 mRNA is selectively cleaved in vitro by Ire1; the HAC1 mRNA
sequence contains two predicted Ire1 cleavage sites; and HAC1 mRNA is selectively degraded in
tRNA ligase mutant cells.

Conclusion: Within the limits of detection, no other mRNA satisfies any of these criteria,
suggesting that a unique nonconventional mRNA-processing mechanism has evolved solely for
carrying out signal transduction between the ER and the nucleus. The approach described here,
which combines biochemical and genetic 'fractionation' of mRNA with a novel application of cDNA
microarrays, is generally applicable to the study of pathways in which RNA metabolism and
alternative splicing have a regulatory role.

Background
The unfolded protein response (UPR) regulates the protein-
folding and secretory capacity of eukaryotic cells by monitor-
ing conditions within the endoplasmic reticulum (ER) and

regulating a downstream gene-expression program (reviewed
in [1-3]). In yeast, about 5% of the genome is under the tran-
scriptional control of the UPR [4,5]. Induction of this vast set
of genes is thought to lead to a restructuring of the secretory
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pathway to allow an increased protein flux to the cell surface
and enable the cell to tolerate protein-folding stress. Hence,
the UPR adjusts the secretory capacity of cells by feedback
regulation.

The identification and characterization of the UPR signaling
components revealed a unique mechanism of signal trans-
duction whose salient features are conserved among all
eukaryotes. The UPR is initiated when the amino-terminal
portion of the serine/threonine ER-transmembrane kinase
Ire1 detects unfolded proteins within the ER lumen [6,7].
Accumulation of unfolded proteins sequesters chaperones
and thereby allows Ire1 molecules to oligomerize in the plane
of the ER membrane. Oligomerization, in turn, results in
trans-autophosphorylation of the cytosolic kinase domain,
providing the means by which the signal is transmitted across
the ER membrane.

Activated Ire1 acts as a site-specific endoribonuclease, cleav-
ing the mRNA encoding the transcription activator Hac1 at
two discrete positions, and removing a 252-nucleotide non-
classical intron [8,9]. A second enzyme, tRNA ligase (Rlg1),
then joins the severed exons to produce a spliced version of
HAC1 mRNA, termed HAC1i mRNA (i for UPR-induced) [10].
The HAC1 mRNA splicing reaction mediated by Ire1 and Rlg1
is spliceosome-independent, and utilizes chemistry that
closely resembles pre-tRNA splicing [9,11]. As in pre-tRNA
processing, 5' and 3' splice-site cleavage of HAC1 mRNA
occur independently. In contrast, spliceosome-mediated
splicing is a series of two transesterification reactions that
have to be strictly ordered: 3' splice-site cleavage cannot
occur before 5' splice-site cleavage. Intriguingly, this Ire1-
mediated splicing reaction happens on polyribosome-bound
HAC1 mRNA in the cytosol [12,13].

In the unspliced HAC1 mRNA, the intron forms a long-range
base-pairing interaction with the 5' untranslated region
(UTR) that is responsible for preventing its translation
[12,13]. Splicing abolishes translational inhibition, allowing
production of the Hac1 transcription factor and induction of
UPR target genes. Hence, removal of the intron provides a key
regulatory step in the signaling pathway.

The amino-acid sequence of the nuclease region of Ire1
reveals significant similarities to that of RNase L, a mamma-
lian endoribonuclease that is activated by interferon during
viral infection [14,15]. RNase L functions to eliminate
infected cells by nonspecific degradation of cellular RNA.
Mutagenesis analysis maps the endoribonuclease activity of
both proteins to homologous carboxy-terminal domains
[16,17]. The nuclease domains in both proteins are preceded
by kinase domains, and only the oligomerized forms of each
protein appear to be active nucleases. Despite these similari-
ties, the endoribonuclease activity of Ire1 is specific for the
HAC1 mRNA, whereas the nuclease activity of RNase L shows
no sequence specificity. Previously, to demonstrate the

sequence specificity of Ire1, we devised an in vitro assay
which utilized a purified, recombinant Ire1 protein [9]. This
protein, here referred to as Ire1*, is composed of a linker
region (bridging between the membrane anchor of full-length
Ire1 and the cytosolic kinase domain), the kinase domain
itself, and the RNase domain. Ire1* cleaves HAC1 mRNA
faithfully at both 5' and 3' exon-intron junctions and thus
recapitulates the substrate specificity of full-length Ire1 in
vivo. Other RNAs, including actin mRNA and poly(U) RNA,
which has been demonstrated to be an RNase L substrate
[18], are not cleaved by Ire1* [9,16].

In metazoans, multiple parallel pathways originate from the
ER and contribute to the UPR. Two bona fide Ire1 orthologs
IRE1α and IRE1β [19,20] are present in higher eukaryotes. In
addition, a Hac1 ortholog (XBP1) is activated by a similar
nonconventional splicing step that changes the protein's car-
boxy-terminal sequence by introducing a frameshift [21-23].
Another transmembrane kinase, PERK, shares structural
similarity to Ire1 in its ER-luminal unfolded-protein-sensing
domain and is also activated upon accumulation of unfolded
proteins [24,25]. Activated PERK phosphorylates the transla-
tion initiation factor eIF2α, thereby inactivating it. This
branch of the pathway leads to a global repression of transla-
tion, which is thought to lessen the secretory burden on the
ER. In cells with reduced eIF2α activity, mRNAs containing
small open reading frames (ORFs) in their 5' UTRs become
preferentially translated. One such mRNA codes for the tran-
scription factor ATF4, which collaborates with XBP1 to
induce UPR target genes [26]. A third branch of the metazoan
UPR activates the transcription factor ATF6, which is initially
synthesized as an ER transmembrane protein [27,28]. Accu-
mulation of unfolded proteins allows ATF6 to leave the ER
and move to the Golgi compartment, where it encounters pro-
teases that release its cytosolic portion as a soluble protein
[27,29-32], which participates along with XBP1 and ATF4 in
executing the transcriptional program of the UPR [33].

To date, HAC1 mRNA is the only known RNA substrate for
yeast Ire1, prompting the question of whether other substrate
RNAs exist or whether Ire1 and HAC1 mRNA function as a
matched enzyme-substrate pair that interact exclusively with
each other. Here we describe three independent genome-
scale methods that address this question. Each approach suc-
cessfully identifies HAC1 mRNA as a substrate of Ire1; none of
the approaches identifies any other mRNA as a qualified can-
didate. Two of these approaches represent novel applications
of cDNA array technology and could be adapted to the study
of other signal transduction pathways regulated by RNA
processing.

Results and discussion
We first devised a molecular screen to identify mRNAs
cleaved by the Ire1 nuclease (Figure 1). In brief, we isolated a
total poly(A)+ RNA fraction from cells and subjected it to in
Genome Biology 2004, 6:R3
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vitro cleavage reactions in the presence or absence of Ire1*.
Fragments that lost their poly(A)+ tails due to cleavage by
Ire1* were re-isolated, reverse transcribed, fluorescently
labeled and hybridized to genomic cDNA microarrays to iden-
tify Ire1 substrates.

For these experiments, we expressed and purified a recom-
binant Ire1* tagged with glutathione-S-transferase (GST).

The GST moiety was removed during the purification by pro-
tease cleavage. Upon incubation of Ire1* with in vitro tran-
scribed HAC1 mRNA, we observed efficient and accurate
cleavage at both splice junctions as previously described
[9,11].

We optimized reaction conditions such that HAC1 mRNA
contained in a total poly(A)+ RNA fraction from yeast would

Schematic of screen for RNA substrates of Ire1p endoribonuclease using an in vitro nuclease reactionFigure 1
Schematic of screen for RNA substrates of Ire1p endoribonuclease using an in vitro nuclease reaction. Recombinant Ire1* expressed and purified from E. 
coli is incubated with poly(A)+ RNA isolated from wild-type S. cerevisiae to cleave endogenous HAC1 mRNA and other potential RNA substrates of Ire1p. 
Cleaved RNA (lacking the poly(A) tail) is separated from uncleaved RNA as the unbound, poly(A)- fraction from an oligo(dT) column and used to prepare 
fluorescent probe by reverse transcription followed by PCR amplification in the presence of Cy3-dTTP. A second control probe, using poly(A)- RNA from 
mock nuclease reactions (identical reactions except for the lack of Ire1*) is prepared similarly, except that PCR amplification was carried out in the 
presence of Cy5-dTTP. Equal amounts of these probes are mixed and used to probe the yeast DNA microarray. Because RNA fragments generated by 
Ire1* cleavage are represented only in the Cy3 probe, microarray spots hybridizing to cleaved fragments should appear green, whereas microarray spots 
hybridizing to molecules common to both probes should appear yellow upon superimposition of green (Cy3) and red (Cy5) channels.
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be efficiently cleaved, even in the presence of significant
excess of other mRNAs. We incubated total poly(A)+ RNA
with Ire1* and then fractionated the products using oligo(dT)
cellulose (Figure 2). Input RNA and the bound and unbound
fractions of the cleavage reaction were analyzed by Northern
blotting using a HAC1-specific probe covering the 5' exon
(Figure 2, lanes 1-3). Note that HAC1 mRNA present in the
input fraction (Figure 2, lane 1) was efficiently converted to a
faster migrating species corresponding to the released 5' exon
and intron, which, lacking poly(A) tails, were recovered exclu-
sively in the unbound fraction after oligo(dT) chromatogra-
phy (Figure 2, lane 3).

Conversely, analyzing the same RNA fractions with a HAC1
probe directed to the 3' exon, the resulting 3' exon (still con-
taining its poly(A) tail) was recovered exclusively in the
oligo(dT)-bound fraction (Figure 2, lane 5). No significant
levels of uncleaved HAC1 mRNA were detectable after Ire1*
cleavage (Figure 2, lanes 2, 3, 5 and 6).

Using these reaction conditions, we isolated Ire1*-cleaved
RNA fragments from total poly(A)+ RNA, which were recov-
ered in the unbound fraction after oligo(dT) chromatography.
We prepared a mock-treated reference sample using reaction
conditions which were identical except that Ire1* was omit-

Efficient cleavage of HAC1 mRNA by Ire1* in the presence of cellular mRNAFigure 2
Efficient cleavage of HAC1 mRNA by Ire1* in the presence of cellular mRNA. (a) Schematic diagram of the Ire1*-cleaved (poly(A)-) and uncleaved 
(poly(A)+) RNA fractions separated after an in vitro nuclease reaction on yeast poly(A)+ RNA. (b) Northern blot of the RNA fractions indicated in (a) 
probed with a PCR fragment encompassing either the 5' exon of HAC1 (lanes 1-3) or the 3' exon (lanes 4-6). Lanes 1 and 4, yeast poly(A)+ RNA before 
Ire1* cleavage; lanes 2 and 5, bound uncleaved RNA fraction (b, poly(A)+); lanes 3 and 6, unbound cleaved RNA fraction (u, poly(A)-). Positions of 
uncleaved and cleaved HAC1 mRNA are indicated. Note that the 5' exon and 5' exon plus intron, and the 3' exon and 3' exon plus intron RNA species, 
respectively, co-migrate on these agarose gels.
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ted. We reverse-transcribed both samples and fluorescently
labeled the resulting cDNA with Cy3 (Ire1*-treated; green) or
Cy5 (mock-treated; red), respectively. The two probes were

then simultaneously hybridized to yeast microarrays. We
expected that contaminating poly(A)- RNA or uncleaved
poly(A)+ RNA would be equally represented in the oligo(dT)
unbound fractions of both Ire1*-treated and mock-treated
reactions, thus leading to equal representation of both fluo-
rescent probes in the mixture. Indeed, scatter plots generated
by quantitating the fluorescence levels of both Cy3 and Cy5
(Figure 3a) showed that most spots appeared on a tight diag-
onal, having hybridized to roughly equal amounts of both the
Cy3 and Cy5 probes.

We expected those mRNAs that are specifically cleaved by
Ire1* to be enriched in the oligo(dT) unbound fraction of the
Ire1*-treated reaction compared to the unbound fraction of
the mock-treated reaction, resulting in a higher Cy3/Cy5 flu-
orescence ratio in the microarray hybridization. Depletion of
particular mRNAs by Ire1* digestion thus provides an enzy-
mological tool to fractionate substrate from nonsubstrate
mRNAs. We therefore plotted a histogram of the log2 Cy3/Cy5
ratio for all mRNAs (Figure 3b, and see Additional data file 1).
The histogram approximates a tight normal distribution
(mean = 0.06; σ = 0.41) with only one significant outlier: At a
log2 Cy3/C5 ratio of 2.3, HAC1 mRNA falls 5.6σ from the
mean of the distribution, clearly identifying this mRNA as an
Ire1* substrate. Indeed, under these conditions, HAC1 mRNA
is the only substrate for cleavage by Ire1* represented in the
poly(A)+ RNA fraction. As the Ire1 cleavage sites on other
mRNAs could, in principle, be located within the 5' or 3'
UTRs, we also hybridized the same probe to genomic micro-
arrays containing yeast intergenic regions in addition to the
ORFs. Our results were similar to those observed using ORF-
only microarrays, with HAC1 being the only significant outlier
(data not shown).

To exclude the possibility that other potential RNA substrates
might be hiding in the scatter of the data, our second
approach combined the microarray analysis with a bioinfor-
matics approach to search the genome for potential Ire1
cleavage sites. We had previously defined a consensus stem-
loop motif by comparing the two splice sites of HAC1 mRNA
and mutational analysis (Figure 4a) [11]. Both cleavages occur
between the third and fourth nucleotide of a predicted seven-
nucleotide loop bounded by a stem; the first nucleotide of
both loops is a C; the third and sixth nucleotide of both loops
is a G; and the first nucleotide of the 3' leg of the stem is in
both cases a G. The primary and secondary sequence infor-
mation in this consensus is illustrated in Figure 4b. In vitro,
Ire1* can cleave short RNA substrates containing only the 5'
or 3' stem-loop sequences [11]. Mutational studies at nucle-
otide resolution demonstrate that each of the shared primary
and secondary sequence elements is essential for efficient
cleavage.

We computationally searched the yeast genome for the pres-
ence of sequences fitting the consensus stem-loop motif. In
this analysis, we searched ORFs, as well as 1,000 nucleotides

HAC1 is a unique RNA cleaved by Ire1*Figure 3
HAC1 is a unique RNA cleaved by Ire1*. (a) Scatter plot of Cy3 and Cy5 
signal intensities following hybridization to a yeast ORF microarray with 
both Cy3- and Cy5-labeled probes, prepared from the cleaved RNA 
fragments generated from either Ire1* or mock treatment, respectively, as 
described in Figure 1. Each point on the plot represents a single yeast 
ORF. Points below the diagonal represent ORFs that hybridize 
predominantly to RNAs represented in the Cy3 probe. The position of the 
spot displaying the brightest Cy3 signals corresponds to HAC1. (b) 
Histogram representation of the log2 Cy3/Cy5 ratio. Inset, HAC1 is the 
only gene with a log2 Cy3/Cy5 ratio near 2.3. All data displayed in Figure 3 
are provided in Additional data file 1.
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upstream and downstream to include potential stem-loop
motifs in 5' and 3' UTRs. The search yielded a total of 52 hits
(Additional data file 2). In the list of genes identified, only a
single gene, HAC1, contains two predicted stem-loop struc-
tures, consistent with the notion that HAC1 mRNA is the only
Ire1-dependent splicing substrate in yeast cells.

For the remaining 52 predicted stem-loop structures, the pos-
sibility remained open that Ire1 would cleave some substrates
at only a single site, perhaps to downregulate particular
mRNAs. However, in the light of the data obtained from the
microarray analysis described in Figure 3 we consider this
possibility unlikely. We would have expected to see the 5'
fragments resulting from such cleavage events in the
oligo(dT) unbound fraction of Ire1*-treated poly(A)- mRNA,
resulting in high outlying Cy3/Cy5 ratios; however, none of
the genes predicted to bear single HAC1 splice consensus
sequences fell more than 3σ from the mean of the distribution
(that is, none fell outside a 99% confidence interval). Because
previous in vitro analyses have shown that stem-loop struc-
tures matching the consensus are sufficient for cleavage, we
consider it most likely that the predicted stem-loop structures
are either not included in the transcripts or do not fold as pre-
dicted in the context of the full mRNA sequences.

In a third genome-scale approach, we exploited the pheno-
type of a mutant in tRNA ligase that is defective in UPR induc-
tion [10]. Characterization of this mutant, rlg1-100,
previously showed that Ire1-dependent cleavage of HAC1

mRNA occurs normally in the absence of ligation, but that the
cleavage products are rapidly degraded. We assume that any
other mRNA following this pathway should suffer the same
fate, and that we could identify substrates of Ire1 by looking
for mRNAs whose steady-state levels drop upon UPR induc-
tion in the rlg1-100 mutant, but not in a wild-type cell. The
Ire1-dependent selective disappearance of HAC1 mRNA in
rlg1-100 cells thus provides us with a tool to assess the spec-
trum of mRNAs that utilize the Ire1-mediated splicing
pathway.

We treated rlg1-100 cells with either tunicamycin (to induce
the UPR by inhibition of N-linked glycosylation in the ER) or
with no drug as a control, isolated total mRNA, reverse tran-
scribed and fluorescently labeled the cDNA with Cy5 (for the
tunicamycin-treated sample) and Cy3 (for the untreated sam-
ple) before simultaneous hybridization to genomic microar-
rays. mRNAs which are depleted during tunicamycin
treatment should have Cy3/Cy5 ratios greater than 1 (log2

Cy3/Cy5 ratios greater than 0). As shown by the data in Fig-
ure 5, the steady-state levels of most mRNAs remain
unchanged upon tunicamycin treatment (Figure 5a, and
Additional data file 3). As before, a histogram of the log2 Cy3/
Cy5 ratios followed a tight quasi-normal distribution (mean =
0.11, σ = 0.27) with a single outlier. HAC1, at a log2 Cy3/5
ratio of 1.5, HAC1 falls 5σ from the mean, and is thus success-
fully identified as a splicing target of the UPR. Once again, no
other mRNA clearly satisfied the criteria for identification as
an Ire1 substrate. The depletion of HAC1 mRNA upon tuni-
camycin treatment was specific to rlg1-100 cells. A similar
analysis of wild-type cells showed the expected induction of
UPR target genes and no depletion of HAC1 mRNA relative to
an untreated control (data not shown). Thus, HAC1 mRNA
again stands out as the unique substrate for Ire1-dependent
cleavage in yeast.

Conclusions
The experiments presented in this paper represent three
genome-scale approaches for identifying mRNA substrates of
the Ire1-dependent mRNA splicing pathway in yeast. Each
approach successfully and selectively identifies the HAC1
mRNA as a target of Ire1 nuclease. In vitro cleavage of
mRNAs by Ire1*, followed by microarray detection of the frac-
tionated mRNAs, identifies HAC1 mRNA as significantly
enriched in the population of mRNAs specifically cleaved by
Ire1. A computational search for the experimentally deter-
mined Ire1 consensus cleavage sites identifies HAC1 as the
unique gene containing two such sequences. Finally, in vivo
induction of splicing in a cell containing wild-type tRNA
ligase or the mutant rlg1-100, and subsequent microarray
detection of 'genetically fractionated' mRNAs, identifies
HAC1 as selectively depleted in the absence of the wild-type
ligase. No other mRNA met any of these criteria for identifi-
cation as an Ire1 substrate. We consider it reasonable to

HAC1 stem-loop motif used for the genome wide computational consensus searchFigure 4
HAC1 stem-loop motif used for the genome wide computational 
consensus search. (a) Predicted secondary structure and sequence 
flanking both 5' and 3' Ire1p cleavage sites in HAC1 mRNA. Cleavage 
occurs after a G residue located at the third position of the seven-
nucleotide loop. (b) Parameters used for the computer search. A four 
base-pair stem with a seven-nucleotide loop with C at the first position, 
and G both at third and sixth positions, are determined experimentally as 
described previously [14]. Possible base-pairs (N = N') in the stem include 
AU, UA, GC, CG, UG, GU. The complete output of the computational 
screen is listed in Additional data file 2.
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conclude that among the set of robustly expressed genes,
HAC1 mRNA is the lone substrate of Ire1.

In principle, there are many reasons why each of the
approaches presented here could have missed identifying an
Ire1 substrate other than HAC1 mRNA. For example, a poorly
expressed substrate would exhibit a low signal-to-noise ratio
in the microarray readout of the in vitro cleavage assay, or a
substrate cleaved close to the 5' end would still hybridize to
cDNA arrays with an efficiency comparable to that of the
uncleaved mRNA, and hence could have escaped detection. In
our computational screen, we might have missed cleavage
sites that are significantly divergent from the experimentally
defined consensus. Finally, because tRNA ligase would not
take part in a cleavage-only reaction on a single-site sub-
strate, we would also not expect our third method to lead to a
relative reduction of the abundance of such mRNAs in rlg1-
100 mutant cells as compared to the wild-type (though we
would have expected such substrates to be identified in the in
vitro Ire1* cleavage experiment). Thus rigorously, we cannot
conclude that HAC1 mRNA is the only Ire1 substrate. How-
ever, because the potential caveats are noncongruent and
because HAC1 stands out unambiguously in each of the three
methods applied, we consider it highly unlikely that addi-
tional substrates exist.

Previous studies in metazoans have suggested that other
RNAs are degraded when Ire1 is activated [17,34]. When
overexpressed, wild-type IRE1α mRNA accumulated at levels
that were greatly reduced compared to those in which an
RNase-dead mutant was overexpressed, raising the possibil-
ity that Ire1 might downregulate its own mRNA by degrada-
tion. Similarly, overexpression of IRE1β appeared to cause
fragmentation of 28S rRNA. In both cases, however, no Ire1
cleavage consensus stem-loop structures were found. It
therefore remains questionable at this time whether these
degradation events are directly due to cleavage by Ire1 itself
or to indirect secondary effects.

According to the current evidence, therefore, Ire1 has a single
identified target in yeast and thus functions solely for the pur-
pose of post-transcriptional regulation of HAC1. In contrast,
other signaling pathways in the cell are commonly branched,
using one enzyme to activate multiple different substrates.
The utilization of common principles of protein modification,
such as phosphorylation or ubiquitination, readily allows
cross-talk among different signaling pathways that use
common components. One phosphatase, for example, can
dephosphorylate substrates that have been phosphorylated
by several different kinases. In contrast, communication
between the ER and nucleus through Ire1 appears to be a very
private affair. Ire1-dependent splicing offers unique mecha-
nistic advantages, such as the ability to quickly complete the
synthesis of partially made Hac1 transcription factor by
releasing the translational arrest of stalled polyribosomes.
Given that the ER is a topologically distinct compartment of

HAC1 is the only transcript decreasing in rlg1-100 cells following tunicamycin treatmentFigure 5
HAC1 is the only transcript decreasing in rlg1-100 cells following 
tunicamycin treatment. (a) Scatter plot of Cy3 and Cy5 signal intensities 
following hybridization to a yeast ORF microarray with both Cy3- and 
Cy5-labeled probes, prepared from RNA isolated from rlg1-100 cells 
either untreated or treated with tunicamycin for 40 min, respectively. 
Points below the diagonal represent ORFs that hybridize predominantly to 
RNAs represented in the Cy3 probe, and which are therefore present at 
reduced levels upon tunicamycin treatment. The position of the spot 
displaying the brightest Cy3 signals (corresponding to the HAC1) is shown. 
(b) Histogram presentation of microarray data measuring log2 of the 
relative mRNA abundance between tunicamycin treated (40 min) and 
untreated rlg1-100 cells. Levels of most mRNAs were not altered, and the 
only mRNA significantly changed upon tunicamycin treatment is HAC1. 
Inset, HAC1 is the only gene with a log2 fold-change in abundance near 1.5. 
All data displayed in Figure 5 are provided in Additional data file 3.
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the cell with metabolic considerations quite distinct from
those of the cytosol, a communication route that is wired dif-
ferently and therefore more insulated from other informa-
tional 'chatter' in the cell may be particularly beneficial in the
secure passage of information from the ER to the nucleus.

The linear connectivity (activation of Ire1 → production of
Hac1) of the two key players of the yeast UPR is supported by
genetic analysis. Both ∆ire1 and ∆hac1 mutant cells display
indistinguishable growth phenotypes and highly correlated
gene-expression profiles [4]. In higher eukaryotes, signaling
through the UPR is more complex, with multiple ER-proxi-
mal components each activating distinct downstream targets.
Metazoan Ire1 exists as two isoforms (Ire1α and Ire1β)
[20,35]; in addition, the transmembrane kinase PERK is acti-
vated and the membrane-tethered transcription factors
ATF6α and ATF6β are released when unfolded proteins accu-
mulate in the ER [27,36]. The diversity of these signaling
components varies widely between different tissues, and the
relative contribution of each of the parallel pathways to the
induction of the downstream transcriptional program is cur-
rently the subject of intense study. Given this increased com-
plexity, it is possible that there are other metazoan Ire1
splicing substrates in addition to the HAC1 ortholog XBP1,
and the methods developed here may prove useful in search-
ing for such putative, additional Ire1 substrates in metazoans.

Materials and methods
RNA isolation
RNA samples were prepared as described previously [6].
Briefly, yeast cells were grown to mid-log phase in selective
media. rlg1-100 cells were treated with 1 µg/ml tunicamycin
(Calbiochem) for 40 min in the experiments described in Fig-
ure 5. Total RNA was isolated in SDS-high salt buffer by hot
phenol extraction. For the microarray experiments described
in Figures 3 and 5, poly(A)+ RNA was isolated from total RNA
using the PolyA+ Tract mRNA isolation system (Promega)
according to the manufacturer's instructions. Poly(A)+ RNA
used for in vitro Ire1* nuclease reactions was prepared by two
rounds of purification using the PolyA+ Tract system.

Northern blot analysis
Total cellular RNA and RNA recovered from in vitro nuclease
reactions was analyzed by Northern blot hybridization as
described previously [8] by separation on 1.5% agarose gels
containing 6.7% formaldehyde. Hybridization probes were
generated by random labeling of PCR fragments using [32P]α-
dCTP according to the manufacturer's instructions (Amer-
sham). All probes prepared from DNA fragments were gener-
ated by PCR amplification of yeast genomic DNA.

In vitro Ire1* nuclease reaction
In vitro nuclease reactions were performed by incubating
yeast poly(A)+ RNA with recombinant Ire1* (expressed and
purified from Escherichia coli) as described previously [9,11].

Following phenol/chloroform extraction, the reaction mix-
ture was fractionated on oligo(dT) magnetic beads using the
PolyA+ Tract mRNA Isolation System (Promega) according to
the manufacturer's instructions. Control nuclease reactions
were performed and processed identically, except that Ire1*
was omitted from the reaction mixture.

Microarray hybridization of amino-allyl coupled cDNA 
probe
General protocols for microarray hybridization and for prep-
aration of probe were as described previously [37]. A sample
of oligo(dT) unbound RNA was reverse transcribed with
StrataScript (Stratagene) using random primer A (5' GGTTC-
CCAGTCACGATCNNNNNNNNN 3', where N is any nucle-
otide) followed by addition of Sequenase to synthesize the
second strand. The resulting double-stranded cDNA above
was amplified in the polymerase chain reaction (PCR) (20
cycles) using primer B (5' GGTTCCCAGTCACGATC 3') com-
plimentary to the specific sequence portion of primer A. This
extra PCR amplification step was added because of the low
abundance of Ire1*-cleaved RNA fragments. After ethanol
precipitation, one fourth of these PCR reactions was used to
re-PCR in the presence of fluorescently labeled nucleotides
(either Cy3 or Cy5 dTTP). The resulting Cy3- and Cy5-labeled
probes were combined. Unreacted fluorescent dye was
quenched. Probes were cleaned up in a QIA-quick PCR puri-
fication spin column and hybridized at 50°C for 24 h to glass
slide microarrays containing the entire yeast genome. Syn-
thesis of the cDNA for poly(A)+ RNA (2 µg) used for the exper-
iment in Figure 5 was carried out by reverse transcription in
the presence of aminoallyl-dUTP at 42°C for 2 h. cDNA pre-
pared from untreated cells was coupled with Cy3, and cDNA
prepared from tunicamycin-treated cells was labeled with
Cy5.

Data analysis
Hybridized microarrays were scanned with a GenePix 4000A
microarray scanner (Axon Instruments). GenePix Pro was
used to analyze and to display the data. All data points with
absolute fluorescence intensity less than 250 in either chan-
nel were discarded. Cy3 and Cy5 fluorescence intensities were
normalized against one another to adjust for differences in
labeling efficiency and scanner gain. Quantitative analysis
was performed in Microsoft Excel.

Stem-loop consensus search
Pattern searching was performed using the public-domain
software scan_for_matches [38]. Sequence file input was a
database of all yeast ORFs ± 1,000 nucleotides obtained from
the Saccharomyces Genome Database [39]. Pattern file input
was

r1 = {au,ua,gc,cg,ug,gu}

RNA base-pairing rules were used; allowed base-pairs are the
fields of argument r1.
Genome Biology 2004, 6:R3
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These parameters instructed the program to use RNA base-
pairing rules to find a sequence of four nucleotides (one arm
of stem), followed by a sequence matching YCNGNNGNG
(where Y is pyrimidine; the seven-nucleotide loop flanked the
conserved closing nucleotide pair), followed by the reverse
complement of the four nucleotides at the beginning (the sec-
ond arm of the stem). The output of the computational screen
is listed in Additional data file 2.

Additional data files
The following additional data are available with the online
version of this paper. Additional data file 1 contains supple-
mentary Table 1 which lists all the data displayed in Figure 3;
Additional data file 2 contains supplementary Table 2, which
lists the complete output of the computational screen; Addi-
tional data file 3 contains supplementary Table 3 which lists
all data displayed in Figure 5. Additional data file 4 is a Word
file containing the captions and keys to the tables.
Additional data file 1Supplementary Table 1 which lists all the data displayed in Figure 3Supplementary Table 1 which lists all the data displayed in Figure 3Click here for additional data fileAdditional data file 2Supplementary Table 2, which lists the complete output of the com-putational screenSupplementary Table 2, which lists the complete output of the com-putational screenClick here for additional data fileAdditional data file 3Supplementary Table 3 which lists all data displayed in Figure 5Supplementary Table 3 which lists all data displayed in Figure 5Click here for additional data fileAdditional data file 4The captions and keys to the supplementary tablesThe captions and keys to the supplementary tablesClick here for additional data file
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