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Article

Overcome Competitive Exclusion in Ecosystems
Xin Wang1,2 and Yang-Yu Liu1,3,4,*

SUMMARY

Explaining biodiversity in nature is a fundamental problem in ecology. An outstanding challenge is

embodied in the so-called Competitive Exclusion Principle: two species competing for one limiting

resource cannot coexist at constant population densities, or more generally, the number of consumer

species in steady coexistence cannot exceed that of resources. The fact that competitive exclusion is

rarely observed in natural ecosystems has not been fully understood. Here we show that, by forming

chasing pairs and chasing triplets among the consumers and resources in the consumption process, the

Competitive Exclusion Principle can be naturally violated. The modeling framework developed here is

broadly applicable and can be used to explain the biodiversity ofmany consumer-resource ecosystems

and hence deepens our understanding of biodiversity in nature.

INTRODUCTION

In Darwin’s theory of evolution, survival of the fittest, i.e., the less competitive species die out, implicating the

notionof competitionexclusion (Darwin, 1859). In1928, Volterra illustratedmathematically thatwhen two species

compete for a single resource, onemust die out unless the hunting to death rate ratio is exactly the same for the

two competing species (Volterra, 1928). Those results were absorbed in the famous Competition Exclusion Prin-

ciple (CEP) (Hardin, 1960; Gause, 1934; Armstrong and McGehee, 1980), also named as Gause’s law (Gause,

1934): two species competing for one type of resource cannot coexist at steady state. In the 1960s, MacArthur

and Levins extended this principle to ecosystems with arbitrary number of resource species (MacArthur and

Levins, 1964; Levin, 1970; McGehee and Armstrong, 1977). Consider M types of consumer species competing

for N types of resources. Each consumer can feed on one or multiple types of resources. Consumers do not

directly interact with each other via other mechanisms except competing for the resources. According to the

CEP (MacArthur and Levins, 1964; Levin, 1970; McGehee and Armstrong, 1977), at steady state the number of

coexisting species of consumers cannot exceed that of resources, i.e.,M%N (see also Figure S1).

The classical proof (MacArthur and Levins, 1964; Levin, 1970; McGehee and Armstrong, 1977) of the CEP is

demonstrated in Figure 1. Consider the simplest case:M = 2 and N = 1, i.e., two consumer species C1 and

C2 compete for one type of resource R (Figure 1A). The generic population dynamics of this consumer-

resource system can be described as follows:

�
$ Ci =CiðfiðRÞ �DiÞ; i = 1;2;

R
$

=gðR;C1;C2Þ:
(Equation 1)

Here fi and g are unspecified functions,Di stands for mortality rate of the consumerCi. At steady state, if the

two consumer species coexist, we have fiðRÞ = Di , i = 1, 2. This requires that the two curves y = f1ðRÞ=D1 and

y = f2ðRÞ=D2 should cross the line y = 1 at the same point, which is typically impossible (Figure 1B), unless the

model parameters satisfy certain constraint (with Lebesgue measure zero, see Figure S2B). Hence, gener-

ically the two consumer species cannot coexist at steady state (Figure 1C). In the case ofM = 3, N = 2, the

general population dynamics of the system can be written as

�
$ Ci =CiðfiðR1;R2Þ �DiÞ; i = 1;2;3;
$ Rj =gjðR1;R2;C1;C2;C3Þ; j = 1;2:

(Equation 2)

Here fi and gj are unspecified functions. Similar proof strategy used in the case of M = 2 and N= 1 can be

applied here (see Figures 1D–1F and S2A), or more complicated cases with any positive N and M (MacAr-

thur and Levins, 1964).

Interestingly, an astonishing level of biodiversity has been witnessed in most natural ecosystems. In aquatic

biology, Hutchinson first proposed the paradox of the plankton: a limited number of resource types supports

an unexpectedly large number of plankton species (Hutchinson, 1961). In tropical rainforests, one gram of soil

contains a spectacular 2,000 to 18,000 distinct microbial genomes (Daniel, 2005). The vast diversity of microbial
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species plays an important role in the biogeochemical nutrient cycling of our planet. Yet, how could this biodi-

versity naturally emerge and sustain? Explaining biodiversity is a great challenge in ecology. In the past five de-

cades, many mechanisms have been proposed to overcome the limitation on biodiversity set by CEP. Some

argued that ecosystem never approaches steady state due to temporal (Hutchinson, 1961; Levins, 1979; Des-

camps-Julien andGonzalez, 2005) or spatial factors (Levin, 1974; Richerson et al., 1970) or species self-organized

dynamics (Koch, 1974; Huisman andWeissing, 1999; Benincà et al., 2008). Some considered special cases when

the system parameters satisfy certain constraints (Volterra, 1928). The rest considered aspects such as cross-

feeding (Turner et al., 1996; Goyal and Maslov, 2018; Goldford et al., 2018), toxin (Czárán et al., 2002), rock-pa-

per-scissors relation (Kerr et al., 2002; Kelsic et al., 2015; Grilli et al., 2017), predator interference (Skalski andGil-

liam, 2001; Beddington, 1975; Crowley andMartin, 1989; DeAngelis et al., 1975; Kuang et al., 2003), complex in-

teractions (Kelsic et al., 2015; Bairey et al., 2016; Grilli et al., 2017), metabolic trade-off (Posfai et al., 2017), or co-

evolution (Xue and Goldenfeld, 2017) (see Supplemental Information Sec.II.A for details).

Many of the mechanisms mentioned above are broadly relevant to promote biodiversity in nature. In the

context of CEP itself, here we present a mechanism that considers the details of the consumption process.

Specifically, consumer and resource species can form a chasing pair when an individual consumer is chasing

an individual resource, whereas they form a chasing triplet when two individuals of consumer chase an in-

dividual resource simultaneously. We find that forming chasing pairs and chasing triplets among the

consumers and resources can naturally break the CEP and hence facilitate biodiversity.

0

0.2

0

0.4

0.6

0.8

0.5 0.80.60.40.21 0

Resources Consumers

E
Resources Consumers

A

D

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0CB

1

0

F

Figure 1. Classical proof of the Competitive Exclusion Principle

(A) The scenario of two consumer species (M = 2) and one resource species (N = 1). The green arrows denote the biomass flow among the consumption

relationships.

(B) At steady state, if the two consumer species coexist, then according to Equation 1, fiðRÞ=Di = 1 (i = 1, 2). This requires that the following three lines y =

fiðRÞ=Di (i = 1, 2) and y = 1 intersect at a single point, which normally cannot happen.

(C) Representative trajectories of the two consumer species, which cannot coexist at steady state when N = 1. Here fiðRÞ=aR (i = 1, 2);

gðR;C1;C2Þ=Rðrð0Þ �bð0ÞR�bð1ÞC1 �bð2ÞC2Þ See Table S1 for simulation details.

(D) The scenario of three consumer species (M = 3) and two resource species (N = 2). Predation or other interactions are forbidden among consumers but

allowed (denoted by gray arrows) among resources.

(E) If the three consumer species coexist at steady state, then according to Equation 2, fiðR1;R2Þ=Di (i = 1, 2, 3). Generically, three curves would not intersect

at exactly the same point, hence the three consumer species cannot coexist at steady state.

(F) Representative trajectories of the three consumer species, which cannot all coexist at steady state (see Figure S2A for the case that two of the three

consumer species coexist). Here fiðR1;R2Þ=a
ð1Þ
i R1 +a

ð2Þ
i R2 (i = 1, 2, 3); gjðR1;R2;C1;C2;C3Þ=Rjðrð0Þj �b

ð0Þ
j Rj �b

ð1Þ
j C1 �b

ð2Þ
j C2 �b

ð3Þ
j C3Þ (j = 1, 2).

See Table S1 for simulation details. See also Figures S1 and S2.

2 iScience 23, 101009, April 24, 2020



RESULTS

Consumption Process with Chasing Pairs

We realize that none of the previous studies explicitly considered the detailed consumption process.

Although the timescale of the consumption process is generally much faster than that of the birth and death

processes, it can have remarkable impact on the population dynamics (see Supplemental Information

Sec.III.B for details). Hence, in our modeling framework, we explicitly consider the consumption process

between the consumers and resources (see Figure S3A). The consumers are biotic (i.e., living organisms),

whereas the resources can be either biotic or abiotic (i.e., supplied nutrients that are not alive). First, we

consider the case that both consumer species and resource species are biotic, and for simplicity we assume

both species are motile. Then we can explicitly consider the population structure of consumers and re-

sources: some are wandering around freely; some are chasing each other. When a consumer encounters

a resource with rate a, they form a chasing pair, denoted as RðPÞnCðPÞ, where the superscript ‘‘P’’ stands

for ‘‘pair.’’ The resource can either ‘‘escape’’ with rate d or be caught and consumed by the consumer

with rate k. For abiotic resources, they cannot actively escape from the consumers, yet they may passively

‘‘escape’’ owing to environmental factors. In this case, the ‘‘escape’’ rate corresponds to that the consumer

fails to capture the resource in a chasing pair, which is analogous to a non-effective collision in chemical

reactions. Such a consumption kinetics commonly takes the Michaelis-Menten form:

kC R
R +K, with Khd + k

a , which corresponds to the Holling’s type-II functional response (Holling, 1959) in ecol-

ogy and is widely adopted in consumer-resource models (Koch, 1974; Momeni et al., 2017). This form, in

fact, agrees with the growth rate function in the classical proof (MacArthur and Levins, 1964; Levin, 1970;

McGehee and Armstrong, 1977), where f ðRÞ=wk R
R +K and w is a biomass conversion ratio constant (see

Supplemental Information Sec.III.B for details). Nevertheless, the Michaelis-Menten kinetics is a good

approximation only if the resource population is much larger than the consumer population, i.e., R[

C.When this condition is not satisfied, the growth rate function follows f ðR;CÞ (Liu et al., 2015) rather

than f ðRÞ (see Supplemental Information Sec.III.A for details). The C-dependency in the growth rate func-

tion invalidates the classical proof (MacArthur and Levins, 1964; Levin, 1970; McGehee and Armstrong,

1977), implying a potential mechanism to break the CEP. Actually, existing mechanisms involving predator

interference (Skalski andGilliam, 2001; Beddington, 1975; Crowley andMartin, 1989; DeAngelis et al., 1975)

or ratio-dependent predation (Arditi and Ginzburg, 1989; Abrams and Ginzburg, 2000) also have C-depen-

dency in the growth rate function or functional response.

Forming Chasing Pairs Still Cannot Break the CEP

Interestingly, we find that the presence of chasing pair and the C-dependent growth rate functions are still

not enough to break the CEP. For example, in caseM = 2 andN= 1 (Figure 2A), the population dynamics of

the system can be described as follows:

8>><
>>:

$ xi = aiR
ðFÞCðFÞ

i � ðdi + kiÞxi;
$ Ci =wikixi �DiCi;

R
$

=gðR; x1; x2;C1;C2Þ;
(Equation 3)

with i = 1, 2. Here consumers and resources that are freely wandering around are denoted as C
ðFÞ
i and RðFÞ,

respectively, where the superscript ‘‘F’’ stands for ‘‘freely wandering.’’ The variable xihRðPÞnC
ðPÞ
i repre-

sents the chasing pair, ai is the encounter rate between a consumer Ci and a resource to form a chasing

pair xi , di is the ‘‘escape’’ rate of a resource out of a chasing pair xi , and ki is the capture rate of consumer

Ci in a chasing pair xi. If the two consumers can coexist, we prove that the steady-state equations yield

fiðRðFÞÞ=Di = 1, with fiðRðFÞÞh RðFÞ
RðFÞ +Ki

and Kih
di + ki
ai

(see Supplemental Information Sec.IV for details), which

corresponds to parallel planes in the ðC1;C2;R
ðFÞÞ coordinate system (Figure S3C), rendering coexistence

impossible (Figures 2C, 2E, and S3, see Supplemental Information Sec.IV-V for details).

Consumption Process with Chasing Triplets

Pack hunting is prevalent across different organisms in the wild (Creel and Creel, 1995; Muro et al., 2011;

Geisen et al., 2015; Merron, 1993; Stander, 1992; Boesch, 1994; Bshary et al., 2006; Vail et al., 2013;

Berleman and Kirby, 2009; Seccareccia et al., 2015). Intraspecific pack hunting is very general and

commonly occurs, whereas interspecific pack hunting has also been reported for a handful of species

(Bshary et al., 2006; Vail et al., 2013). This means that two or more consumer individuals can chase the

iScience 23, 101009, April 24, 2020 3



same resource individual simultaneously. To take this into account, we revisit the consumption process and

naturally extend the idea of chasing pair to chasing triplet, i.e., two consumers (within the same or from

different species) can chase the same resource (Figures 2B and S4). For intraspecific pack hunting, in

caseM = 2 andN = 1, a consumer Ci can join an existing chasing pair xihRðPÞnC
ðPÞ
i to form a chasing triplet

yihC
ðTÞ
i nRðTÞnC

ðTÞ
i (Figure 2B, in combination with Figure 2A, denoted as P-T Model), where the super-

script ‘‘T’’ stands for ‘‘triplet.’’ The population of consumers and resources consists of freely wandering in-

dividuals (C
ðFÞ
i , RðFÞ) and those involved in a chasing pair (xi ) or triplet (yi). Mathematically, they are given by

Ci =C
ðFÞ
i + xi + 2yi (i = 1, 2) and R = RðFÞ +

P2
i = 1

ðxi + yiÞ, respectively. The population dynamics of the system

can be described as follows:

8>>>>>><
>>>>>>:

$ xi = aiR
ðFÞCðFÞ

i � ðdi + kiÞxi � bixiC
ðFÞ
i + eiyi;

$ yi =bixiC
ðFÞ
i � ðhi + ei + liÞyi;

$ Ci =wiðkixi + hiyiÞ �DiCi;

R
$

=gðR; x1; x2; y1; y2;C1;C2Þ;

(Equation 4)

with i = 1, 2. Here bi is the encounter rate between a consumer Ci and an existing chasing pair xi to form a

chasing triplet yi; ei and li are the escape rates of a consumer Ci out of a chasing triplet yi (Figure 2B). Con-

sumer speciesCi can capture resourceR either froma chasingpair xiwith rate ki or froma triplet yi with rate hi .

Forming Both Chasing Pairs and Chasing Triplets Can Break the CEP

In Equation 4, the explicit form of function gðR; x1; x2; y1; y2;C1;C2Þ is not specified. We assume that the dy-

namics of the resources follow the same construction principle as that in the classical MacArthur’s con-

sumer-resource model (MacArthur, 1970; Chesson, 1990). Then,
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Figure 2. Modeling the Consumption Process between Consumers and Resources Explicitly May Naturally Break

the CEP

For simplicity, we consider the case of two consumer species (M = 2) and one biotic resource species (N = 1, see Figures

S5C and S5D for the case of abiotic resource species).

(A) Formation of a chasing pair between a consumer and a resource.

(B) Formation of a chasing triplet among two consumers of the same species and a resource. We denote the scenario

combining chasing pair (A) and triplet (B) as P-T Model.

(C and E) Time courses of the species abundances involving only chasing pair. (C) Consumer species cannot coexist at

steady state. (E) Only one type of consumer species exists for long, the oscillating dynamics resembles that of the classical

predator-prey models (May, 1972).

(D and F) Time courses of the species abundances in P-T Model with the presence of chasing pairs and chasing triplet.

Both consumer species can coexist at steady state. The dotted lines in (F) are the steady-state analytical solutions (labeled

with superscript ‘‘Analytical’’) calculated in Equations S30–S32. (C) and (E) were simulated from Equation 3, where g =

RR0ð1 � R =K0Þ� ðk1x1 + k2x2Þ. (D) and (F) were simulated from Equations 4 and 5.

See Table S1 for simulation details. See also Figures S3–S10.
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Figure 3. Coexistence of Two Consumer Species (M = 2) and One Resource Species (N = 1) within the P-T Model

(A–D) Different types of coexistence trajectories in the state space. (A) Abiotic resource case, the coexistence state (green

dot) is globally attracting. (B–D) Biotic resource cases, green dot marks the fixed point. (B), (C) The coexistence state is

globally attracting. (D) The coexistence state is unstable; all trajectories attract to a stable limit cycle.

(E–H) Stable coexistence region in the P-TModel.Di (i = 1, 2) is the only different parameter between consumer speciesC1

and C2, and DhðD1 �D2Þ=D2, the relative difference in mortality rate, measures the competitive differences between the

two consumer species. d in (E) and (F) is a dimensionless multiplier that to tune the capture rate and escape rate
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gðR; x1; x2; y1; y2;C1;C2Þ =

8>><
>>:

RR0ð1� R=K0Þ � ðk1x1 + k2x2Þ � ðh1y1 + h2y2Þ;
for biotic resources:

Rað1� R=K0Þ � ðk1x1 + k2x2Þ � ðh1y1 + h2y2Þ;
for abiotic resources:

(Equation 5)

Biotic resources take logistic population growth in the absence of consumers, hence R0 represents the

intrinsic growth rate (with dimension 1/time) and K0 represents the carrying capacity. Abiotic resources

are supplied externally, then Ra stands for the external resource supply rate (with dimension mass/time)

and K0 is the steady state resource abundance in the absence of consumers.

Using dimensional analysis, we make all parameters dimensionless (see Supplemental Information Sec.VII

for details). For convenience, below we still use the same parameter notations, yet they are all dimension-

less. Actually, K0 and D2 are two reducible parameters (see Supplemental Information Sec.VII for details);

for convenience, we set K0 = 10 and D2 = 0:005 for biotic resource cases, whereas K0 = 5 and D2 = 0:004 for

abiotic resource cases. In the numerical simulations of the P-T Model (Figures 2A and 2B), we find that two

consumer species can achieve steady coexistence when there is only one type of resource (Figures 2D, 2F,

and S5D), which naturally breaks the CEP.

When the abundance of resources are much larger than that of consumers (i.e., R[C1;C2), which generally

hold in most natural ecosystems, the steady-state population of the consumer species and resource spe-

cies can be analytically calculated (see Supplemental Information Sec.V.B for details). In Figures 2F and S6,

we show that the steady-state analytical results of both biotic and abiotic resource cases agree well with

numerical results.

Interestingly, there are several types of coexistence trajectories in phase space within the scenario of P-T

Model, which involves chasing pair and triplet formed between consumers of the same species. When the

resource is abiotic, there is only one type of behavior: the coexistence state is globally attracting as long as

the initial abundances of these species are non-zero, as shown in Figure 3A. However, in the case that the

resource is biotic, the coexistence state can be either globally attracting (Figures 3B and 3C) or unstable,

leading to a limit cycle (Figure 3D) (see Figure S5B for the oscillating coexistence in time series). In some

cases, the oscillations damps, and ends in the globally attracting fixed point, as shown in Figure 3B.

We further considered scenarios involving interspecific group (Bshary et al., 2006; Vail et al., 2013), specif-

ically, two variants of the P-T Model, where the chasing triplet is formed between different species of

consumers (Figure S4A) or either between the same or different species (Figure S4B). In both Variants,

two consumer species can coexist either steadily (Figures S7A and S7C) or with sustained oscillations (Fig-

ures S7B and S7D) when there is only one type of resource species (see Supplemental Information Sec.V.C

for details).

To verify that our findings are not due to accidental model parameters, we systematically studied the

parameter space for stably steady coexistence. We found that, for both the P-T Model and its two variants,

regardless of biotic or abiotic resources, there exists a non-zero parameter space where the two consumer

species can stably steadily coexist with one type of resource species (see Figures 3E–3H and S8 and Sup-

plemental Information Sec.V.D for details), demonstrating that the violation of CEP is not due to a special

set of model parameters. Note that the violation of CEP in the case of N= 1 actually implies that it will be

violated for more general cases with N>1 (see Supplemental Information Sec.VI for details).

Intuitive Explanation of Why Forming Chasing Pairs and Chasing Triplets Can Break the CEP

A simple explanation is that a resource within a chasing pair can be effectively regarded as another species

when forming a chasing triplet (e.g., R within RðPÞnCðPÞ in Figure 2B), although in essence, they still remain

Figure 3. Continued

parameters for the two-consumer species in each scenario. h in (G) and (H) is a dimensionless multiplier that to tune hi

(i = 1,2), the capture rate in the chasing triplet for the two consumer species. The regions below the blue surface and

above the red surface are stable coexistence region, whereas the regions below the red surface and above D= 0 are

the regions for unstable fixed point, where trajectories typically end in a limit cycle (see also Figure S8 and

Supplemental Information Sec.V.D). (E) and (G) Biotic resource cases. (F) and (H) Abiotic resource cases. (A)–(D) were

simulated from Equations 4 and 5. (E)–(H) were calculated from Equations 4 and 5.

See Table S1 for simulation and calculation details. See also Figure S8.
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the same identity. In the P-T Model, consumer species Ci can get resource R in two ways, potentially with

different effective capture rates in a chasing pair or a chasing triplet. As a rough estimate, the resource

abundance in a chasing pair (RðPÞnC
ðPÞ
i ) is proportional to RCi , whereas in a chasing triplet

(C
ðTÞ
i nRðTÞnC

ðTÞ
i ) it is proportional to RC2

i . Here R and Ci are the total populations of resource R and con-

sumer Ci , respectively. Thus, when Ci becomes higher, it obtains a higher fraction of resource from a

chasing triplet. If the effective capture rate in a chasing triplet is lower than that in a chasing pair, implying

a wasteful or redundant foraging, then this gives rise to an auto-suppression on the intraspecific growth

rate, which can facilitate species coexistence (Chesson, 2000). Without loss of generality, let’s assume

thatC2 is more competitive thanC1, in obtaining the resource from either a chasing pair or triplet; however,

C1 can be more effective in obtaining the resource from chasing pair RðPÞnC
ðPÞ
1 than C2 from chasing triplet

C
ðTÞ
2 nRðTÞnC

ðTÞ
2 owing to redundant foraging. When the population of C2 is larger than that of C1, higher

fraction of C2 is involved in the less effective chasing triplet foraging, which may lead to an overall balanced

competitiveness between the two consumer species at such population densities (with C2>C1) and thus fa-

cilitates species coexistence. If this redundant foraging hypothesis is correct, then the less effective the

chasing triplet foraging is, the easier it is for the two consumer species to coexist. In other words, the

two consumer species can coexist with a larger competitiveness difference (see Supplemental Information

section V.D and Figure S8C for details). To test this redundant foraging hypothesis, we set Di to be the only

different parameter between consumer species C1 and C2, and specifically tune hi, the capture rate in a

chasing triplet with a multiplier h: hi = hh
ð0Þ
i , where h

ð0Þ
i = ki and ki is the capture rate in a chasing pair. In

Figures 3G and 3H, our systematical numerical results show that decreasing the capture rate in a chasing

triplet indeed promotes species coexistence, whereDhðD1 �D2Þ=D2measures the competitiveness differ-

ence between the two consumer species. The supremum of D peaks at h= 0 and it decreases with

increasing h for both biotic and abiotic resource cases (Figures 3G and 3H). These results fully support

the redundant foraging hypothesis.

To offer a more quantitative explanation, we consider the functional forms of population dynamics at

steady state. In the classical proof of CEP, in the case ofM = 2 andN= 1 (Figures 1A–1C), if both consumers

species can coexist at steady state, the abundance of the resource species R needs to satisfy two equations

(fiðRÞ=Di = 1 (i = 1, 2)) simultaneously. This is equivalent to requiring that two parallel planes share a common

point, which is typically impossible (Figure 4A). In the presence of chasing pairs, as shown in Figure 4B, the

requirement for steady coexistence corresponds to parallel surfaces (fiðRðFÞÞ=Di = 1 (i = 1, 2)), see Supple-

mental Information Sec.IV-V for details). In the presence of both chasing pairs and chasing triplets, as

shown in Figure 4C, the requirement for steady coexistence corresponds to three non-parallel surfaces

UiðR;C1;C2Þ = DiCi (i = 1, 2), gðR;C1;C2Þ= 0 (see Supplemental Information Sec.V for details) to cross at

one point, which can in principle happen and hence breaks the CEP. To verify the intuitive explanation,

we resort to numerical solutions. Figures 4D, 4E, and S9 show the results, where the yellow, green, and

blue surfaces are the exact solutions. The parallel green and blue surfaces in the cases of only chasing pairs

are verified with Figure 4D, whereas the three non-parallel surfaces in scenarios involving both chasing

pairs and chasing triplets are verified with Figures 4E and S9.

To provide deeper insights into the break of CEP, we argue that the competitive exclusion (i.e., M% N at

steady state) in the classical proof of CEP or the scenario involving only chasing pairs stems from the sym-

metry constraint of the equation form. In those scenarios, for M = 2 and N = 1, there exists a variable Uh

UðR;C1;C2Þ satisfying the symmetry constraint thatQiðUðR;C1;C2ÞÞ=Di (i = 1; 2, whereQi is an unspecified

function) for the steady-state population dynamics. In the classical proof U =R (see Equation 1); in the sce-

nario involving only chasing pairs, U=RðFÞ (see Equations 3 and S13). The existence of U directly leads to

parallel planes/surfaces (see Figures 4A, 4B, 4D, and S3C) and thus precludes consumer species coexis-

tence. However, scenario involving both chasing pairs and chasing triplets or even higher-order terms

(e.g., quadruplets, quintuplets) breaks the symmetry constraint in the equation form so that the variable

UhUðR;C1;C2Þ does not exist; otherwise, there cannot be any intersection points in Figure 4E or Figure S9

(see Supplemental Information Sec.V.A.2 for details). This symmetry breaking enables the break of the CEP.

DISCUSSION

Over the past several decades, various mechanisms have been proposed to overcome the constraint on

biodiversity set by CEP. Mechanisms such as temporal or spatial factors, self-organized dynamics, cross-

feeding, and predator interference are likely to play significant role in maintaining the biodiversity in na-

ture. Here, within the original context of CEP, by considering the details of the consumption process,
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especially the formation of chasing pairs and triplets inspired by the prevalent phenomenon of pack

hunting, our mechanism naturally breaks the constraint of the CEP. Furthermore, we show that there are

non-special parameter sets (of non-zero measure) that break the CEP in all scenarios involving different

forms of chasing triplets. Meanwhile, we notice that breaking CEP is parameter dependent (see Figure S10

and Supplemental Information Sec.V.E): for certain parameters, there is no feasible fixed point for coexis-

tence, or the fixed point can be unstable (for biotic resource cases), which may end in a limit cycle.

The coexistence predicted in our model is testable in experiments. Both macro- and microscopic ecosys-

tems involving pack hunting are potential candidates. For microbial ecosystems, it has been reported that

some microorganisms, such as Myxococcus xanthus (Berleman and Kirby, 2009), ameba (Geisen et al.,

2015), and Lysobacter (Seccareccia et al., 2015), can feed on other microorganisms through pack hunting.

But the caveat is that microbial communities are typically shaped by metabolic cross-feeding (Goldford

et al., 2018), which is not considered in our model. Hence special attention needs to be paid to disentangle

the impacts of cross-feeding and pack hunting in breaking the CEP of microbial communities.

Limitations of the Study

This study shows that, by forming chasing pairs and chasing triplets among the consumers and resources in

the consumption process, the CEP can be naturally violated. However, several limitations should be paid

attention. First, there are non-special parameter settings that can break the CEP in scenarios involving

chasing triplets. Yet, this is not true for certain parameter settings, especially when there is large compet-

itiveness difference between consumer species. Second, our model framework does not consider other

factors that can also promote biodiversity in nature such as temporal or spatial factors and cross-feeding.

Special attention needs to be paid to disentangle these confounding factors in future experimental

validations.
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Figure 4. Intuitive Explanation of why the Formation of Chasing Triplet Can Break the CEP

For simplicity, we consider the case of M = 2 and N = 1.

(A) In the classical proof, the green plane and blue plane are parallel to each other and thus do not have a common point.

(B) In the model involving chasing pairs, the green surface and blue surface are still parallel to each other and thus still do

not have a common point (see Figure S3C, Supplemental Information Sec.IV-V for details).

(C) In the model involving both chasing pairs and chasing triplets, the yellow, green, and blue surfaces are not parallel to

each other and thus the green and the blue ones can have an intersection curve (shown in dashed purple), whereas the

three surfaces can intersect at one point (shown in red) and thus facilitate coexistence.

(D and E) Demonstration of the intuitive explanation with numerical solutions. (D) In the scenario involving only chasing

pair, numerical solutions confirm that the green surface and blue surface are parallel to each other. (E) In scenarios

involving both chasing pair and triplet (P-T Model), numerical solutions confirm that the yellow, green, and blue surfaces

are not parallel to each other and definitely can have a common point (marked with red dot, see Figure 2D for time series).

(D) was calculated from Equation 3, where g = RR0ð1 � R =K0Þ� ðk1x1 + k2x2Þ; (E) was calculated from Equations 4 and 5.

See Table S1 for simulation details. See also Figures S9 and S10.
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METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.
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Benincà, E., Huisman, J., Heerkloss, R., Jöhnk,
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Supplemental Figures

Resources ConsumersResources Consumers
A B

promotion

inhibition

promotion or inhibition

Figure S1: Bipartite graph between resources and consumers (Related to Figure 1).
(A)M species of consumers feed on N species of resources. Predation or other interactions are forbidden
among consumers but allowed among resources. Competitive exclusion principle (CEP) states that at
steady state the coexisting M ≤ N . (B) Resources involve chemical compounds: Ri (N ′ + 1 ≤ i ≤ N ;
N > N ′) are chemical compounds, which can promote or inhibit the growth of consumers, while Ri
(1 ≤ i ≤ N ′) are normal resources, supplying as food for consumers. In total, there are N species
of resources and M species of consumers. According to CEP, at steady state, it is permitted that the
coexisting M > N ′, yet M ≤ N .
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Figure S2: Within the framework of the classical proof, the types of consumer species in steady
coexistence cannot more than that of resources except for special parameter cases (Related to Figure 1).
(A) Representative phase portrait of the trajectories. M = 3 and N = 2. Two consumer species, at
most, can coexist at steady state. Here equations are that shown in Equation 2 where fi (R1, R2) =

α
(1)
i R1+α

(2)
i R2 (i =1, 2, 3); gj (R1, R2, C1, C2, C3) = Rj

(
r

(0)
j − β

(0)
j Rj − β(1)

j C1 − β(2)
j C2 − β(3)

j C3

)
(j=1,

2); D1 = 0.0006; D2 = 0.0005; D3 = 0.0004; α(1)
1 = 0.0013; α(1)

2 = 0.0011; α(2)
1 = 0.001; α(2)

2 = 0.0009;
r

(0)
1 = 1.01; r(0)

2 = 1; β(0)
1 = β

(0)
2 = 1, β(1)

1 = 1.3; β(1)
2 = 1; β(2)

1 = 1.1; β(2)
2 = 0.9; α(1)

3 = 0.0001;
α

(2)
3 = 0.0021; β(3)

1 = 0.1 and β
(3)
2 = 2.1. In the initial condition, R1 = 0.01 and R2 = 0.01 for all

trajectories. Finally, all trajectories converge at the green point with C1 = 0. (B-C) Special cases permit
M > N at steady state. (B) M = 2 and N = 1. (C) M = 3 and N = 2. It is possible that M > N at
steady state for a special parameter set (with Lebesgue measure zero), which corresponds to the case
that three lines accidentally intersect at a common point (red point in (B-C)). A simple scheme of this
special case is fi = f , Di = D (i=1-M ).
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Figure S3: Chasing-pair scenario is still under the constraint of competitive exclusion (Related to Figure
2).
(A) Schematic of the consumption process between consumers and resources. M = 1 and N = 1. Here
a is the encounter rate between a consumer and a resource to form a chasing pair; d is the escape rate
of a resource out of a chasing pair; k is the capture rate of consumers in a chasing pair. (B) M = 2 and
N = 1. If all consumer species coexist at steady state, fi

(
R(F)

)
/Di = 1 (i=1, 2). This requires that three

lines y = fi (R) /Di (i=1, 2) and y = 1 share a common point, which normally cannot happen. (C) M = 2
and N = 1. The green plane is parallel to the blue one, and hence they do not have a common point. (D)
M = 3 and N = 2. At steady state, if all consumer species coexist, then fi

(
R

(F)
1 , R

(F)
2

)
= Di (i=1-3).

But three lines normally do not intersect at a common point.
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Figure S4: Variants of P-T Model (Related to Figure 2).
(A) P-T Variant A, scenarios involving both chasing pairs and triplets. A triplet consists of two consumers
of the same species and a resource (denote as hetero chasing triplet). (B) P-T Variant B, scenarios
involving both chasing pairs and triplets. A triplet consists of two consumers of the same (denote as
homo chasing triplet) or different species and a resource. In (A-B): ai is the encounter rate between a
consumer and a resource to form a chasing pair, di is the escape rate of a resource out of a chasing pair,
ki is the capture rate of consumers in a chasing pair; while pi is the encounter rate between a consumer
and an existing chasing pair to form a hetero chasing triplet, si and t are the escape rates of a consumer
out of a hetero chasing triplet, qi is the capture rate of consumers in a hetero chasing triplet. In (B): bi is
the encounter rate in forming a homo chasing triplet; ei and li are the escape rates of a consumer out of
a homo chasing triplet; hi is the capture rate of consumer in a homo chasing triplet.
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Figure S5: Time course of the abundance of two consumer species (M=2) and one resource species
(N=1) (Related to Figure 2).
(A) In the presence of only chasing pairs, only one type of consumer species exists for long, the oscillating
dynamics resembles that of the classical predator-prey models (May, 1972). (B) In P-T Model (the
presence of chasing pairs and triplets), two consumer species coexist at oscillating abundances. (C)
In the presence of only chasing pairs, consumer species cannot coexist at steady state. (D) In P-T
Model, both consumer species coexist at steady state. (A-B) Biotic resources, (C-D) Abiotic resources.
(A) was simulated from Equation 3, where g = RR0(1 − R/K0) − (k1x1 + k2x2); (B) was simulated
from Equations 4-5; (C) was simulated from Equation 3, where g = Ra(1−R/K0)− (k1x1 + k2x2); (d)
was simulated from Equations 4-5. In (A-D): ai = 0.1, di = 0.1, ki = 0.1, wi = 0.1 (i=1, 2); the initial
abundances of (R,C1, C2) are (0.1, 0.1, 0.1). In (A-B): D2 = 0.005, K0 = 10, R0 = 0.03, D1 = 1.03D2. In
(C-D): D2 = 0.004, K0 = 5, Ra = 0.01, D1 = 1.01D2 . In (B) and (D): bi = 0.1, ei = 0.1, hi = 0.1, li = 0.1
(i=1, 2).
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Figure S6: Comparison between analytical solutions and numerical results for the steady-state species
abundances in P-T Model (Related to Figure 2).
Color bars are numerical results while hollow bars are analytical solutions. (A) biotic resources; (B)
abiotic resources. (A-B) the numerical results (labeled with superscript ‘Numerical’) were calculated
from Equations 4-5, while the analytical results (labeled with superscript ‘Analytical’) were calculated
from Equations S30-S32. In (A-B): ∆ ≡ (D1 −D2)/D2, ai = 0.1, di = 0.1, ki = 0.1, bi = 0.1, ei = 0.1,
hi = 0.1, li = 0.1, wi = 0.1 (i=1, 2). In (A): D2 = 0.005, K0 = 10, R0 = 0.01. In (B): D2 = 0.004, K0 = 5,
Ra = 0.02.
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Figure S7: Time course of the abundance of two consumer species (M=2) and one biotic resource
species (N=1) (Related to Figures 2, S4).
In the presence of chasing pairs and chasing triplets, two consumer species coexist at steady state
((A), (C)) or with oscillating abundances ((B), (D)). (A-B) P-T Variant A. (C-D) P-T Variant B. (A-B)
were simulated from Equations S34-S35; (C-D) were simulated from Equations S36-S37; In (A-D):
ai = pi = 0.1, di = si = t = 0.1, ki = 0.1, wi = 0.1 (i=1, 2); D2 = 0.005, K0 = 10, the initial abundances
of (R,C1, C2) are (0.1, 0.1, 0.1). In (A): R0 = 0.08, D1 = 1.05D2, qi = 0.1 (i=1, 2); In (B): R0 = 0.03,
D1 = 1.02D2, qi = 0.1 (i=1, 2); In (C-D): qi = 0.05, bi = 0.1, ei = li = 0.1, hi = 0.1 (i=1, 2); In (C):
R0 = 0.1, D1 = 1.02D2; In (D): R0 = 0.03, D1 = 1.01D2.
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Figure S8: Stable coexistence region of two consumer species competing for one type of resources
(Related to Figures 2-3, S4).



Figure S8 (previous page): In (A-B), (D) and (E-H), Di (i=1, 2) is the only different parameter between
consumer species C1 and C2, and ∆ ≡ (D1 −D2)/D2, the relative difference in mortality rate, measures
the competitive differences between the two consumer species. δ is a dimensionless multiplier that to
tune the capture rate and escape rate parameters for the two-consumer species in each scenario. (A-B),
(D) The region of stable coexistence (shown in blue, for globally attracting fixed point) for parameter set.
(A) P-T Model, biotic resource. Parameter values at the orange dot (δ = 0.2) is used in calculating all
results shown in (c), red dot marks the upper bound of ∆ (δ = 0.2) that permits species coexistence. (B)
P-T Variant A, biotic resource. Red region corresponds to unstable fixed point, which typically ends in a
limit cycle (oscillating time series). (C) Probability of steady coexistence for random parameters. First,
we chose all parameter exactly the same for two consumer species: K0 = 10, Di = 0.005, ai = bi = 0.1,
ki = hi = 0.1, di = ei = li = 0.1, wi = 0.1, R0 = 0.1 (i = 1, 2). Then, each parameter except K0,
D2 (two reduceable parameters, see Sec.VII for details) was multiplied by a random number following
normal distribution N (1, σ2). All the dots are the raw simulation data (from a sample size of 100), while
the line are smoothed data over 25 dots. The blue region corresponds to steady coexistence in the
samplings. The inverted red triangle marks the supremum of ∆ in (A). (D)) P-T Variant B, abiotic resource.
(E-H) Parameters space below the blue surface and above the red surface (in z-axis, for values of ∆)
is the stable coexistence region of each case. Parameters space below the red surface is the unstable
fixed-point region, which typically ends in a limit cycle. (E-F) Cases of Biotic resources. (G-H) Cases of
abiotic resources. (E), (G) Results of P-T Variant A. (F), (H) Results of P-T Variant B. (A) and (C) were
calculated from Equations 4-5; (B), (E) and (G) were calculated from Equations S34-S35; (D), (F) and (H)
were calculated from Equations S36-S37. In (A-B), (D) and (E-H), we choose the initial set of parameter
values for capture rates and escape rates wherever applicable as follows: k(0)

i = h
(0)
i = q

(0)
i = 0.5,

d
(0)
i = e

(0)
i = l

(0)
i = s

(0)
i = t(0) = 0.5 (i = 1, 2), and then tune those parameters with the multiplier δ as

follows: ki = δk
(0)
i , hi = δh

(0)
i , qi = δq

(0)
i , di = δd

(0)
i , ei = δe

(0)
i , li = δl

(0)
i , si = δs

(0)
i , t = δt(0) (i = 1, 2),

and we choose ai = bi = pi = 0.1, wi = 0.1 (i=1, 2) wherever applicable. For other parameters, in
(A-B) and (E-F), D2 = 0.005, K0 = 10; in (D) and (G-H), D2 = 0.004, K0 = 5; in (A), R0 = 0.1; in (B),
R0 = 0.05; in (D), Ra = 0.03.
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Figure S9: Demonstration of the intuitive explanation with numerical solutions (Related to Figures 2, 4,
S4-S5, S7).
(A) In P-T Model (with chasing pairs and triplets) of abiotic resources, numerical solutions confirm that
the yellow, green and blue surfaces are not parallel to each other and definitely can have a common point
(marked with red dot, see Figure S5D for time series). (B) Numerical solutions of P-T Variant A (see
Figure S7A for time series). (a) was calculated using Equations 4-5; (b) was calculated from Equations
S34-S35. In (A): ai = bi = 0.1, di = ei = li = 0.1, ki = hi = 0.1, wi = 0.1 (i=1, 2); D2 = 0.004, K0 = 5,
Ra = 0.01, D1 = 1.01D2 . In (B): ai = 0.1, di = 0.1, ki = 0.1, wi = 0.1,pi = 0.1, si = 0.1 , qi = 0.1 (i=1,
2); D1 = 1.05D2, D2 = 0.005, K0 = 10,t = 0.1, R0 = 0.08.
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Figure S10: Forming chasing pairs and triplets is not a guarantee for breaking CEP (Related to Figures 2,
4, S4).
(A-C) 3-D demonstration with numerical solutions. (D-F) Time course of the abundance of two consumer
species (M=2) and one biotic resource species (N=1). (A) Although the green surface and blue surface
are not parallel to each other, yet they do not have an intersection curve in the first quadrant (i.e.,
R,C1, C2 > 0), see (D) for time series. (B) The intersection point (red dot) of the three surfaces is
unstable. All trajectories end in a limit cycle (Figure 3D), see (E) (the same as Figure S5B) for time series.
(C) The intersection point (red dot) of the three surface is unstable, see (F) for time series. (A-B), (D)
and (E) were calculated from Equations 4-5; (C) and (F) were calculated from Equations S34-S35. In
(A-F): ai = 0.1, di = 0.1, ki = 0.1, wi = 0.1 (i=1, 2); D2 = 0.005, K0 = 10. In (A-B), (D) and (E): bi = 0.1,
ei = 0.1, hi = 0.1, li = 0.1 (i=1, 2). In (A) and (D): R0 = 0.05, D1 = 1.2D2. In (B) and (E): R0 = 0.03,
D1 = 1.03D2. In (C) and (F) pi = 0.1, si = 0.1 (i=1, 2); t = 0.1, R0 = 0.08, D1 = 1.01D2, qi = 0.05 (i=1,
2). In (D-F): the initial abundances of (R,C1, C2) are (0.1, 0.1, 0.1).



Supplemental Tables

Table S1: Simulation details of the main text Figures (Related to Figures 1-4).

In Figure 1
In Figure 1C, α = β(0) = β(1) = β(1) = β(2) = 1, D1 = 0.0006 and D2 = 0.0005.
All trajectories start with R = 0.01.
In Figure 1F, D1 = 0.0006, D2 = 0.0005, D3 = 0.0004, α(1)

1 = 0.0013, α(1)
2 = 0.0011, α(2)

1 = 0.001,
α

(2)
2 = 0.0009, r(0)

1 = 1.01, r(0)
2 = 1, β(0)

1 = β
(0)
2 = 1, β(1)

1 = 1.3, β(1)
2 = 1, β(2)

1 = 1.1, β(2)
2 = 0.9,

α
(1)
3 = 0.0009, α(2)

3 = 0.0013, β(3)
1 = 0.9 and β(3)

2 = 1.3.
For the initial condition, we set R1 = 0.01 and R2 = 0.01 for all trajectories.

In Figure 2
In Figures 2C-F: D2 = 0.005, K0 = 10, ai = 0.1, di = 0.1, ki = 0.1 (i=1, 2);
the initial abundances of (R,C1, C2) are (0.1, 0.1, 0.1).
In Figures 2C-D: R0 = 0.05, D1 = 1.08D2, wi = 0.1 (i=1, 2).
In Figures 2E-F: R0 = 0.01, D1 = 1.01D2, wi = 0.08 (i=1, 2).
In Figures 2D and F: bi = 0.1, ei = 0.1, hi = 0.1, li = 0.1 (i=1, 2).

In Figure 3
In Figures 3A-D: ai = 0.1, di = 0.1, ki = 0.1, bi = 0.1, ei = 0.1, hi = 0.1, li = 0.1, wi = 0.1 (i=1, 2).
In Figures 3A, C-D: wi = 0.1 (i=1, 2).
In Figure 3A: Ra = 0.01, K0 = 5, D2 = 0.004, D1 = 1.01D2.
In Figures 3B-D: K0 = 10, D2 = 0.005.
In Figure 3B: R0 = 0.01, D1 = 1.01D2, wi = 0.08 (i=1, 2).
In Figure 3C: R0 = 0.08, D1 = 1.08D2.
In Figure 3D: R0 = 0.03, D1 = 1.03D2.
In Figures 3E-F, we choose the initial set of parameter values for capture rates and escape rates as
follows: k(0)

i = h
(0)
i = 0.5, d(0)

i = e
(0)
i = l

(0)
i = 0.5 (i = 1, 2),

and then tune those parameters with the multiplier δ as follows:
ki = δk

(0)
i , hi = δh

(0)
i , di = δd

(0)
i , ei = δe

(0)
i , li = δl

(0)
i , (i = 1, 2),

and we choose ai = bi = 0.1, wi = 0.1 (i=1, 2).
In Figures 3G-H, we choose the initial value of hi, the capture rate in the chasing triplet: h(0)

i = 0.1,
and then tune this parameter (and only this parameter) with the multiplier η:hi = ηh

(0)
i ,

and we choose ai = bi = 0.1, ki = h
(0)
i = 0.1, di = ei = li = 0.1, wi = 0.1 (i=1, 2). In Figures 3E, G:

D2 = 0.005, K0 = 10.
In Figures 3F, H: D2 = 0.004, K0 = 5.

In Figure 4
In Figures 4D-E: ai = 0.1, di = 0.1, ki = 0.1, wi = 0.1 (i=1, 2); D2 = 0.005, K0 = 10.
In Figure 4D: R0 = 0.05, D1 = 1.3D2.
In Figure 4E: bi = 0.1, ei = 0.1, hi = 0.1, li = 0.1 (i=1, 2); R0 = 0.05, D1 = 1.08D2.



Transparent Methods

I Different forms of the Competitive Exclusion Principle (CEP).

A The earliest form.

The earliest form of the CEP (Volterra, 1928, Gause, 1934, Hardin, 1960), or Gause’s law, states that
complete competitors cannot coexist, meaning that a more advantageous species can dominate a niche
over other species. This was explained in Garret Hardin’s classical paper (Hardin, 1960) and manifested
in Darwin’s fitness survival (Darwin, 1859): supposing that one species owns a doubling rate of 1.01 while
another species owns a doubling rate of 1, mathematically, it is easy to find that lim

t→∞
2t

21.01t = 0, which
was interpreted as that a small advantage of one species would ultimately result in extinction of all other
competing species (Hardin, 1960).

However, the interpretation above heavily depends on the assumption of exponential growth conditions.
Without this assumption, a more advantageous species will not dominate, and coexistence is possible. To
illustrate this, here we consider two different scenarios, each contains two types of consumers C1 and C2

feeding on two types of resources R1 and R2.

1 Microbial ecosystem in a turbidostat.

In a turbidostat, resources R1 and R2 (which can be two different types of carbon sources) flow
continuously into the system with an adjustable dilution rate D (t) to keep the turbidity (normally the total
amount of C1 and C2, i.e., Ctot ≡ C1 + C2) constant. Here we assume that the growth rate terms of Ci
(i=1, 2) follows Holling’s type-II functional response (Holling, 1959). The population dynamics can be
written as follows:

Ṙ1 = D (t) r1 −D (t)R1 − β(1)
1 α

(1)
1 C1

R1

R1+K
(1)
1

− β(1)
2 α

(1)
2 C2

R1

R1+K
(1)
2

Ṙ2 = D (t) r2 −D (t)R2 − β(2)
1 α

(2)
1 C1

R2

R2+K
(2)
1

− β(2)
2 α

(2)
2 C2

R2

R2+K
(2)
2

Ċ1 = α
(1)
1 C1

R1

R1+K
(1)
1

+ α
(2)
1 C1

R2

R2+K
(2)
1

−D1C1 −D (t)C1

Ċ2 = α
(1)
2 C2

R1

R1+K
(1)
2

+ α
(2)
2 C2

R2

R2+K
(2)
2

−D2C2 −D (t)C2

, (S1)

where ri (i=1, 2) is the quantity of Ri per unit of the flux into the system; Dj (j=1, 2) is the death rate of
species Cj , while α(i)

j , β(i)
j and K(i)

j (i, j=1, 2) are other relevant parameters. Since the turbidity (Ctot ≡
C1 + C2) is a constant, consider the case that Ctot is very small so that β(i)

j α
(i)
j Ci

Ri

Ri+K
(i)
j

� D (t)Ri,

then D (t) ri ≈ D (t)Ri (and thus ri ≈ Ri), and the population dynamics of Cj follows:
Ċ1 = C1

(
α

(1)
1 r1

r1+K
(1)
1

+
α

(2)
1 r2

r2+K
(2)
1

−D1

)
−D (t)C1

Ċ2 = C2

(
α

(1)
2 r1

r1+K
(1)
2

+
α

(2)
2 r2

r2+K
(2)
2

−D2

)
−D (t)C2

. (S2)

Note that γj ≡
∑
i=1,2

α
(i)
j ri

ri+K
(i)
j

−Dj , the effective growth rate of Cj is fixed once parameters α(i)
j , K(i)

j , ri

and Dj are chosen. Actually, Cj is of exponential growth with effective growth rate γj and dilution rate
D (t). If γ1 > γ2, lim

t→∞
D (t) = γ1 and lim

t→∞
C2(t)
C1(t) = 0, the less competitive species C2 would ultimately

become extinct. Overall, in an idealized turbidostat, an advantageous species outcompetes all other
species and dominate the system.



2 Ecosystem in a natural habitat.

We consider a natural system with the population dynamics following the classical consumer-resource
model (MacArthur, 1970, Chesson, 1990):

Ċ1 = C1

(
α

(1)
1 R1 + α

(2)
1 R2 −D1

)
Ċ2 = C2

(
α

(1)
2 R1 + α

(2)
2 R2 −D2

)
Ṙ1 = g1 (R1)− β(1)

1 α
(1)
1 C1R1 − β(1)

2 α
(1)
2 C2R1

Ṙ2 = g2 (R1)− β(2)
1 α

(2)
1 C1R2 − β(2)

2 α
(2)
2 C2R2

, (S3)

where Dj (j=1, 2) is the death rate of species Cj ; α
(i)
j and β(i)

j (i, j=1,2) are other relevant parameters.
gi (Ri) (i=1, 2) is the influx of Ri into the system, where we consider gi (Ri) = ci when Ri is abiotic
(Posfai et al., 2017) (denote as case A) and gi (Ri) = Ri [ri −Ri/K] (ri and Ki are parameters) when
Ri is biotic (MacArthur, 1970) (denote as case B). In both cases, rather than the advantageous species
excludes the other, C1 and C2 actually can coexist. To illustrate this, here we consider a simple scheme
that C1 and C2 only feed on R1 and R2, respectively, i.e., α(2)

1 = α
(1)
2 = 0. Then

Ċ1 = C1

(
α

(1)
1 R1 −D1

)
Ċ2 = C2

(
α

(2)
2 R2 −D2

)
Ṙ1 = g1 (R1)− β(1)

1 α
(1)
1 C1R1

Ṙ2 = g2 (R1)− β(2)
2 α

(2)
2 C2R2

. (S4)

In case A, at steady state, Ri = Di/α
(i)
i (i=1, 2) and Ci = ci/

(
β

(i)
i Di

)
. In case B, Ri = Di/α

(i)
i and

Ci =
ri−Di/

(
α

(i)
i Ki

)
β

(i)
i α

(i)
i

. Since α
(i)
i , β

(i)
i > 0, when ri > Di/

(
α

(i)
i Ki

)
, even if α(1)

1 /D1 � α
(2)
2 /D2 or vice

versa, C1 and C2 can coexist in both cases A and B.
Generally, in cases described in Equation S3, if α(1)

1 /D1 > α
(1)
2 /D2, as long as α(2)

1 /D1 < α
(2)
2 /D2, C1

and C2 may coexist. The phenomenon of coexistence can be interpreted as follows: α(1)
1 /D1 > α

(1)
2 /D2

means that C1 is more advantageous in the competition for R1, while α
(2)
1 /D1 < α

(2)
2 /D2 means that

C2 is more advantageous in the competition for R2. Yet, why C1 and C2 can coexist rather the overall
advantageous species (the one with larger growth rate) excludes the other?

The underlying reason is that in a long term the growth of C1 and C2 in the competition deviate
severely from exponential growth. To illustrate this point, we consider the scenario described in Equation
S4 (α(2)

1 = α
(1)
2 = 0) with a special case that ignoring the death rate (D1 = D2 = 0). In a long term,

gi (Ri) = β
(i)
i α

(i)
i CiRi. In case A, Ċi = gi(Ri)

β
(i)
i

= ci
β

(i)
i

, then Ci (t) = Ci (t = 0) + ci
β

(i)
i

t, and lim
t→∞

C2(t)
C1(t) =

c2/β
(2)
2

c1/β
(1)
1

, where the consumer populations increase linearly rather than exponentially with time. In case B,

Ri = Ki

(
ri − β(i)

i α
(i)
i Ci

)
and Ċi = α

(i)
i Ki

(
ri − β(i)

i α
(i)
i Ci

)
Ci, then lim

t→∞
Ci (t) = ri/

(
β

(i)
i α

(i)
i

)
, where

the growth of consumer population is limited by the availability of resources. In both cases, both consumer
species are not of exponential growth, and clearly, they do coexist.

B The classical form since the 1960s.

Since the 1960s, Robert H. MacArthur and his colleagues (MacArthur and Levins, 1964) formulate
the classical form of CEP (MacArthur and Levins, 1964, Levin, 1970, McGehee and Armstrong, 1977):
Consider M types of consumer species competing for N types of resources. At steady state the number
of coexisting species of consumers cannot exceed that of resources, i.e., M ≥ N . This classical CEP
form stimulates myriads of studies and is the focus of this paper.



II Existing studies.

A Existing mechanisms overcome the limit set by the CEP.

Identifying mechanisms that maintain biodiversity is a central aim in ecology. Various mechanisms (Roy
and Chattopadhyay, 2007) have been proposed to overcome the limit set by the CEP and hence explain
biodiversity in ecosystems. Those mechanisms can be classified as follows:

a) The ecosystems never reach steady state due to temporal effects of the environment (Hutchinson,
1961, Levins, 1979, Descamps-Julien and Gonzalez, 2005): The relaxation time for the system to reach
equilibrium is not short enough compared to the frequency of changes in the environment, such as
weather, temperature or seasonal cycle.

b) Spatial heterogeneity or patchiness (Levin, 1974, Richerson et al., 1970): Each local patch obeys
CEP, while globally support more species of consumers than resource (because there can be a larger
overlap of resource species than that of consumers among different patches).

c) Self-organized dynamics promote biodiversity: when the environment remains constant, biodiversity
can naturally emerge when the consumers’ densities are intrinsically fluctuating (Koch, 1974, Huisman
and Weissing, 1999) or in a chaos (Huisman and Weissing, 1999, Benincà et al., 2008).

d) Special sets of model parameters (with Lebesgue zero-measure): the simplest example for
coexistence of unlimited number of consumers is that all species of consumers share the same ratio
of hunting rate to death rate (Volterra, 1928). A recent study (Posfai et al., 2017) found that metabolic
trade-offs promote diversity at steady state, but the model heavily relies on the assumption that all
consumer species share the same death rate.

e) The biodiversity is facilitated by additional factors other than resources: such as cross-feeding
(Turner et al., 1996, Goyal and Maslov, 2018, Goldford et al., 2018), toxin (Czárán et al., 2002), rock-
paper-scissors relation (Kerr et al., 2002, Kelsic et al., 2015, Grilli et al., 2017), kill the winner (Thingstad
and Lignell, 1997), predator interference (Skalski and Gilliam, 2001, Beddington, 1975, Crowley and
Martin, 1989, DeAngelis et al., 1975, Kuang et al., 2003), complex interactions (Kelsic et al., 2015, Bairey
et al., 2016, Grilli et al., 2017) or co-evolution (Xue and Goldenfeld, 2017).

B GLV models implicitly imply no less resources species than consumers.

We notice that the Generalized Lotka-Volterra (GLV) model is a very popular modeling framework in
the study of biodiversity (Rohr et al., 2014). However, we emphasize that the GLV model is within the
classical constraint of CEP, because it implicitly assumes more (or at least equal number) species of
resources than that of the consumers.

Consider the simplest case of two competing species:{
Ċ1 = C1 (α1 − β11C1 − β12C2)

Ċ2 = C2 (α2 − β21C1 − β22C2)
. (S5)

Here Ci (i=1, 2) stands for the population of consumer species i; αi denotes the growth rate; βij (i, j=1,
2) denotes the interaction terms. Generally, in GLV models, there is no specific constraint on coefficients
αi, βij . To clarify the implicit assumption, we consider a consumer-resource model that is comparable to
this case with M = 2 and N = 1:

Ċ1 = C1 (α′1R−D1)

Ċ2 = C2 (α′2R−D2)

Ṙ = g (R,C1, C2) ≡ rRR [r0 (1−R/r0)− β′1C1 − β′2C2]

. (S6)

Here, R stands for the population of resources; α′i (i=1, 2) is the growth rate of consumer species i;
Di denotes the mortality rate; g follows the classical form of MacArthur’s consumer-resource model
(MacArthur, 1970, Chesson, 1990). By assuming fast equilibrium for the resource species (Ṙ = 0),
Equation S6 can be reduced to Equation S5, with αi = α′ir0 −Di, βij = α′iβ

′
j (i, j=1, 2). Note that there

is a strict constraint on coefficients βij : β11

β12
= β21

β22
. With the knowledge of linear algebra (Strang, 1993), it

is easy to prove that only when M ≤ N can the coefficients in the GLV models be freely chosen.



C Resources involving chemical compounds.

Chemical compounds are generally treated as external factors in CEP studies (Roy and Chattopadhyay,
2007). As shown in Figure S1B, there are N −N ′ (N > N ′) types of chemical compounds and N ′ types
of normal resources in the ecosystem, while there are M species of consumers. Essentially, within the
classical CEP framework, it is permitted that the coexisting M > N ′ at steady state as long as M ≤ N
(except for special cases corresponding to that shown in Figures S2B-C). The proof is same as the
schemes shown in Figure 1 of the main text.

III Consumption kinetics.

A Functional form of consumption kinetics

Consider the simplest scenario of the consumption process, with one type of consumers and one type
of resources, i.e., M = 1 and N = 1 (Figure S3A), and we assume both are biotic (see main text). This
resembles the simple form of enzymatic reactions,

R(F) + C(F)
a //
d
oo R(P) ∨ C(P) k // C(F)(+).

Here C(F) and R(F) stand for the populations of consumers and resources that are freely wandering
around, respectively. When a consumer meets a resource with encounter rate a, they form a chasing
pair R(P) ∨ C(P) (for simplicity we denote it as x). The resource can escape with rate d, or be caught and
consumed with rate k by the consumer, denoted by C(F)(+), where ‘(+)’ means gaining biomass. By
assuming that the transformation process from C(F)(+) to C(F) is very fast or consumers can still chase
resources when gaining biomass, we count C(F)(+) as C(F). By defining the total number of consumers
and resources as C ≡ C(F) + x and R ≡ R(F) + x. The population dynamics of the consumers follows:{

Ċ = wkx−DC
ẋ = aR(F)C(F) − (d+ k)x

, (S7)

where D is the mortality rate of consumers (generally D � a, k, d), while the consumption kinetics is
given by kx. w is a biomass conversion ratio (see Sec.III.B).

At steady state ẋ = 0, rendering a quadratic equation about x: R(F)C(F) = (R− x) (C − x) = Kx,
where K ≡ k+d

a . By considering 0 ≤ x ≤ min (R,C), we can easily solve for x:

x =
(R+ C +K)

2

(
1−

√
1− 4RC

(R+ C +K)
2

)
. (S8)

Since 4RC
(R+C+K)2 < 1, then

√
1− 4RC

(R+C+K)2 ≈ 1− 2RC
(R+C+K)2 , substituting this into Equation S8, we have

x ≈ RC
R+C+K and the consumption kinetics can be approximated as (Liu et al., 2015)

wkx ≈ wkR

R+ C +K
C. (S9)

Basically, f(R,C) ≡ wkx(R,C)
C is the functional response or growth rate function, which is both R and C

dependent. The approximated form f(R,C) ≈ wkR
R+C+K is similar to the Beddington-DeAngelis functional

response (Beddington, 1975, DeAngelis et al., 1975), yet quite different from ratio-dependent predation
(Arditi and Ginzburg, 1989, Abrams and Ginzburg, 2000), since K is a positive parameter. When the
consumer population is much smaller than that of resource, i.e., C � R, the consumption kinetics reduces
to the canonical Michaelis-Menten form (Nelson and Cox, 2017)

wkx ≈ wkR

R+K
C = f (R)C. (S10)

Note that the C-dependency in the growth rate function disappear in the above consumption kinetics. This
is also consistent with the growth rate function form f (R) used in the classical proof of CEP. However, we
emphasize that with C-dependency in the growth rate function f (R,C), the classical proof of CEP does
not apply.



B Ephemeral consumption process can influence the population dynamics

For consumer species, the time-scale of consumption process is generally much faster than that of the
birth and death processes. How can the consumption process influence the population dynamics? To
clarify this, we consider a simple scheme as follows. A consumer individual of species C was born
with a mass of mnew

C . When its mass increases to a critical value mbirth
C , it would immediately give birth

to a new individual with mass mnew
C and itself owns a mass of mmother

C (the birth process). Due to the
conservation of mass, mbirth

C = mnew
C + mmother

C . We use D to denote the mortality rate of consumer
species C (the death process). Each time a consumer individual eats up a resource individual (from
species R), it gains a incremental mass of m∆. Here we still use Figure S7A to describe the consumption
process. Denote the total mass of consumer species C as MC , then the population dynamics of MC

follows: ṀC = kxm∆ −DMC , where x ≡ R(P) ∨ C(P) represents the chasing pair. Then, the population
dynamics of the system can be described as follows:

ẋ = aR(F)C(F) − (d+ k)x,

Ċ = wkx−DC,
Ṙ = g (R, x,C) .

(S11)

Here, g (R, x,C) is a unspecified function. Consumers and resources that are freely wandering around
are denoted as C(F) and R(F), respectively. w is a biomass conversion ratio: the reciprocal of the number
of resource individuals to be consumed to produce a new-born consumer. Generally speaking, w is of the
order of m∆

mnew
C
� 1. From the population dynamics equation of C (in Equation S11), although the kinetic

parameters for the consumption process are generically much larger than that of the death process:
a, k, d� D (i.e., the consumption process is ephemeral), x can be quite comparable to C due to a small
w, which means that consumers in a chasing pair take a non-negligible portion of the whole consumer
populations. Evidently, this conclusion is valid for potential existing species that the consumption process
are not ephemeral compared to the birth and death processes (with the same analysis above). Hence
the consumption process can influence the population dynamics, and should be explicitly considered in
our modeling framework.

IV Chasing-pair scenario is under the constraint of CEP

Although the classical theory does not apply to the C-dependent function form f (R,C), we show below
that competitive exclusion principle still holds in the chasing-pair scenario.

First, we consider the case of M = 2 and N = 1 (Figure 2A).

R(F) + C
(F)
1

a1 //
d1

oo R(P) ∨ C(P)
1

k1 // C(F)
1 (+)

R(F) + C
(F)
2

a2 //
d2

oo R(P) ∨ C(P)
2

k2 // C(F)
2 (+)

,

where C(F)
i (i=1, 2) stands for consumers, R(F)

j stands for resources, R(P)∨C(P)
i (defined as xi) stands for

chasing pairs, C(F)
i (+) (counted as C(F)

i ) stands for consumers that caught and consumed the resources,
ai stands for encounter rates, di stands for escape rates, and ki stands for capture rates. Denote the total
population of consumers and resources at each moment as Ci = C

(F)
i +xi (i=1, 2) and R = R(F) +x1 +x2.

The population dynamics of the consumers and resources can be written as follows:

ẋ1 = a1R
(F)C

(F)
1 − (d1 + k1)x1

ẋ2 = a2R
(F)C

(F)
2 − (d2 + k2)x2

Ċ1 = w1k1x1 −D1C1

Ċ2 = w2k2x2 −D2C2

Ṙ = g (R, x1, x2, C1, C2)

, (S12)

where the functional form of g (R, x1, x2, C1, C2) is unspecific, D1 and D2 denote the death rate of the
two consumer species. w1 and w2 are biomass conversion ratios (see Sec.III.B).



At steady state, ẋi = 0 , we have

xi =
R(F)

R(F) +Ki
Ci = fi

(
R(F)

)
Ci, (S13)

with Ki ≡ di+ki
ai

(i=1, 2). Substitute Equation S13 into the third and fourth equations in Equation S12,
with steady-state condition Ċi = 0 (i=1, 2), we have{ (

f1

(
R(F)

)
−D1

)
C1 = 0(

f2

(
R(F)

)
−D2

)
C2 = 0

. (S14)

If all consumers can coexist, fi
(
R(F)

)
/Di = 1 (i=1, 2). These relations are depicted in a 2-dimensional

graph (Figure S3B). Compare Figure S3B with Figure 1B, it is evident that the two types of consumers
normally cannot coexist at steady state (except for special cases) for similar reason we discussed in the
caption of Figure 1.

Now we consider the case of M = 3 and N = 2.
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where C(F)
i (i=1, 2, 3) stands for consumers; R(F)

j (j=1,2) stands for resources; R(P)
j ∨ C(P)

i (denoted

as x(j)
i ; i=1-3; j=1,2) stands for chasing pairs; C(F)

i (+) (counted as C(F)
i ; i =1-3) stands for consumers

caught and consumed the resources, a(j)
i stands for encounter rates, d(j)

i stands for escape rates, and

k
(j)
i stands for capture rates. Denote Rj = R

(F)
j +

3∑
i=1

x
(j)
i (j=1, 2) and Ci = C

(F)
i +

2∑
j=1

x
(j)
i (i=1-3), the

population dynamics can be written as:
ẋi

(j) = a
(j)
i R

(F)
j C
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i −

(
d

(j)
i + k

(j)
i

)
x

(j)
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Ċi =
2∑
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w
(j)
i k

(j)
i x

(j)
i −DiCi

Ṙj = gj (R1, R2, C1, C2, C3)

, (S15)

with i=1-3 and j=1, 2. Here the functional form of gj (R1, R2, C1, C2, C3) (j=1, 2) is unspecific. Di (i=1-3)
denotes the death rate of the three consumer species, w(j)

i are biomass conversion ratios (see Sec.III.B).
At steady state, ẋi(j) = 0, we have

x
(1)
i ≡

R
(F)
1

R
(F)
2 K

(1)
i /K

(2)
i +R

(F)
1 +K

(1)
i

Ci

x
(2)
i ≡

R
(F)
2

R
(F)
1 K

(2)
i /K

(1)
i +R

(F)
2 +K

(2)
i

Ci
(i = 1-3), (S16)



where K(j)
i ≡ d

(j)
i +k

(j)
i

a
(j)
i

(i=1-3 ; j=1, 2). Hence
2∑
j=1

w
(j)
i k

(j)
i x

(j)
i =

(
w

(1)
i k

(1)
i R

(F)
1

R
(F)
2 K

(1)
i

/
K

(2)
i +R

(F)
1 +K

(1)
i

+
w

(2)
i k

(2)
i R

(F)
2

R
(F)
1 K

(2)
i

/
K

(1)
i +R

(F)
2 +K

(2)
i

)
Ci ≡ fi

(
R

(F)
1 , R

(F)
2

)
Ci. Substitute

the expression of
2∑
j=1

w
(j)
i k

(j)
i x

(j)
i into Equation S15, with steady-state condition Ċi = 0 (i=1- 3), we have


(
f1

(
R

(F)
1 , R

(F)
2

)
−D1

)
C1 = 0(

f2

(
R

(F)
1 , R

(F)
2

)
−D2

)
C2 = 0(

f3

(
R

(F)
1 , R

(F)
2

)
−D3

)
C3 = 0

. (S17)

If all consumers can coexist, fi
(
R

(F)
1 , R

(F)
2

)
= Di (i=1-3). These relations are depicted in a plane as

shown in Figure S3D. Compare Figure S3D with Figure 1E, it is evident that the three types of consumers
normally cannot all coexist (except for special cases).

This method can be extended to general cases of M > N , where we can obtain a general set of
equations in the form of Equations S14 and S17.

V Forming both chasing pairs and chasing triplets can overcome
CEP.

Considering again the consumption process, when a consumer is chasing a resource and forming a
chasing pair, other consumers, especially consumers of the same species may join to chase the same
resource individual. Consider the case of M = 2 and N = 1 (Figures 2A-B, we denote the combination of
both scenarios as P-T Model), but now two consumers of the same species can chase the same resource,
forming a chasing triplet (Figure 2B). The consumption process can be described as follows:

R(F) + C
(F)
1

a1 //
d1

oo R(P) ∨ C(P)
1

k1 // C(F)
1 (+)

R(F) + C
(F)
2

a2 //
d2

oo R(P) ∨ C(P)
2

k2 // C(F)
2 (+)

R(P) ∨ C(P)
1 + C

(F)
1

b1 //
e1
oo C

(T)
1 ∨R(T) ∨ C(T)

1

R(P) ∨ C(P)
2 + C

(F)
2

b2 //
e2
oo C

(T)
2 ∨R(T) ∨ C(T)

2

C
(T)
1 ∨R(T) ∨ C(T)

1

h1 // C(F)
1 (+) + C

(F)
1

C
(T)
2 ∨R(T) ∨ C(T)

2

h2 // C(F)
2 (+) + C

(F)
2

C
(T)
1 ∨R(T) ∨ C(T)

1

l1 // C(F)
1 + C

(F)
1 +R(F)

C
(T)
2 ∨R(T) ∨ C(T)

2

l2 // C(F)
2 + C

(F)
2 +R(F)

,

where C(F)
i (i=1, 2) andR(F) stand for freely wandering consumers and resources respectively, R(P)∨C(P)

i

(denoted as xi; i=1, 2) stands for chasing pairs, C(T)
i ∨R(T) ∨ C(T)

i (denoted as yi) stands for chasing
triplets, C(F)

i (+) (counted as C(F)
i ) stands for consumers caught and consumed the resources, and

ai, bi, di, ei, hi, ki and li stand for relevant parameters specified in Figures 2A and B. Denote R =



R(F) +
2∑
i=1

(xi + yi) and Ci = C
(F)
i + xi + 2yi (i=1, 2), the population dynamics can be written as follows:



ẋ1 = a1R
(F)C

(F)
1 − (d1 + k1)x1 − b1x1C

(F)
1 + e1y1

ẋ2 = a2R
(F)C

(F)
2 − (d2 + k2)x2 − b2x2C

(F)
2 + e2y2

ẏ1 = b1x1C
(F)
1 − (h1 + e1 + l1) y1

ẏ2 = b2x2C
(F)
2 − (h2 + e2 + l2) y2

Ċ1 = w1(k1x1 + h1y1)−D1C1

Ċ2 = w2(k2x2 + h2y2)−D2C2

Ṙ = g′ (R, x1, x2, y1, y2, C1, C2)

, (S18)

where Di (i=1, 2) denotes the death rate of the consumer species. At steady state, ẋi = 0, ẏi = 0 (i=1,
2), we have 

a1R
(F) (C1 − x1 − 2y1)− (d1 + k1)x1 − b1x1 (C1 − x1 − 2y1) + e1y1 = 0

a2R
(F) (C2 − x2 − 2y2)− (d2 + k2)x2 − b2x2 (C2 − x2 − 2y2) + e2y2 = 0

b1x1 (C1 − x1 − 2y1)− (h1 + e1 + l1) y1 = 0

b2x2 (C2 − x2 − 2y2)− (h2 + e2 + l2) y2 = 0

. (S19)

Define 

P
(i)
1 = (2di + 2ki − hi − li) bi,
P

(i)
2 = (hi + ei + li) ai,

P
(i)
3 = (di + ki)/ai,

P
(i)
4 = (hi + li) bi,

P
(i)
5 = (hi + li)/ai,

i = 1, 2. (S20)

From Equation S19

P
(i)
1 xi

2 +
[
P

(i)
2

(
P

(i)
3 +R(F)

)
+ P

(i)
4 C1

]
xi − P (i)

2 R(F)C1 = 0, (S21)

and

yi =
R(F)Ci −

(
P

(i)
3 +R(F)

)
xi

2R(F) + P
(i)
5

, (S22)

with i=1, 2. When P (i)
1 6= 0, note that 0 ≤ xi ≤ min (Ci, R), then

xi =

√[
P

(i)
2

(
P

(i)
3 +R(F)

)
+ P

(i)
4 Ci

]2
+ 4P

(i)
1 P

(i)
2 R(F)Ci

−
[
P

(i)
2

(
P

(i)
3 +R(F)

)
+ P

(i)
4 Ci

]
2P

(i)
1

≡ u′i
(
R(F), Ci

)
yi =

R(F)Ci−
(
P

(i)
3 +R(F)

)
u′
i(R

(F),Ci)
2R(F)+P

(i)
5

≡ v′i
(
R(F), Ci

)
(i = 1, 2). (S23)

Note that R(F) = R−
2∑
i=1

(xi + yi), combined with Equation S19, we get xi, yi of the following form:

{
xi = ui (R,C1, C2)

yi = vi (R,C1, C2)
(i = 1, 2). (S24)

Consequently,
wi(kixi + hiyi) ≡ Ω′i

(
R(F), C1, C2

)
≡ Ωi (R,C1, C2) (i = 1, 2). (S25)

Importantly, as long as bi 6= 0 (i=1, 2), there is no existence of such variable U ≡ U (R,C1, C2) that satisfy
the equality: Θi (U (R,C1, C2)) = Ωi(R,C1,C2)

Ci
(where function Θi is unspecific, see Sec V.A.2 for details).



At steady state, Ċi = 0 (i=1, 2) and Ṙ = 0. Substituting Equations S24-S25 into Equation S18, we get
Ω1 (R,C1, C2)−D1C1 = 0

Ω2 (R,C1, C2)−D2C2 = 0

g (R,C1, C2) = 0

, (S26)

where g (R,C1, C2) ≡ g′ (R, ui (R,C1, C2) , vi (R,C1, C2) , C1, C2).

A Intuitive explanation of why forming both chasing pairs and chasing triplets
can break CEP

1 Comparison between the classical case, chasing-pair scenario and chasing pair+triplet scenario

With Equation S26, we can give an intuitive explanation why forming both chasing pairs and chasing
triplets may break CEP using the functional forms of population dynamics at steady state. To illustrate
how the consumers are liberated from the constraint of CEP in the presence of chasing pairs and chasing
triplets, we compare it with the classical proof scenario described in Equation 1 and the chasing-pair
scenario described with Equation S12, in the case of M = 2 and N = 1.

In the classical case (Equation 1), if both consumers can coexist at steady state, fi (R) /Di = 1 (i=1,
2). Now we depict these relations in a three-dimensional space as shown in Figure 4A, where C1 is the
x-axis, C2 the y-axis and R the z-axis. The green plane corresponds to f1 (R) /D1 = 1 while the blue
plane corresponds to f2 (R) /D2 = 1. Note that in principle there could be multiple green/blue planes
if the equation fi (R) /Di = 1 has multiple solutions. These planes are parallel to the plane R = 0 and
hence do not share a common point (except for special cases).

In the presence of chasing pairs (Equation S12), if the two consumer species can coexist at steady
state, fi

(
R(F)

)
/Di = 1 (i=1, 2) (Equation S14). On one hand, we can depict these relations in Figure

S3C, where C1 is the x-axis, C2 the y-axis and R(F) the z-axis. The green plane corresponds to
f1

(
R(F)

)
/D1 = 1 while the blue plane corresponds to f2

(
R(F)

)
/D2 = 1. Those planes are parallel to the

plane R(F) = 0, and thus do not share a common point (except for special cases). On the other hand, we
can depict the relations in Equation S14 in a coordinate where the z-axis is R rather than R(F). As shown
in Figure 4B, the green surface corresponds to f1

(
R(F)

)
/D1 = 1 while the blue surface corresponds to

f2

(
R(F)

)
/D2 = 1. Essentially, it is a coordinate transformation from Figure S3C. With the knowledge of

topology (Kelley, 2017), we know that the green surface is parallel to the blue surface and normally do not
share a common point (except for special cases that two surfaces completely overlap).

In the presence of both chasing pairs and chasing triplets, we depict the requirement for coexistence at
steady state (Equation S26) in Figure 4C, where C1 is the x-axis, C2 the y-axis andR the z-axis. The green
surface corresponds to w1 (R,C1, C2) = D1C1, while the blue surface corresponds to w2 (R,C1, C2) =
D2C2, and the yellow surface corresponds to g (R,C1, C2) = 0. As determined from Equation S18,
the green surface is not parallel to the blue one, and thus they have at least one intersection curve
(shown as the dashed purple curve in Figure 4C). Since a curve and a surface can normally have an
intersection point, the three surfaces of different colors can normally have at least one intersection point
(shown as the red point in Figure 4C). As long as those intersection points locate within the feasible
region, i.e., min (R,C1, C2) > 0, the two consumer species can coexist at steady state. Numerical results
(exact solution) shown in Figures 4D-E and Figure S9 (comparable to Figures 4B-C) confirm our intuitive
explanation.

2 Triplets or higher order terms lead to symmetry breaking in the constraint of the CEP

The numerical results shown in Figure 4E and Figure S9 clearly demonstrate that in the presence of
both chasing pairs and chasing triplets, the three surfaces that correspond to Ċ1 = 0, Ċ2 = 0 and
Ṙ = 0 are unparallel to each other and can share an intersect point (red points in Figure 4E and
Figure S9). This means that in Equation S25, it is impossible for any variable, say U ≡ U (R,C1, C2)

to satisfy the equality:Θi (U (R,C1, C2)) = Ωi(R,C1,C2)
Ci

(where function Θi is unspecific). Otherwise,
Θi (U (R,C1, C2)) = Di (i=1, 2), the planes that correspond to Ċ1 = 0 and Ċ2 = 0 are parallel to the
C1-O-C2 plane (O is the origin point) in the (C1, C2, U (R,C1, C2)) coordinate and corresponds to parallel



surfaces in the (C1, C2, R) coordinate. Meanwhile, in the classical case, R corresponds to U (R,C1, C2)
and in the chasing-pair scenario, R(F) corresponds to U (R,C1, C2).

To investigate why there is no existence of U(R,C1, C2) in scenario involving both chasing pairs and
chasing triplets, we revisit the steady state form of Equation S18. Combined with Ci = C

(F)
i + xi + 2yi

(i=1, 2), then 
C

(F)
i = (Ci−xi)(hi+ei+li)

hi+ei+li+2bixi
,

R(F) = (di+ki)
ai

xi(hi+ei+li+2bixi)
(Ci−xi)(hi+ei+li)

+ bi(hi+li)
ai(hi+ei+li)

xi,

yi = bi
hi+ei+li

xiC
(F)
i = xi

bi(Ci−xi)
hi+ei+li+2bixi

.

i = 1, 2. (S27)

From the last two equations in Equation S27, we find that xi = xi
(
R(F)

)
,

yi = yi
(
R(F), Ci

)
= xi

(
R(F)

) bi(Ci−xi(R(F)))

hi+ei+li+2bixi(R(F))
.

(S28)

Then
Ωi (R,C1, C2)

Ci
=
wi
Ci

(
kixi

(
R(F)

)
+ hiyi

(
R(F), Ci

))
≡ Θ′i

(
R(F), Ci

)
, i = 1, 2. (S29)

Note that in Equation S29, only when bi = 0, can Θ′i
(
R(F), Ci

)
be reduced to Θ′i

(
R(F)

)
, otherwise there

is no existence of U(R,C1, C2). Consequently, the triplet term yi (bi 6= 0) breaks the symmetric constraint
in the equations form, i.e., the existence of U(R,C1, C2), which overcomes CEP. Similarly, P-T Variants
A-B (see Sec.V.C) or scenarios involving even higher order terms (e.g. quadruplet, quintuplets) are
subject to the same analysis above and results in no existence of U(R,C1, C2). Actually, chasing pair
scenario is a special case of P-T Model when bi = 0, and so does triplet scenario (with chasing pairs) for
quadruplet (or quintuplets et.al) scenarios (with chasing pairs and chasing triplets). Thus, the fact that
chasing triplet scenario can overcome CEP naturally means that all higher order terms scenarios (triplet
or higher) can break CEP. In sum, higher order terms (triplet or higher) lead to symmetry breaking in the
constraint of the equation form that overcomes CEP.

B Analytical solutions to steady-state species abundances

Generically, there is no closed form solution to Equation S18. However, when the abundance of resources
are much larger than that of consumers, R� C1, C2, which applies to almost all cases in the wild, then
R ≈ R(F). Combining these results with Ċi = 0 (i=1, 2) and ġ = 0,

xi ≈
[
P

(i)
2

(
P

(i)
3 +R

)
+P

(i)
4 Ci

]
2P
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4 Ci

]2 − 1

}
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P
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)
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2R+P
(i)
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.

Note that 4P
(i)
1 P

(i)
2 RCi[
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(i)
2

(
P
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3 +R

)
+P

(i)
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]2 ∼ 4P
(i)
1 RC

P
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2

(
P

(i)
3 +R

)2 ∼ C
R � 1, where ∼ means the same order of magnitude.

Then, using the approximation that
√

1− x ≈ 1− x/2 (when x� 1),
xi ≈ P
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P
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P

(i)
3 +R

)
+P
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Basically, the functional response:

fi(R,C1, C2) ≡ wi(kixi(R,C1,C2)+hiyi(R,C1,C2))
Ci
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]
depends on both consumer and resource, but not their ratio. Meanwhile, kixi + hiyi = Di

wi
Ci, then(
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P
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R � 1. With all these approximation,

then



C1 =
P

(1)
2 R (w1k1/D1 − 1)− P (1)

2 P
(1)
3

P
(1)
4

, (S30)

C2 =
P

(2)
2 R (w2k2/D2 − 1)− P (2)

2 P
(2)
3

P
(2)
4

. (S31)

We assume that the population dynamics of the resources follow Equations 4-5, then, for biotic
resources,

R =

√
P6

2 + 4P6P7 − P6

2
, (S32)

where P6 ≡ K0
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[
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w1
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2 P
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+
P
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. (S33)

Equations S30-S33 are the analytical solutions to the steady-state species abundances under the
approximation that R � C1, C2. In Figure 2F, we show the analytical solutions of biotic resource
case, which agree well with the simulation results. In Figure S6, we compared the analytical solutions
(Equations S30-S33, the approximate solutions) of both the biotic and abiotic resource case to the
numerical results (the exact solutions) at steady state, which overall shows good consistency for both
cases. Here we assign Di (i=1, 2) to be the only different parameter between consumer species C1 and
C2, then ∆ ≡ (D1−D2)/D2, the relative difference in mortality rate, measures the competitive differences
between the two consumer species. In Figure S6, we find that the analytical solution is closer to the
exact solution when two consumer species are similarly competitive, while it deviates more when the
competitive difference between the two consumer species gets larger within the coexistence region (the
analytical solution involves approximation). Overall, the analytical solutions (Equations S30-S33) are
good approximations to predict species abundances at steady state, while exact solutions are required to
identify the boundary of parameter space for species coexistence.

C Scenarios with other chasing triplet forms

To fully take into account scenarios involving different forms of chasing triplet (with the presence of
chasing pair), we further consider cases where the chasing triplet is formed between different species of
consumers (denoted as P-T Variant A, see Figure S4A) or either between the same or different species
(denoted as P-T Variant B, see Figure S4B).

In P-T Variant A (Figure S4A), the population dynamics can be written as follows:

ẋ1 = a1R
(F)C

(F)
1 − (d1 + k1)x1 − p2x1C

(F)
2 + s2z,

ẋ2 = a2R
(F)C

(F)
2 − (d2 + k2)x2 − p1x2C

(F)
1 + s1z,

ż = p1x2C
(F)
1 + p2x1C

(F)
2 − (q1 + q2 + s1 + s2+t) z,

Ċi = wi(kixi + qiz)−DiCi, i = 1, 2;

Ṙ = g (R, x1, x2, z, C1, C2) ,

(S34)

where xi ≡ R(P) ∨ C(P)
i represents the chasing pairs, z ≡ C

(T)
1 ∨ R(T) ∨ C(T)

2 represents the chasing
triplets, C(F)

i (i=1, 2) and R(F) stand for freely wandering consumers and resources, respectively. ai, di,
ki, pi, qi, si and t stand for consuming process relevant parameters specified in the figure captions of
Figure S4A. Ci = C

(F)
i + xi + z (i=1, 2) and R = R(F) + x1 + x2 + z are the populations of consumers

and resources, respectively. Di represents the mortality rate of the consumer species, wi is the biomass
conversion ratio. Assuming that the dynamics of resources g follows the construction principle as that of



the MacArthur’s Model (MacArthur, 1970, Chesson, 1990), we have

g (R, x1, x2, z, C1, C2)

=


RR0(1−R/K0)− (k1x1 + k2x2)− (q1 + q2)z,

for biotic resources.
Ra(1−R/K0)− (k1x1 + k2x2)− (q1 + q2)z,

for abiotic resources.

(S35)

In P-T Variant B (Figure S4B), the population dynamics can be written as follows:

ẋ1 = a1R
(F)C

(F)
1 − (d1 + k1)x1 − b1x1C

(F)
1 + e1y1 − p2x1C

(F)
2 + s2z,

ẋ2 = a2R
(F)C

(F)
2 − (d2 + k2)x2 − b2x2C

(F)
2 + e2y2 − p1x2C

(F)
1 + s1z,

ẏi = bixiC
(F)
i − (hi + ei + li) yi, i = 1, 2,

ż = p1x2C
(F)
1 + p2x1C

(F)
2 − (q1 + q2 + s1 + s2+t) z,

Ċi = wi(kixi + hiyi + qiz)−DiCi, i = 1, 2,

Ṙ = g (R, x1, x2, y1, y2, z, C1, C2) .

(S36)

where xi ≡ R(P) ∨C(P)
i represents the chasing pairs, yi ≡ C(T)

i ∨R(T) ∨C(T)
i and z ≡ C(T)

1 ∨R(T) ∨C(T)
2

represent the chasing triplets, C(F)
i (i=1, 2) and R(F) stand for freely wandering consumers and resources,

respectively. ai, bi, di, ei, hi, ki, li, pi, qi, si and t stand for consuming process relevant parameters
specified in the figure captions of Figure S4B. Ci = C

(F)
i + xi + 2yi + z (i=1, 2) and R = R(F) +

2∑
i=1

(xi + yi)+z are the populations of consumers and resources, respectively. Di represents the mortality

rate of the consumer species and wi is the biomass conversion ratio.
Assuming that g follows the construction principle as that of the MacArthur’s Model (MacArthur, 1970,

Chesson, 1990), we have

g (R, x1, x2, y1, y2, z, C1, C2)

=


RR0(1−R/K0)− (k1x1 + h1y1)− (k2x2 + h2y2)− (q1 + q2)z,

for biotic resources.
Ra(1−R/K0)− (k1x1 + h1y1)− (k2x2 + h2y2)− (q1 + q2)z, ,

for abiotic resources.

(S37)

In both P-T Variants, two consumer species can coexist either steadily (Figures S7A, C) or with sustained
oscillations (Figures S7B, D) when there is only one type of resource species.

D Non-special parameter space for species coexistence

To figure out if there is a non-zero measure parameter space to facilitate species coexistence, we set
Di (i=1, 2) to be the only different parameter between consumer species C1 and C2, and all capture
rates and escape rates are multiplied by δ (a dimensionless multiplier) (see Figures S8A, B, D). In all
Models (P-T Model and P-T Variants A-B), for a wide range of δ, we find that there is upper bound
tolerance for ∆ (Figures S8A, B, D), below which there are coexistence solutions for the two consumer
species (the colored region). In the case that the resources are abiotic or for some parameters of Ra,
the colored region all corresponds to stable coexistence (Figures S8A, D, blue region), while in the case
that the resources are biotic, for some other parameters of R0, there is a region corresponds to unstable
fixed point (Figure S8B, red region), which typically ends in a limit cycle. To demonstrate that species
coexistence under a non-zero competitive difference (i.e., ∆ > 0 when Di is the only different parameter
between two consumer species) really means a non-zero parameter space and the supremum of ∆ > 0
actually measures the likelihood for coexistence, we conducted random sampling analysis. Specifically,
we first chose all parameter exactly the same for two consumer species (corresponds to the orange
dot in Figure S8A). Then, all parameters except K0, D2 (two reducible parameters with dimensionless
analysis whose values can be set as arbitrary positive values, see Sec.VII for details) are multiplied by a
random number following normal distribution N (1, σ2). Obviously, σ measures the random extent of the



parameter and for each value of σ, we counted the steady coexistence percentage. The probability of
steady coexistence for different values of σ is shown in Figure S8C, the inverted red triangle denotes the
supremum of ∆ for species coexistence, which corresponds to the red dot in Figure S8A. When σ is small
(σ ≈ 0), the probability of steady coexistence is 1, while this probability drops with increasing σ. When
σ = 0.45, this probability approaches 0.1, and the supremum coexistence point of ∆, corresponds to a
probability about 0.3. Obviously, ∆ > 0 (when Di is the only different parameter between two consumer
species) demonstrates a non-zero measure parameter space for coexistence and the value of ∆ > 0
manifests the likelihood for coexistence.

As shown in Figures S8A, B, D, R0, the growth rate for biotic resource or Ra, the supply rate for abiotic
resource, might play a critical role for the stability of the fixed point. To further demonstrate this point, we
systematically studied the parameter space for stable coexistence. The results are shown in Figures 3
E-F and Figures S8E-H. Basically, scenarios involving different scenarios of chasing triplets (P-T Model
and P-T Variants A-B) have qualitatively similar behavior. Here, the region below the blue surface and
above the red surface are stable coexistence region, while the region below the red surface and above
∆ = 0 are the region for unstable fixed point. For abiotic resource cases, all fixed points are globally
attracting and thus stable (Figure 3F and Figures S8G-H). For biotic resource cases, when the value of
R0 is small, there is a unstable fixed point region, where trajectories typically end in a limit cycle; when
the value of R0 is large, all fixed point are stable (Figure 3E and Figures S8E-F). Importantly, there is a
non-zero parameter region for all models (P-T Model and P-T Variants A-B, biotic or abiotic resources)
where the two consumer species can stably coexist (below the blue surface and above the red surface,
Figures 3E-F and Figures S8E-H), which clearly demonstrates that the violation of CEP is not due to a
special set of model parameters.

E Breaking CEP is parameter dependent

Forming chasing pairs and chasing triplets is not a guarantee for breaking CEP. From numerical solutions
shown in Figure S10, the non-parallel surfaces may not own a common point in the feasible region (Figure
S10A) (see Figure S10D for the time series), and the fixed point might be unstable (Figures S10B-C),
which can end in an oscillating coexistence (see Figure S10B and the time series in Figure S10E) or one
consumer species dies out (see Figure S10C and the time series in Figure S10F).

VI Breaking CEP for any number of resource species.

We have already illustrated that in case N = 1 and M = 2, both species of consumers can coexist at
steady state and thus break the constraint of the CEP (Figures 2D, F and Figure S5D). Here we show
that for any N > 0, the constraint of CEP can be liberated. When N ≥ 2, we construct the following
scenario that M = N + 1 species of consumers can coexist at steady state in a natural ecosystem: For
consumer species Ci (i=1,...,N − 1), each species only feeds on one resource species Ri (i=1,...,N − 1),
respectively. Meanwhile, consumer species CN and CN+1 only feed on RN . Then, similar to the case of
N = 1 and M = 2, CN and CN+1 can coexist. Meanwhile, similar to the case in Sec.I.A.2, species Ci
(i=1,...,N − 1) can coexist together with CN and CN+1. Consequently, all N + 1 species of consumers
can coexist at steady state, with M = N + 1 > N .



VII Dimensional analysis for Models involving chasing triplets.

The equations for the population dynamics of P-T Model are shown in Equation 4 and Equation S18. For
biotic resource cases: 

ẋ1 = a1R
(F)C

(F)
1 − (d1 + k1)x1 − b1x1C

(F)
1 + e1y1

ẋ2 = a2R
(F)C

(F)
2 − (d2 + k2)x2 − b2x2C

(F)
2 + e2y2

ẏ1 = b1x1C
(F)
1 − (h1 + e1 + l1) y1

ẏ2 = b2x2C
(F)
2 − (h2 + e2 + l2) y2

Ċ1 = w1 (k1x1 + h1y1)−D1C1

Ċ2 = w2 (k2x2 + h2y2)−D2C2

Ṙ = RR0 (1−R/K0)− (k1x1 + h1y1)− (k2x2 + h2y2)

(S38)

Define dimentionless variables T,X1, X2, Y1, Y2, C
′
1, C

′
2, R

′, C
(F)(dim)
i , R(F)(dim) as follows.

T ≡ t/T0;

X1 ≡ x1/x10, X2 ≡ x2/x20;

Y1 ≡ y1/y10, Y2 ≡ y2/y20;

C ′1 ≡ C1/C10, C
′
2 ≡ C1/C20, R

′ ≡ R/r0;

C
(F)(dim)
i ≡ C ′i −Xi − 2Yi, i = 1, 2;

R(F)(dim) ≡ R′ − (X1 +X2 + Y1 + Y2) ,

(S39)

and we define dimensionless parameters (marked with ‘≡’) and chose the flexibe parameters as follow
T0 = N1(D2)

−1
, R0

′ ≡ R0T0, D1
′ ≡ D1T0, D2

′ ≡ D2T0 = N1;

ei
′ ≡ eiT0, li

′ ≡ liT0, ki
′ = kiT0, hi

′ = hiT0, di
′ = diT0, i = 1, 2;

a1
′ ≡ a1T0x10, a2

′ ≡ a2T0x10, b1
′ ≡ b1T0x10, a2

′ ≡ a2T0x10;

r0 = C10 = C20 = x10 = x20 = y10 = y20 = K0/N2.

(S40)

Here, N1 and N2 are two reducible parameters which can be either 1 or arbitrary positive numbers.
Substituting Equations S39-.S40 into Equation S38, we get

Ẋi = ai
′R(F)(dim)C

(F)(dim)
i −

(
di
′ + ki

′)Xi − bi′XiC
(F)(dim)
i + ei

′Yi

Ẏi = bi
′XiC

(F)(dim)
i −

(
hi
′ + ei

′ + li
′)Yi

Ċ1
′ = w1

(
k1
′X1 + h1

′Y1

)
−D1

′C1
′

Ċ2
′ = w2

(
k2
′X2 + h2

′Y2

)
−N1C2

′

Ṙ′ = R′ ·R0
′(1−R′/N2)− (k1

′X1 + h1
′Y1)− (k2

′X2 + h2
′Y2)

. (S41)

Note that all variables and parameters in Equation S41 are dimensionless. Compare Equation S41 with
Equation S38, it is clear that all equations have the same form except that N1 and N2 in Equation S41 are
reducible which can be either 1 or arbitrary positive numbers. Similarly, for the abiotic resource case in
P-T Model, or the biotic/abiotic resource cases in P-T Variants A-B, only two parameters: D2 and K0 are
reducible in the dimensionless expressions, which can be set as either 1 or arbitrary positive numbers.
For convenience, in our numerical calculations, we use the same parameter notation while they are all
dimensionless parameters. For the choice of N1 (D2) and N2 (K0), in the biotic resource case, we set
D2=0.005, K0=10; in the abiotic resource case, we set D2=0.004, K0=5.
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