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Abstract: Oral cancers constitute the majority of head and neck tumors, with a relatively high
incidence and poor survival rate in developing countries. While the five-year survival rates of the
oral cancer patients have increased to 65%, the overall survival for advanced stages has been at
27% for the past ten years, emphasizing the necessity for further understanding the etiology of the
disease, diagnosis, and formulating possible novel treatment regimens. MicroRNAs (miRNAs), a
family of small non-coding RNA, have emerged as master modulators of gene expression in various
cellular and biological process. Aberrant expression of these dynamic molecules has been associated
with many human diseases, including oral cancers. The deregulated miRNAs have been shown to
control various oncogenic processes, including sustaining proliferative signaling, evading growth
suppressors, resisting cell death activating invasion and metastasis, and inducing angiogenesis.
Hence, the aberrant expression of miRNAs associated with oral cancers, makes them potential
candidates for the investigation of functional markers, which will aid in the differential diagnosis,
prognosis, and development of novel therapeutic regimens. This review presents a holistic insight
into our understanding of the role of miRNAs in regulating various hallmarks of oral tumorigenesis.

Keywords: oral cancers; miRNAs; non-coding RNAs; invasion; apoptosis; metastasis

1. Introduction

Oral cancer constitutes a part of the head and neck squamous carcinoma (HNSCC),
and is one of the most common cancers afflicting millions worldwide [1,2]. It mostly arises
from the mucosal epithelial lining of the oral cavity, which includes the anterior of the
tongue, buccal cavity, lips, and lower alveolar ridges [3,4]. Although the five-year survival
rate is increased to 65%, diagnosis at advanced stages leads to a five-year survival of only
27%, necessitating the need for the development of early diagnosis and novel therapeutic
approaches in combating this disease [5-7]. Tobacco chewing and alcohol consumption are
the major risk factors associated with oral cancers [8]. Other factors include the chewing
of areca nuts, poor oral health hygiene, betel leaf, and human papillomavirus (HPV)
infection [9,10]. With the change in lifestyle and environmental factors, the incidence
of oral cancer is increasing at an unprecedented rate in developing countries [11,12].
Treatment modalities mostly rely on the position of tumor, identification of risk type
based on histopathology, and other comorbidities. At present, conventional therapeutic
approaches for oral cancers involve surgical resection at tumor sites, with or without neck
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dissection or chemotherapy, followed by adjuvant radiotherapy [13]. These approaches
present poor clinical outcomes in late stages with recurrence and distal metastasis being the
most common [12,14-16]. Thus, a molecular-level understanding of the tumor dynamics,
its heterogenicity, and its pathophysiology are imperative in the development of novel and
more efficacious therapies.

The discovery of small non-coding RNA molecules in gene regulation has revolution-
ized the clinical realm, providing newer impetus in the identification of their mechanistic
role in biological processes and human disease conditions. miRNAs are evolutionarily
conserved, endogenous, small non-coding RNA molecules of about 18-24-nt in length
that function as post-transcriptional gene regulators [17]. Since its identification in 1993
as small RNA molecule in Caenorhabditis elegans, it has been extensively studied and
well-characterized over the past decades [18]. miRNAs are known to regulate various
biological processes, such as proliferation, differentiation, apoptosis, immune response,
and maintenance of homeostasis [19-23]. These small dynamic RNA molecules regulate
gene expression by binding to the 3’-untranslated regions (3’-UTR) of target mRNAs, lead-
ing to post-transcriptional inactivation of the target gene, either by mRNA degradation
or inhibiting translation [24]. Due to its variability in the binding region and imperfect
complementary binding, a single miRNA can bind and target multiple mRNAs [25]. Dysreg-
ulation of these non-coding RNAs, due to genetic and epigenetic events, is found to disrupt
the balance of these pleiotropically acting molecules, in turn contributing to many human
disorders, including cancers [26,27]. Several studies have shown significant insight into
miRNA's role in tumor development and progression since its first discovery in cancer [28].
A regulator of cell proliferation, apoptosis, invasion, migration, and stem cell maintenance,
this noncoding RNA molecule, through recent studies, has also emerged as a controller
of tumor microenvironment (TME) remodeling and tumor metastasis [29]. Primarily, two
classes of miRNAs, oncomiRs and tumor suppressor miRs (TS-miRs), are observed that
regulate the expression of oncogenes and tumor suppressor genes, respectively [30]. Accu-
mulating evidence has shown insight into the functional role of the deregulated miRNAs
in controlling the expression of their target mRNAs, leading to regulation of signaling
pathways involved in oral cancer [31-33]. A total of 2300 true human mature miRNAs
have been identified, but their action on target mRNAs is challenging to characterize due to
their multi-target inherent nature. Although bioinformatics tools using different algorithms
and parameters are used to analyze effective miRNA: mRNA interaction, their prediction
accuracy is questionable [34]. Furthermore, miRNAs have been reported to possess unique
signatures in different cancer types, grades and stages of tumors, making them a promising
diagnostic and prognostic marker to detect the change in normal cellular function within
the tumor tissues [35,36]. Hence, a deeper understanding of these dynamic molecules holds
the key to the mechanism of oral cancer initiation and progression, which could further
help in the clinical management of oral cancer. Through this review, we will provide insight
into the role of these pleiotropically acting RNA molecules at different levels of hallmarks
in oral tumorigenesis and reflect on the chances of understanding and manipulating these
candidate molecules to develop newer diagnostic and therapeutic strategies.

2. MicroRNA Biogenesis

MiRNAs are highly conserved, small non-coding RNAs responsible for the modulation
of 60% of protein-coding gene expression in the human genome, at the translational level.
Increasing experimental evidence report miRNA genes to be distributed all along the
genome [37,38]. In humans, about half of the identified miRNAs are found as clusters that
are transcribed as polycistronic primary transcripts. miRNAs are present in four different
regions namely, genomic clusters, i.e., exons of protein-coding regions, introns of protein-
coding regions, and introns and exons of non-coding transcription units, but few of them
are also found in long interspersed nuclear elements, such as repetitive sequences [39].

miRNA biosynthesis is an extremely well-coordinated multi-step sequential process
that begins in the nucleus and ends in the cytoplasm, where miRNA carries out its primary
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function of post-transcriptional inactivation (Figure 1) [40]. They are transcribed by RNA
polymerase II leading to the production of pri-miRNAs, which are precursor RNAs of
several kilobases in length [41]. More than 30% of pri-miRNAs are transcribed from introns
of protein-coding genes, while some miRNAs are produced from specialized miRNA gene
loci. An individual pri-miRNA can either form a single miRNA or produce a different
cluster of miRNAs formed from a common miRNA primary transcript [42]. Drosha, a
microprocessor enzyme of the RNase III enzyme family along with DiGeorge syndrome
chromosomal (or critical) region 8 (DGCRS), a double-stranded RNA binding protein, is re-
cruited for further processing of the capped and polyadenylated pri-miRNA. Processing of
pri-mRNA results in the formation of pre-miRNAs, which are approximately 70 nucleotide
segments folded into stem-loop structures [43]. This is followed by a guanosine triphos-
phate (GTP)-dependent transport of pre-miRNA by exportin-5 to the cytoplasm. In the
cytoplasm, DICER1, and RNase III enzyme, further processes the pre-miRNA to produce
mature double-stranded RNA of nearly 22 nucleotides in length [44]. One strand of the
mature miRNA is hooked to miRNA induced silencing complex (miRISC complex) and
with the help of DICER1 and Argonaute (AGO), which directs it to target the comple-
mentary strand of mRNA. This is generally termed as the canonical processing of miRNA
biosynthesis [45]. Nonetheless, there have been findings according to which another subset
of miRNA, termed as mirtrons, which are pre-miRNA-like hairpin structures, undergo
splicing and debranching by evading the Drosha processing step. These structures directly
enter the pathway at as exportin-5 substrates. This mechanism is commonly known as
the non-canonical pathway of miRNA processing which is observed in miRNA produc-
tion using various other microprocessor molecules [46]. Though most miRNAs act in a
RISC dependent manner, a confined number of miRNAs in the nucleus, are known to
work non-canonically by demonstrating RISC independent activity. One major form of
non-canonical pathway for miRNA biosynthesis is the Mirtron pathway, where the mature
miRNA is processed with the Drosha independent mechanism [47]. Here, the 5" and 3
ends of pre-miRNA are cleaved by spliceosomes and debranching enzymes to generate
short hairpin structures. These pre-miRNA structures are then exported to cytoplasm by
Exportin 5, where it is cleaved by DICER enzymes. The major difference between the
two different forms of miRNA biosynthesis pathways is the bypassing of microproces-
sor step with the splicing machinery to merge with the canonical pathway of miRNA
biogenesis [47]. Recent studies have shown variability of Mirtron within the species of
mammalian and invertebrate origin in terms of splice acceptor sites, GC content and hair-
pin loop arrangement. Still, Mirtron has emerged as crucial regulators of gene expression
and further studies are needed to elucidate the exact biogenesis and mechanistic role of
these small hairpin structures in disease etiology [48]. Thus, miRNA portrays tremendous
versatility in the role it plays within the cell. Through different mechanisms, miRNAs in
both cytoplasm and nucleus have established their role in regulating gene expression [49].
miRNA induced silencing complex (miRISC) within the nucleus is found to regulate the
expression of small RNA molecules like long non-coding RNA through post-transcriptional
degradation. Studies have also revealed the role of miRNAs regulating the conversion of
the pri-miRNA into pre-miRNA through feedback loop mechanisms [50]. The evidence on
colocalization of miR-206 and 28s-rRNA has emanated inquiry into the role of miRNA in
ribosomal biogenesis [51]. Similarly, recent research indicates miRNA being a part of the
different cellular processes, such as alternate splicing and transcriptional gene activation
and silencing [52].
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Figure 1. A schematic illustrating the miRNA biogenesis and its regulation of gene expression by post-transcriptional

inactivation.
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3. MicroRNAs in Oral Cancer Pathogenesis

MiRNAs being the master regulator are known to modulate various hallmarks of
cancer, either by acting as oncogenes or tumor suppressor genes (Figure 2). miRNA
altered signatures disturb the biological balance that modulates various signaling pathways
leading to disease onset and progression. A growing body of research now aims to unravel
the miRNA regulatory network code involved in oral tumor pathogenesis (Table 1). From
a molecular outlook, since oral cancer is complex and relates to the host pathophysiology,
understanding these miRNA molecules, and their regulation would be a crucial step in
developing a more targeted type of cancer therapy.
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Figure 2. MicroRNA modulates oral tumorigenesis by regulating various hallmarks of cancer. The miRNAs represented in
the red circle indicates the tumor promoting or oncogenic miRNAs and the miRNAs represented in the blue circle depicts

the tumor suppressor miRNAs.
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Table 1. Different microRNAs and their targets involved in oral cancer initiation and progression.

miRNA Target Gene Mechanism or Functions Reference
miR-1 | SLUG 1 Tumorigenicity and invasiveness [53]
miR-1-3p DKK1 J Transit of SCC-4 cells from G0/G1 to S and 1 apoptosis [54]
miR-9 | CDK4/6 | 1 Cell-cycle arrest at G0/G1 and 1 apoptosis [55]
miR-10at GLUT1 1 Cell proliferation and glucose metabolism [56]
miR-10b 1 1 Cell migration and invasion [571
miR-16 | AKT3 and BCL2L2 J Tumor [58]
miR-17/20a | ITGRS8 1 Cell migration [59]
miR-18a-5pt Smad?2 } E-cadherin, and 1 Smad7 TGFp, «SMA, vimentin. [60]
miR-21 TNF-« Cell proliferation [61]
miR-21 1 1 Tumor size, metastasis and local invasion [62]
miR-21-3p 1 1 Metastasis [63]
miR-22 | NLRP3 . Cell proliferation, migration [64]
miR-23a-3p | FGF2 1 J Cell proliferation [65]
miR-23b | MET 1 1 Cell migration, invasion [66]
miR-26a MCL-1] 1 Apoptosis [67]
miR-27a-3p YAP1 J EMT [68]
miR-27b | MET 1 1 Cell migration, invasion [66]
miR-27b | TCTP | Novel plasma biomarker [69]
miR-29a| MMP2 1 J Cancer invasion and anti-apoptosis [70]
miR-29b CX3CL1 | 1 Cell migration and tumorigenesis [71]
miR-29b-3p | 1L32/AKT 1 Migration and invasion of OSCC cells [72]
miR-29b-1-5p 1 CDH1 T EMT [73]
miR-31 1 CXCL12 | 1 Progression from pre-cancer to cancer [74]
miR-31 1 SIRT3 1 Mitochondrial activity and 1 oxidative stress [75]
miR-31-5p ACOX1 1 Tumorigenic fitness and fcell migration and invasion [76]
miR-34a | IL6R | Cell proliferation, G1 E;/?;e arrest, metastasis and [77]
miR-98 | IGFIR J Tumor cell growth and metastasis [78]
miR-99a | mTOR 1 Growth and survival of OSCC [79]
miR-99a | MTMR3 1 1 Anti-metastasis [80]
miR-99a-5p| NOX41 |} Proliferation, migration, and invasion [81]
miR-101] ZEB1 1 Growth, metastasis, and apoptosis resistance [82]
miR-101-3p | COL10A1 1 1 Proliferation, invasion, and migration [83]
miR-106a/ LIMK1 J Proliferation and EMT [84]
miR-107 | TRIAP1 1 Cell proliferation and migration [85]
miR-124 | CCL2 and IL-8 | Tumor growth [86]
miR-125b | PRXL2A 1 J Oral oncogenicity [87]
miR-126 | VEGEF-A 1 Angiogenesis and lymphangiogenesis [88]
miR-133a-3p | COL1A1 7 J Proliferation, invasion, and mitosis [89]
miR-134 1 PDCD7 | J E-cadherin expression [90]
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Table 1. Cont.
miRNA Target Gene Mechanism or Functions Reference
miR-138 | YAP1 J Tumor and proliferation [91,92]
miR-138-5p | ANp63 1 J Growth, metastasis, and cancer stemness [93]
miR-139 1 Apoptosis through AKTsignaling [94]
miR-139-5p | HOXA9 1 J Tumorigenesis and progression [95]
miR-143 | HK2 J Growth of OSCC [96]
miR-145 | c-Myc and CDK6 1 Cell proliferation and 1 G1 phase arrest [97]
miR-145-5p | T Effects of photodynamic therapy and phototoxicity [98]
miR-146a | SOX2 1 Aggressiveness of OSCC [99]
miR-146a-5p 1 TRAF6 | 1 Proliferation, | TGF-f signaling [100]
miR-148b-3p RALBP1 J Tumor [101]
miR-155 1 1 Prognosis [102]
miR-155 1 CDC73 | 1 Cell proliferation [103]
miR-155-5p J E-cadherin [104]
miR-155-5p 1 ARID2 1 Proliferation, migration, and invasion [105]
miR-181a | Keras 1 Tumor, K-ras protein level, and luciferase activity of [106]
vectors
miR-182-5p 1 CAMK2N1 1 Growth, | activation of AKT, ERK1/2, and NF-«B [107]
miR-184 UCA1 and SF1 . Cell proliferation [108]
miR-186 | PTPN11 | Tumor, | signaling of ERK, and AKT [109]
miR-186 | Potential biomarker [110]
miR-188 | SIX1 } Proliferation and invasion [111]
miR-194 | AGK 4 Cell proliferatiop and. inhibits PI3K/AKT/FoxO3a [112]
signaling pathway

miR-195-3p CClL4 1 VEGF-C expression and lymphangiogenesis [113]
miR-195-5p | TRIM14 |} Proliferation, migration, and invasion [114]
miR-196b 1 T Migration and Invasion [115]
miR-199a-5p | SOX4 1 Migration and invasion of cells via targeting SOX4 [116]
miR-199a-5p | KK J Tumor via IKKp/ Ill;l—lzgcslieg;\;légtg pathway, T G0/G1 [117]
miR-200c | HOC313 J Tumor metastasis [118]
miR-200c-3p CHD9 and WRN 1 Invasion of OSCC [119]
miR-203 | YES-11 J Oncogenic activity and 1 apoptosis [120]
miR-203 | BMI-1 1 Apoptosis [121]
miR-203 SEMAG6A 1 Apoptosis [122]
miR-204-5p | CXCR4 1 } Proliferation and metastasis of OSCC cells [123]
miR-205 | AXIN2 1 1 Oral carcinoma oncogenic activity [124]
miR-205 | IL-24 1 Apoptosis [125]
miR-205-5p | TIMP2 J Invasiveness, regulpa;slsv[ "11"\511\1/)[;’2 gene and activates [126]
miR-211 1 BIN1 1 Proliferation, I}?&;%E?KZX}JIE ;221}?532;1, can inhibit the [127]
miR-214 1 RASSF5 | 1 FOXO3a phosphorylation, BIM expression, caspase 3, [128]

and apoptosis
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Table 1. Cont.

miRNA Target Gene Mechanism or Functions Reference
miR-216a EIF4B J Proliferation, migration, and invasion [129]
miR-218 PPP2R5A 1 Cisplatin resistance V}i)a;1 tt}}ll:v EI:}I]’PZRSA /Wnt signaling [130]
miR-218-5p | CD44-ROCK T Invasion by targeting the CD44-ROCK pathway [131]
miR-221 | TIMP3 1 71 Sensitivity of OSCC to Adriamycin [132]
miR-223 1 Novel diagnostic biomarker [133]
miR-223 1 FBXW7 | 1 Proliferation [134]
miR-299-3p| FOXP4 1 Proliferation and migration, 1 apoptosis [135]
miR-320 | NRP1 | Migration, adhesieonréi ca;ltr;il’;;l})sefl?srmation of vascular [136]
miR-338 | NRP1 J Growth and metastasis [137]
miR-340 | GLUTI 4 T Lactate se;c;‘siciifoer;,a tgilcl)lrf(c))sfe Ougpée&ke rate, and [138]
miR-372 1 LATS2 1 LATS2 expression [139]
miR-373 1 LATS2 | Survival rate [139]
i s | b Cell Mg id v by g o
miR-375 | IGE-1R 1 Growth and Zﬁ:;?;els ég(/iigf?;;tsizity, T cell cycle [141]
miR-377 | HDAC9 1 Growth, migration, and apoptosis [142]
miR-381-3p FGFR2 | | Proliferation and cell cycle progression [143]
miR-382-5p T Migration and invasion [144]
miR-424-5p 1 SOCs2 | T Oncogenic activity by | SOCS2 [145]
miR-429 | ZEB1 J Growth of OSCC [146]
miR-450a 1 TMEM182 1 Motility, | cell adhesion ability, and 1 invasiveness [147]
miR-455-5p 1 UBE2B | 1 Proliferation and tumorigenesis [148]
miR-483-5p Novel diagnostic biomarker [149]
miR-486-3p | DDR1 1 J Tumor [150]
miR-491-5p | GIT1 1 J Migration, invasion, and lung metastasis [151]
miR-494 1 Potential biomarker [110]
miR-494-3p Bmil | 1 Cellular senescence and 1 radiosensitivity [152]
miR-495 | Notchl 1 Cell proliferation and invasion [153]
miR-497 SMAD7 1 Metastasis [154]
miR-543 1 CYP3A5 1 Proliferation, invasion, and migration, | apoptosis [155]
miR-545 | RIG-I J Tumor [156]
miR-596 LGALS3BP J Tumor [157]
miR-650 1 GFI1 1 Proliferation, migration, and invasion [158]
miR-654-5p 1 GRAP | 1 Metastasis and C:iegr;laoﬂis;;?g 1\jl{gl:civa’ces Ras/MAPK [159]
miR-655-3p | MTDH 1 Cell proliferation and invasion by inhibiting [160]

PTEN/AKT signaling

miR-1246 1 CCNG2 1 Cancer stemness and chemoresistance [161]
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Table 1. Cont.

miRNA Target Gene Mechanism or Functions Reference
miR-1246 DENND2D 1 Cell motility [162]
miR-1246 1 1 Prognosis of OSCC [163]
miR-1254 | CD36 J Tumor [164]
miR-3651 1 Potential biomarker [110]
miR-4513 1 CXCL17 1 Cell proliferation, mlgratlon,'and invasion, promotes [165]
apoptosis
miR-5100 1 SCAIL | 1 Proliferation, migration, and invasion [166]

The arrows illustrated in the first column of the table represent the expression levels of miRNA in oral cancer tissues/cell lines. The second
column represent the targets of miRNA found in various studies. The third column indicates the mechanism of action of these miRNAs
in modulating various hallmarks of oral tumorigenesis. 1 denotes increase and | depicts decrease in either in expression/ function of

miRNAs.

3.1. Proliferation

Accumulating evidence has established the varied role of different miRNAs as essen-
tial regulators in the proliferation of oral cancer. miRNAs regulate oral cancer progression
by targeting various transcription factors and proliferative pathways. Increased expression
of miRNA-10a promoted oral squamous cell carcinoma (OSCC) cell proliferation through
the regulation of glucose metabolism by glucose transporter 1 (GLUT1) levels. Furthermore,
miRNA-10a and GLUT1 were found to be enriched in oral cancer tissues as compared to
healthy controls [56]. In another study, miR-211 was found to promote proliferation in
OSCC by targeting the bridging integrator 1 protein (BIN1) [127]. Mir-21 was reported to
regulate the proliferation in SCC-15 cells by targeting TNF-« expression, without inducing
any effect on the cellular apoptotic pathway [61]. A study identified cytochrome P450 fam-
ily 3 subfamily A member 5 (CYP3A5) as a direct target of miR-543 using in-silico analysis
and dual-luciferase reporter assays. The results of the study suggested that miR-543 serves
a vital role in OSCC proliferation [155]. Another study suggested the miR-375/SLCA11
axis as a major detrimental factor in promoting proliferation in CAL-27 and Tca8113 cell
lines [167]. Fang, Z. et al., (2017) demonstrated miR-184 as a tumor suppressor gene by
modulating the expression of long non-coding RNA urothelial cancer-associated 1 (UCA1)
and SF1. Reduction in miR-184 levels reversed the tumor-suppressive effects in OSCC cell
populations [108].

Increasing experimental evidences have implicated that miRNAs can also act as tu-
mor suppressor genes resulting in suppression of oral cancer progression. Knockdown of
miR-5100 suppressed proliferation of OSCC cells by increasing the populations of cells in
the G1 and G2 phases, and subsequent reduction in the S phase [166]. In another study,
fibroblast growth factor receptor 2 (FGFR2) was downregulated by miR-381-3p through
direct interactions with its 3’ untranslated region. Knockdown of FGFR2 recapitulated
the growth-suppressive effect of miR-381-3p. Conversely, restoring FGFR2 expression
attenuated miR-381-3p-induced effects in OSCC cells [143]. miR-299-3p was found to in-
hibit oral squamous cell carcinoma cell proliferation by targeting forkhead box P4 (FOXP4)
expression thereby promoting apoptosis [135]. The overexpression of miR-107 was iden-
tified to inhibit OSCC cell proliferation and target TP53 regulated inhibitor of apoptosis
1 (TRIAP1) to regulate the gene expression [85]. In another study, it was discovered that
the downregulation of miR-4513 expression inhibits cell proliferation by CXCL17, which
is a direct target of miR-4513. Knocking down the expression of CXCL17, inhibited the
effects of miR-4513 on OSCC cell behaviors [165]. miR-494 repressed the expression of
homeobox A10 (HOXA10) levels and was also observed to reduce the proliferation of oral
cancer cells [168]. In a study, miR-655 was found to suppress cell proliferation in OSCC by
directly targeting metadherin, a cell surface tumor-associated protein through PTEN/AKT
pathway [160]. Downregulation of miR-30a-5p decreased the levels of FAP which led to
the suppression of proliferation in OSCC cells [169]. An analysis of miR-101-3p showed
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that exosomes derived from human bone marrow mesenchymal stem cells overexpressing
miR-101-3p suppressed oral cancer cell proliferation. Furthermore, it was observed that
COL10A1 was upregulated, while miR-101-3p downregulated in oral tumor samples, and
miR-101-3p was directly targeting COL10A1 as verified by dual-luciferase reporter gene
assay [83]. Similarly, miR-133a-3p was also found to regulate COL1A1 expression levels,
thereby inhibiting the proliferation in various oral cancer cell lines [89]. In another study,
it was found that LIM Domain Kinase 1 (LIMK1) is a direct target of miR-106a in OSCC
cells and it inhibited the cell proliferation by directly decreasing LIMK1 expression [84].
mir-27b-5p and miR-372-5p were reported to bind to the 3'UTR region of proliferating cell
nuclear antigen (PCNA), hence reducing proliferation in OSCC cells [170]. Chen, F. et al.
(2019) analyzed the correlation between miR-23a-3p and prognosis of oral cancer patients.
It was found that fibroblast growth factor 2 (FGF2) was revealed as a direct target of
miR-23a-3p, based on luciferase assays and immunoblotting. Moreover, expression of miR-
23a-3p and FGF2 was found to be significantly downregulated and upregulated in OSCC
tissues respectively [65]. Apart from these, other studies have implicated different miRNAs
(miR-22 [64], miR-34a [77], miR-99a-5p [81], miR-138 [91,92], miR-145 [97], miR-155 [103],
miR-155-5p [105], miR-188 [111], miR-194 [112], miR-195-5p [114], miR-204-5p [123], miR-
211 [127], miR-216a [129], miR-223 [134], miR-340 [138], miR-455-5p [148], miR-495 [153],
miR-650 [158]) to be involved in proliferation of oral cancer. Hence a plethora of literature
indicated the immense role of miRNAs in regulating proliferation in oral cancers and
targeting these non-coding RNA molecules can help in circumventing this deadly oral
disease.

3.2. Apoptosis

Apoptosis is a naturally acquired programmed cell death, which is crucial for normal
biological process through the removal of unrepaired damaged cells [171,172]. Deregula-
tion in apoptotic pathways has been associated with various human diseases, including
cancers [173-175]. Since the previous decade, our understanding of the miRNA’s role
in regulating cell death has increased exponentially. Many reports have linked various
apoptotic genes as a direct target of miRNAs and their underlying importance in oral tumor
progression and drug resistance. Increased expression of miR-101-3p and miR-199b-5p
promoted apoptosis by suppressing BICC1 expression in TSCCA and SSC-9 cells [176].
A study showed that miR-203 induces the apoptosis of YD-38 human oral cancer cells
by directly targeting semaphorin 6A (SEMAG6A), suggesting its potential application in
anticancer therapeutics [122]. Later it was discovered that overexpression of miR-203
significantly increased not only DNA segmentation but also the apoptotic population in
YD-38 cells. Microarray analysis revealed that the expression of the polycomb complex
protein gene Bmi-1, a representative oncogene, was greatly downregulated by miR-203 in
YD-38 cells [121]. Another study reported the functional role of miR-376¢-3p in regulating
the cell cycle and apoptosis of human oral squamous cancer cells by suppressing homeobox
B7 (HOXB?). It was also involved in inducing G1/G0 arrest and directing apoptosis in
SCC-25 cells [177].

In another study, miR-26a was found to be overexpressed along with Bim and Bax,
in cells treated with metformin. These results suggest that the anti-proliferative nature
of metformin in KB human oral cancer cells might result partly due to the induction of
apoptosis by downregulation of Mcl-1 levels by miR-26a [67]. It was found that miR-139 can
induce apoptosis by regulating the AKT signaling pathway in Tca8113 cells which might
lead to the development of a more effective method for the treatment of oral cancer [94].
miR-548d-3p is known to inhibit apoptosis by regulating the JAK signal transducer and
activator of transcription (STAT) signaling pathway through binding to the 3’ UTR region
of SOCS5 and SOCS6. In a recent study long non-coding RNA maternally expressed gene
3 (MEG3) was shown to promote apoptosis by sponging the levels of miR-548d-3p [178].
Another study showed that overexpression of miR-486-3p led to the growth inhibition
and induction of apoptosis which was a similar phenotype observed by knockdown of
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discoidin domain receptor 1 (DDR1). It led to the conclusion that miR-486-3p functions
as a tumor suppressor in oral cancer by targeting DDR1. Moreover, it was also suggested
that miR-486-3p has the possibility of being transcriptionally co-regulated with its host
gene ANKT1 through epigenetic repression when treated with DNA methylation inhibitor
elucidating its potent role in targeting apoptosis [150]. miR-214 expression was observed to
be elevated and RASSF5 was down-regulated in oral cancer cell lines. Moreover, miR-214
regulated KB cell apoptosis through targeted inhibition of RASSF5 expression, FOXO3a
phosphorylation, and BIM expression, suggesting its plausible application as a novel
therapeutic oral cancer target [128]. Shang, A. et al. (2018) investigated the functional role
of miR-9 in the pathogenesis of oral squamous cell carcinoma. Downregulation of miR-9
was observed in tumor tissues and forced expression of the same promoted apoptosis via
targeting cyclin-dependent kinase 4/6 (CDK4/6) proliferative pathways [55]. miR-155 was
found to be upregulated in OSCC patients’ samples and further experimentation reported
that inhibition of miR-155 directly target p27Kip1, a cell checkpoint inhibitor to induce G1
arrest, increased cleaved caspase-3 activity, and promoted apoptosis in Tca8113 cells [179].
Moreover, other miRNAs (miR-1-3p [54] miR-29a [70], miR-101 [82], miR-205 [125], miR-
377 [142], miR-543 [155], miR-4513 [165]) have been found to play a crucial role in regulating
apoptosis in oral tumorigenesis. Hence, these results indicate the importance of miRNA in
modulating the apoptotic pathways, which result in the progression of oral cancers.

3.3. Epithelial-To-Mesenchymal Transition (EMT)

Studies carried out over the past decades have shown the detrimental role of EMT in
increasing the morbidity and mortality of human cancers [180,181]. The process, character-
ized by the loss of cell-cell adhesion, apical-basal polarity, and increment in the motility
of cell is known to be controlled by a set of molecules that play the role of effectors, reg-
ulators, and inducers of EMT [182-184]. A piece of robust transcriptional machinery is
essential for monitoring the expression of the epithelial and mesenchymal markers during
EMT [185,186]. miRNAs being the regulator of genetic code, plays a pivotal role in the
induction of EMT phenotype in oral cancers. miR-155-5p expression might contribute to
EMT-associated OSCC progression and serve as a biomarker for predicting relapse, espe-
cially for patients with early-stage OSCC. miR-155-5p has a multifaceted role in regulating
various EMT machinery by regulating different transcription factors and signaling path-
ways. A negative correlation was noted between miR-155-5p and E-cadherin expression,
suggesting that miR-155-5p plays an important role in EMT. Moreover, miR-155-5p was
found to assist EMT either by inducing transforming growth factor 31 or through the phos-
phoinositide 3-kinase/serum and glucocorticoid-regulated kinase 3/ 3-catenin signaling
pathway. Furthermore, miR-155-5p inhibitor transfected cells showed both, an increase
in a suppressor of cytokine signaling 1 (SOCS1) and a decrease in transcription factor
signal transducer and activator of transcription 3 (STAT3) in HSC-3 OSCC cells, possibly
suggesting that the activation of SOCS1 causing downregulation of STAT3 by inhibiting the
action of miR-155-5p. miR-155 also led to the downregulation of BCL6 expression and an
increase in cyclin D2 expression. This helped in the proliferation, migration, and invasion
of CAL27 OSCC cells as STAT3 generally functions as a tumor promoter in different malig-
nancies [187-190]. It is already a well-established fact that the BCL6 promotes EMT by the
Zinc finger E-box binding homeobox 1 (ZEB1)-mediated transcriptional repression of E-
cadherin in breast cancer cells. Thus, the study data from OSCC tissue samples established
a quantitative association between miR-155-5p and E-cadherin expression, its relapse, and
disease-free survival (DFS). Therefore, highlighting that miR-155-5p is potentially a key
modulator to determine the aggressiveness and the chance for relapse in OSCC [104].
Another study established the Yes-associated protein-1 (YAP1) as a direct target gene of
miR-27a-3p. An increase in miR-27a-3p could significantly decrease YAP1 expression along
with other EMT-associated markers in OSCC cell lines, including Twist and Snail. Further
studies revealed that miR-27a-3p downregulated the EMT-related molecules, possibly
through the regulation of SRY-box 2 (Sox2) via the YAP1-OCT4-Sox2 signaling axis. This
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study found that miR-27a-3p could inhibit the YAP1 directly by post-transcription silencing
and therefore, potentially suppress the EMT process. Thus miR-27a-3p is an important
player for the invasion and metastasis in OSCC through EMT inhibition [68]. Knockdown
of miR-29b-1-5p in OSCC suppressed the EMT, which was regained by the forced expres-
sion of c-Met. Moreover, cadherin 1 (CDH1) was a direct target of miR-29b-1-5p possibly
suggesting that the miR-29b-1-5p acts as an oncogenic miRNA that works in tandem with
c-Met to induce EMT in OSCC cells [73]. Another study found that the level of miR-106a
decreased significantly, whereas the expression of LIMK1 significantly increased in OSCC
cell lines. EMT and proliferation were severely inhibited by the knockdown of LIMK1 in
OSCC cells. Luciferase reporter assay confirmed that miR-106a directly targets LIMK1.
Thus, the study concluded that there is an inverse relationship between cell proliferation
and EMT and LIMK1 expression [84]. Thus, various miRNA'’s play a vital role in epithelial
to mesenchymal transition in oral cancer leading to tumor progression.

3.4. Invasion and Migration

The dissemination of a tumor cell is a complex phenomenon involving migration and
invasion as key characteristic features of metastatic tumors [191,192]. Increasing lines of
evidence advocate miRNAs as major players regulating the migration and invasion of oral
cancer. Experimental analysis of cancer-associated fibroblast-derived exosomal miR-382-5p
led to the conclusion that it promoted the invasion and migration of OSCC. Moreover, the
cancer-associated fibroblast (CAF) density in tumor tissues was found to be relevant to
OSCC lymph node metastasis and the tumor-node-metastasis (TNM) stage. Furthermore,
it was revealed that miR-382-5p was overexpressed in CAFs compared with adjacent
normal tissue, and upregulation of miR-382-5p was responsible for promoting OSCC cell
migration and invasion [144]. miR-196b was significantly overexpressed in OSCC tissues
compared with the corresponding adjacent normal tissue samples. Moreover, it was found
that the epigenetic regulation of miR-196b expression plays a pivotal role in modulating
cell migration and cell invasion during OSCC progression [115]. An analysis of miR-211
led to the conclusion that it promotes invasion and migration ability of OSCC cells via
targeting the bridging integrator 1 protein [127]. Another study discovered that miR-29b
promoted OSCC cell migration by downregulating CX3CL1, a cell-cell adhesion regulator,
which plays a pivotal role in miR-29b-regulated OSCC cell migration machinery [71].
Wei, Z. et al. (2019) demonstrated that the invasion and migration attributes of OSCC
cells were drastically reduced after treatment with miR-5100 inhibitor. Upregulation of
miR-5100 was observed with concomitant downregulation of suppressor of cancer cell
invasion (SCAI) levels in OSCC cells. Moreover, SCAI was verified as a direct target of
miR-5100 [166].

MiRNAs are also known to inhibit the invasion and migration of oral cancer and
could be used as a novel therapeutic strategy for metastatic cancer treatments. Recently,
miR-29b-3p was shown to act as a guarder that suppressed the migration of OSCC cells. It
was reported that miR-29b-3p regulated IL-32 through AKT signaling via direct binding to
the 3’ untranslated region of the IL-32 mRNA transcript [72]. In another study, miR-4513
expression was found to be elevated in the OSCC cell lines and the forced downregulation
of miR-4513 expression inhibited cell invasion and migration in OSCC [165]. Similar reports
of increased expression of miR-299-3p through introduction of mimics were found to inhibit
oral squamous cell carcinoma cells proliferation and migration [135]. Upregulation of miR-
543 promoted the invasion and migration of OSCC cell lines suggesting its oncogenic role
in oral cancers [155]. In vitro experiments using rescue of miR-377 resulted in repressed cell
growth, induced apoptosis, and reduced cell migration. Further analysis revealed miR-377
to directly target the 3'UTR region of HDAC9 mRNA transcripts [142]. Wei, D. et al. (2019)
explored the functional role of miR-199a-5p in oral cancer initiation and progression. The
findings reported that the overexpression of miR-199a-5p inhibited cell migration and cell
invasion, and blocked the epithelial-mesenchymal transition (EMT) cascade [117]. miR-655
is known to suppress invasion along with abrogating proliferation in oral squamous cell
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carcinoma by targeting metadherin [160]. Lu, L. et al. (2013) explored the role of miR-29a
in oral squamous cell carcinoma, and the results showed that exogenous overexpression
of miR-29a inhibited OSCC cell invasion and anti-apoptosis significantly by targeting
MMP-2. Moreover, knockdown of miR-29a promoted OSCC cell invasion and induced
drug-resistance in vitro [70]. MiR-205-5p was found to suppress the invasiveness of oral
squamous cell carcinoma by inhibiting tissue inhibitor of metalloproteinase 2 (TIMP2)
expression. The results also suggested that TIMP2 promotes tumor progression and miR-
205-5p directly regulates TIMP2, which leads to suppression of pro-MMP 2 activations
and inhibition of OSCC cell invasiveness [126]. In another study, miR-124 was found
to suppress oral squamous cell carcinoma motility by targeting integrin subunit beta 1
(ITGB1) [193]. Some miRNAs (miR-1 [53], miR-10b [57], miR-17/20a [59], miR-22 [64], miR-
23b [66], miR-27 [66], miR-31-5p [76], miR-99a-5p [81], miR-146a-5p [100], miR-155-5p [105],
miR-188 [111], miR-195-5p [114], miR-200c-3p [119], miR-216a [129], miR-218-5p [131], miR-
320 [136], miR-375 [140], miR-450a [147], miR-491-5p [151], miR-495 [153], miR-650 [158])
have been implicated in regulating invasion and migration of oral cancer. Thus, these
studies dictate the pivotal role and mechanism of miRNAs in modulating invasion and
migration of oral tumor cells in malignancy.

3.5. Metastasis

Metastasis is the spread of the primary localized tumor to new positions in the body
and is the major cause of cancer-related morbidity worldwide [194,195]. Tumors grow
and spread by intricate cross-talk between tumor cells, stromal cells, and its extracellular
matrix. As miRNAs behave as genetic switches in the physiological process, they are
known to be involved in regulating the reprogramming of molecular events associated
with metastasis. One of the studies reported that miR-204-5p could enhance OSCC cell
proliferation and metastasis. It was predicted as a regulatory miRNA of CXCR4 in OSCC,
and the data analysis strongly indicated a negative correlation between miR-204-5p and
CXCR4 expression in OSCC tissues from the patients [123]. A study showed that the levels
of miR-497 levels were significantly increased and that of SMAD7 were decreased in OSCC
patients’ specimens when compared to the adjacent non-tumor tissue. The 5-year survival
of the patients with higher miR-497 levels was found to be lower in the surgically resected
OSCC samples as compared to healthy controls. In silico analyses showed that miR-497
targeted the 3’-UTR of SMAD7 mRNA to inhibit its translation [154]. Next-generation
sequencing for miRNA profiling revealed that miR-21-3p was significantly overexpressed in
the OSCC tissues when compared with the corresponding normal tissues. Moreover, high
miR-21-3p expression levels were directly correlated with N classification with a p-value
of 0.042 [63]. Another study led to the conclusion that miR-99a repressed oral cancer cell
migration and invasion partly through decreasing myotubularin related protein 3 (MTMR3)
expression. It also led to the discovery that MTMR3 might serve as a therapeutic target for
oral cancer treatment [80]. In another analysis, miR-200c was reported to be downregulated
in OSCC tissues when compared with adjacent normal tissues. This showed that miR-
200c knockdown in the human oral cancer cell line HOC313 significantly suppressed
cell invasion and migration, indicating the ability to inhibit tumor progression [118]. In
another study, it was analyzed that miR-372 and miR-373 were upregulated in OSCC
tissues relative to the control mucosa. Among different clinical variables, overexpression of
miR-372 and miR-373 were closely related to nodal metastasis as well as lymphovascular
invasion and poor survival. Multivariate analysis showed that both high miR-372 and
miR-373 expression were independent predictors for poor survival in OSCC. Further, it
was found that miR-372 regulated LATS2 expression in OSCC cell lines [139]. Zhuang et al.
(2017) elucidated the functional role of miR-138-5p where it was found to target ANp63
which increases growth, metastasis, and stem-like properties of OSCC cells, and depletion
of ANp63 greatly represses the OSCC cellular phenotypes in vitro as well as in vivo. It
was also found that ANp63 isoform transcriptionally suppresses the expression of miR-
138-5p [93]. In another study, it was found that miR-98 inhibits cancer cell growth and
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metastasis by direct targeting IGF1R, implicating miR-98 as a novel potential therapeutic
target for OSCC [78]. As shown here, various studies have established miRNAs as essential
regulators of metastasis by mediating each step of this transformation.

3.6. Chemoresistance

One of the major problems faced by chemotherapeutics for oral cancer is the acquisi-
tion of drug resistance causing poor survival outcomes in patients [196,197]. Induction of
drug resistance inhibits the apoptosis triggered by the drug leading to increased survival
response and proliferation of tumor cells [198]. Recently, miRNAs are associated as essen-
tial regulators in the induction of survival responses leading to the acquisition of drug
resistance. In one study, exosomes derived from cisplatin-resistant OSCC cells released
miR-21 to induce cisplatin resistance in OSCC cells by targeting the phosphatase, tensin
homolog, and programmed cell death 4 receptor, as well as led to the decrease in DNA
damage signaling response to the cisplatin [199]. The results of another study indicated
that STAT3/miR-21 axis could be a plausible therapeutic target for OSCC chemoresistance.
It was suggested that STAT3 regulated the OSCC cell survival and confer DNA damage
resistance through the upregulation of miR-21 and its subsequent downstream targets,
including phosphatase and tensin homolog (PTEN), TIMP3, and PDCD4 [200]. Inhibiting
miR-1246 in oral cancer stem cells (OCSC) led to a reduction in the stemness hallmarks of
the cells, whereas the overexpression of miR-1246 led to enhancements of these characteris-
tics. Additionally, the downregulation of miR-1246 led to a decrease in chemoresistance
in OSCC cell lines. It was verified that miR-1246 inhibited CCNG2 which contributed to
the cancer stemness of OSCC [161]. In another study, it was confirmed that miR-654-5p
promoted chemoresistance of OSCC in vitro and in vivo. It regulates the OSCC progression,
likely, through the GRAP/Ras/Erk signaling pathway suggesting its important role as
a potential biomarker for the clinical diagnosis and prognosis of OSCC [159]. Recently,
Kirave et al. (2020) established the significance of exosomal-mediated miR-155 shuttling
in the cisplatin-induced chemoresistance, commonly observed in OSCC cells. Transfer of
extracellular vesicles to the cisplatin sensitive cells from resistant cell lines were found to
have a significant increase in miR-155 levels in the recipient sensitive cells. Restoration of
miR-155 triggered the epithelial to mesenchymal transition, increased migration potential,
and attainment of the resistant phenotype [201]. Thus, these studies indicate the potential
of miRNAs in inducing and regulating chemoresistance in oral cancer and their targets
could be used to direct the cancer cells to committed stages of cell death.

3.7. Radio-Resistance and Radiosensitivity

Various pieces of evidence suggest that oral cancer stem cells (OSCs) possess high
tumorigenic and metastatic properties leading to the acquisition of radio-resistance. This
in turn leads to disease recurrence and poor clinical outcomes in oral cancer patients. Very
few studies have presented miRNAs involvement in radiosensitivity and radio-resistance
for oral cancer. Upregulation of miR-494-3p in SAS OSCC cell lines led to an increase in
the population of senescence-associated [3-galactosidase positive cells with upregulation
of p16INK4a and retinoblastoma 1 (RB1) levels and downregulation of Bmi 1 expression.
Thus, the study showed that miR-494-3p could increase the radiosensitivity of OSCC
cells through the induction of cellular senescence caused by the downregulation of Bmi
1 [152]. A similar mechanistic study showcased that the andrographolide, derived from
the medicinal plant Andrographis, increased the expression of miR-218, resulting in the
downregulation of Bmil, hence reducing the stemness of cancer cells. Thus, the results
suggest that andrographolide is a viable natural compound for the treatment of OSCC
by increasing the radiosensitivity [202]. The downregulated miR-125b expression was
associated with proliferation and radio-resistance mechanisms in OSCC, likely through
intercellular Adhesion Molecule 2 (ICAM?2) signaling. In another study, the expression of
miR-125b was confirmed through real-time quantitative reverse transcriptase-PCR and
functional analysis revealed that the activity of miR-125b might contribute to suppressing
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proliferation and overcoming radio-resistance in OSCC [203]. Similarly, in another research,
it was demonstrated that miR-375 inhibits growth and enhances radiosensitivity in OSCC
cells by targeting IGF-1R. The upregulation of miR-375 caused a significant inhibition in
growth, induction of cell cycle arrest in GO/G1 phase, increase in apoptosis, and enhanced
radiosensitivity in OSCC cells, overall suggesting that miR-375 may be a potential thera-
peutic target for OSCC patients [141]. Although few studies potentiate the role of miRNAs
in inducing radioresistance in oral cancer, further studies are required to understand the
mechanisms and plausible targets to develop a combinatorial therapeutic regimen leading
to inhibition of tumor growth.

4. miRNAs as Biomarkers for Oral Cancers

One of the major causes of morbidity and poor survival of oral cancer patients is
the lack of detection at earlier stages [204]. Moreover, the current diagnostic methods,
such as oral examination or collection of biopsies, followed by histopathological analysis,
pose various drawbacks in terms of tissue heterogenicity, inaccurate stratification, surgical
complications leading to painful invasive procedures [205]. Hence, it is imperative to search
for non-invasive biomarkers that can detect the tumor at earlier stages and complement
the therapeutics to eliminate cancer [206]. miRNAs fit the profile for candidate biomarkers
because of their distinct and unique signatures in different cancer types when compared
with the adjacent normal [207]. Besides, being in high abundance, most of the miRNAs
are secreted in bodily fluids like the serum, saliva, and plasma, which can be convenient
for non-invasive diagnostic procedures [208]. Hence the utility of miRNAs as prospective
biomarkers should be explored further to establish them as potential biomarkers for the
clinical management of this oral malady.

The use of expression profiling to determine the molecular classification of the type
of human cancers has recently gained impetus in discovering novel biomarkers for di-
agnosis and establishing a therapeutic regimen [209,210]. Several studies have reported
the aberrant deregulation of miRNNAs in human cancers, including tumor tissues, serum,
plasma, and saliva [211,212]. Some of the relevant candidate miRNAs associated with the
deregulation in oral cancers have been listed in Table 2. Wong et al. (2008) was the first
to detect the aberrant expression of miRNAs in oral cancer. Microarray analysis revealed
the overexpression of miR-184 levels in 20 oral tumor tissues as compared to healthy
controls. Moreover, miR-184 was found to be upregulated in plasma and its expression
was decreased after surgical resection indicating it as a prognostic factor [213]. Further
exploration by the other groups potentiated the role of miR-184 in oral cancer, especially
at the surgical tumoral margin site advocating its importance in assessing the minimal
disease residue [214,215]. Since then, several studies have reported promising miRNAs as
biomarkers in different bodily fluids and at the tumor site. A retrospective study indicated
the unique signatures of miRNAs from 51 formalin-fixed oral tumor tissues. Upregulation
of miR-16, miR-21, miR-423, let-7i, miR-20a, miR-155, miR-106b, and miR-142-3p was
observed with concomitant downregulation of miR-375, miR-125b, and miR-10a [216].
Childs et al. (2009) revealed the differential miRNA expressed in oral primary tumor
tissues; miR-155, miR-21, miR-221, and miR-191 were found to be overexpressed, whereas
let-7d, miR-1, miR-205, and miR-133a were downregulated [217]. Moreover, miR-375 was
reported to be under-expressed and miR-200c, miR-21, and miR-34a were overexpressed in
tumor tissues when compared to the control tissues [218]. In a multi-cohort study involving
54 oral cancer patients, 7 patients suffering precancerous lesion, and 36 healthy individuals,
miR-10b was significantly expressed with receiver operating characteristic (ROC) analysis
(area under the curve (AUC) of 0.932 for oral cancer and AUC of 0.967 for precancerous le-
sions) indicating a high potency for its usage as an oral cancer biomarker [219]. Lamperska
et al. (2016) implicated the use of miR-21 and miR-205 to evaluate the clarity in surgical
margins of oral tumor tissues, but couldn’t correlate the miRNAs with clinical outcomes in
patients [220].
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Table 2. MicroRNAs as diagnostic biomarkers in oral cancer.

miRNA Source Expression in OSCC References
Let-7b Serum High [221]
Let-7d Serum Low [221]
miR-7 Serum High [221]

miR-9 Serum Low [222,223]

miR-16 Serum High [221]
miR-16 Tissue High [216]
miR-20a Tissue High [216]
miR-21 Blood High [224]
miR-21-3p Tissue High [225]
miR-24 Blood High [226]
miR-24-3p Saliva/ECVs High [227]
miR-25 Serum High [221]
miR-26a Plasma High [228]
miR-27b Saliva High [229]
miR-29a Serum Low [221]
miR-29a Blood Low [226]
miR-30a-5p Plasma High [230]
miR-31 Saliva High [231]
miR-31-5p Serum High [232]
miR-96-5p Tissue High [225]
miR-99b Plasma High [233]
miR-125b Tissue Low [216]
miR-125b Tissue Low [203]
miR-130-3p Tissue High [225]
miR-141-3p Tissue High [225]
miR-142 Serum Low [221]
miR-142-3p Tissue High [216]
miR-144-5p Plasma High [230]
miR-146a Tissue High [234]
miR-150-5p Plasma Low [221]
miR-155 Blood High [235]
miR-155 Tissue High [102]
miR-181 Tissue High [236]
miR-184 Tissue High [213]
miR-184 Serum High [237]
miR-187-5p Plasma High [238]
miR-191 Blood High [235]
miR-192-5p Plasma Low [233]
miR-194-5p Plasma High [233]
miR-195 Serum High [221]
miR-196a Plasma High [239]
miR-196b Plasma High [239]
miR-196a/b Tissue High [240]
miR-200b-3p Plasma High [241]
miR-205 Tissue Low [217]
miR-211 Tissue Low [242]
miR-212-3p Plasma High [233]
miR-214-3p Plasma High [233]
miR-223 Tissue Low [133]
miR-335-5p Plasma High [233]
miR-338 Serum Low [221]
miR-370-3p Plasma High [230]
miR-375 Tissue Low [216]
miR-375 Plasma Low [228]
miR-412-3p Saliva/ECVs High [243]
miR-483-5p Serum High [149]
miR-486-5p Plasma Low [228]
miR-491-5p Tissue Low [151]
miR-494 Blood High [235]
]

miR-512-3p Saliva/ECVs High [243
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Table 2. Cont.

miRNA Source Expression in OSCC References
miR-601 Plasma Low [233]
miR-603 Plasma High [233]
miR-624 Serum High [221]
miR-660-5p Plasma High [233]
miR-769-5p Plasma High [230]
miR-1303 Plasma High [233]
miR-3651 Blood High [110]

Recently, studies have advocated the exploration of circulating miRNAs present in
bodily fluids like the serum, plasma, or saliva, as it offers non-invasive strategies for
ameliorating the survival and quality of life of patients making miRNAs as next-generation
diagnostic tools. In a study, miR-24 was found to be significantly overexpressed in plasma
of oral cancer patients with a typical ROC curve (AUC) of 0.82 with high sensitivity [244].
Similarly, another study showed a positive correlation between overexpressed miR-24
levels in tumor tissues and the clinical stage [245]. High expression of miR-196a and miR-
196b was reported in the plasma of OSCC patients. Extensive ROC analysis (AUC of 0.864
and 0.960) suggested these miRNAs be unique and specific to oral cancer patients when
compared with the healthy controls [239]. Tachibana et al. (2016) identified 20 aberrant
and unique miRNAs from a subset of 1211 human miRNA array in gingival squamous
cell carcinoma samples. Interestingly, there were wide variations in the levels of miR-223
in the plasma and tissue of patients. miR-223 exhibited high levels in plasma whereas it
was downregulated in tumor tissues which could be due to its release in the bloodstream
from the tumor site as a defense mechanism to inhibit cancer growth [133]. A study
investigated the deregulated and significant miRNAs in 101 oral cancer patients and
103 healthy individuals. A significant increase in miR-483-5p serum levels was observed
which could differentiate cancer patients with high sensitivity and specificity of 85% and
74% respectively. Moreover, its upregulation in serum was positively correlated with the
tumor-node—metastasis (TNM) classification and lymph node metastasis suggesting its
plausible importance in the stratification of late and early-stage cancer [149].

A grade-specific increase in expression of miR-200b-3p has been reported in plasma
samples of grade II-III tumors when compared with grade I samples. Moreover, the
circulating levels of miR-200b-3p were decreased when the tumor was surgically removed.
It exhibited high sensitivity (90%) and specificity (88.75%) in the classification of oral
samples from healthy individuals [241]. In another study, miR-187-5p was upregulated
in plasma of 63 OSCC patients when compared with 23 healthy samples with an AUC
value of 0.73 indicating its high sensitivity [238]. Later, miR-187-5p was associated as an
oncogene to increase the proliferation and migration of oral cancer cell lines. A recent
study by Lu and his colleagues explored the selected five miRNAs (miR-31-5p miR-99a-
5p, miR-21-5p miR-375-3p, and miR-138-5p) based on previous reports and evaluated its
expression levels in serum and tissue of oral cancer patients. Increased expression levels
of miR-31-5p were observed in both serum and tissue samples, whereas serum levels of
miR-375-3p, miR-138-5p, and miR-99a-5p were associated with clinical outcomes [232].
Another study investigated the miRNome of cancer and healthy oral mucosa. miRNA-seq
platform analyzed the differentially regulated plasma miRNA in 55 OSCC patients and
18 healthy individuals. Notably, four miRNAs (miR-769-5p, miR-370-3p, miR-144-5p, and
miR-30a-5p) showed upregulation in plasma samples from cancer patients. Moreover,
the ROC analysis using the combinational approach of two miRNAs, miR-370-3p and
miR-30a-5p resulted in an AUC value of one suggesting it as a potential biomarker in oral
cancer diagnosis [230].

Genome-wide expression analysis of human saliva samples revealed distinct miRNA
signatures when compared with healthy controls. Upregulation of miR-24 and miR-27b
with decreased expression of miR-125a, miR-125a, miR-1250, miR-668, miR-136, miR-148a,
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miR-323-5p, miR-147, miR-200a, miR-503, miR-646, miR-877, miR-632, and miR-220a was
observed in saliva of OSCC patients [246,247]. Further studies with miR-27b associated
its expression with oral lichen planus, a precancerous lesion, and patients with OSCC
recurrence [229]. Gai et al. (2018) first reported the profile of salivary miRNAs present
in tumor-derived extracellular vesicles (ECVs). The study revealed miR-517b-3p and
miR-320-3p as unique miRNAs present in ECVs and increased levels of miR-512-3 and
miR-412-3p in oral tissues with AUC values of 0.847 and 0.87, respectively [243]. A phase ]
observational clinical trials with 360 participants are recruiting to investigate the clinical
utility of serum derived miRNAs unique signatures in high-risk oral precancerous lesions
(ClinicalTrials.gov Identifier: NCT03202810). Another clinical trial is ongoing to explore the
prognostic value of miR-29b in 100 oral cancer patients. Blood and saliva samples will be
collected over the period of the study and patient specific information with lifestyle factors
will be taken into consideration in this trial (ClinicalTrials.gov Identifier: NCT02009852). In
one of the Phase III interventional and randomized clinical trials, 62 participants will be
treated with metformin hydrochloride and their miRNA signatures will be evaluated for
establishing them as disease monitoring tools (ClinicalTrials.gov Identifier: NCT03685409).
These findings suggest miRNAs as plausible candidates to be used in the development of
novel diagnostic tools leading to the circumventing of oral tumorigenesis.

5. miRNAs as a Therapeutic Approach for Oral Cancer

Though the recent development of drugs and therapeutic strategies have capacitated
improvements in the diagnosis and treatment of oral cancer, the fact that the OSCC is the
most common cause of cancer-related death in head and neck cancers worldwide prompts
an urgent need for novel and more efficacious therapies [33]. Accumulating evidence on the
role of miRNAs in the development and regulation of oral cancers emphasizes the potential
of it being used as a therapeutic target [248]. With the advancement of newer forms of
technology, such as synthetic biology and nanotechnology, several RNA-guided medicines
are being developed and are extensively investigated [26,249]. The most alluring attribute
of using miRNA-based therapeutics is its silencing of genes in advanced stages of cancer
with utility in cancer detection at any stage. In addition to its specificity, targeting multiple
genes in pathways responsible for tumor progression is also an added benefit [250]. The
miRNA-based silencing approach has achieved lots of attention in cancer therapeutics due
to its fast, economical, and site-specific delivery parameters. The in vitro experimental data
shows promising results but optimization needs to be done for onsite delivery of this drug
in humans [251]. The main obstacles to achieving gene silencing in vivo arise due to the
instability of the RNA molecule, its low transfection efficiency, and distribution in the target
tissue [252]. Apart from these limitations, cross-talk with the differential feedback loops,
pleiotropic effects of genes, heterogeneity of the tumor, and reoccurrence of the tumor
after therapy are other challenges to onsite delivery of these small RNA molecules [253].
A plethora of literature indicated the application of using anti-miRs or miRNA mimics
as a novel therapeutic approach, as these molecules can manipulate miRNA expression
and function when delivered locally or systemically [254,255]. The identification of crucial
miRNAs with oncogenic or tumor-suppressive roles in OSCC has given a newer strategy
for their application in OSCC therapy.

Various in vitro and in vivo investigations have indicated the potential of miRNAs to
suppress various tumorigenic hallmarks of oral cancers. In one of the studies, miR-381-3p
mimics when transduced into SCC-9 and Tca-8113 cell lines, resulting in the downregula-
tion of FGFR2 leading to inhibition of proliferation and migration [143]. Another study
demonstrated that overexpression of miR-205 downregulated ZEB1, ZEB2, and N-cadherin,
and upregulated E-cadherin leading to reduced migratory and invasive attributes of oral
cancer cells [256]. Overexpression of miR-375 upregulated SCC-4 cell radiation-induced
apoptosis by regulation of IGFIR [141]. Fu et al. (2017) demonstrated that downregulation
of miR-155 leads to overexpression of CDKN1B, which in turn inhibited cell proliferation
and cell cycle progression in oral cancer Tca8113 cells [179]. A study revealed that cells
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transfected with miR-373-3p mimics exhibited downregulation in E-cadherin and CK18
levels with concomitant upregulation in N-cadherin expression [257]. Jiang et al. (2014)
showed that decreased levels of miR-222, induced chemosensitivity of oral cancer cells to
cisplatin (CDDP) and suggested a combination of anti-miR-222 and CDDP may result in
overexpression of p53, which regulates apoptosis could be a novel targeting approach [258].
Another study found that miR-205 targets the IL-24 promoter directly and induces gene
expression. Thus, miR-205 has a great therapeutic potential to turn on silenced tumor
suppressor genes [125]. Later, the same group also established that miR-205 suppresses
the oral carcinoma oncogenic activity via downregulation of Axin-2 in the KB human oral
cancer cell [124]. It was reported that miR-16 functions as a tumor-suppressor gene in oral
squamous cell carcinoma by targeting AKT3 and BCL2L2 [58]. Another study observed that
miR-125b suppresses oral oncogenicity by targeting the anti-oxidative gene PRXL2A [87].
A study of miR-181a showed its tumor-suppressive effect against oral squamous cell carci-
noma cells by downregulating K-ras expression levels [106]. In another study, it was found
that miR-338 suppresses the growth and metastasis of OSCC cells by targeting NRP1 [137].
miR-199a 5p was found to function as a tumor suppressor in oral squamous cell carcinoma
via targeting the inhibitor of nuclear factor kappa-B kinase subunit beta (IKKf{)/NF-«B
signaling pathway [117], which is quite interesting as IKKf3 /NF-«B has generally been
reported to promote tumorigenesis [259-262]. An analysis of miR-186 indicated it as a
tumor suppressor in oral squamous cell carcinoma by negatively regulating the protein
tyrosine phosphatase SHP2 expression [109]. Though a number of Phase I clinical trials
with systemically administered miRNA molecules conjugated with different delivery vehi-
cles are already complete for other chronic diseases, further clinical studies are imperative
to establish these new therapeutic efficacies in successfully and safely inhibiting targeted
gene products in patients with oral cancer.

6. Conclusions

It is now evident that miRNAs play a pivotal role in regulating different hallmarks of
oral tumorigenesis, such as proliferation, apoptosis, invasion, migration, and metastasis.
Moreover, recent research associate miRNA aberrant signatures in modulating chemoresis-
tance and radioresistance in oral cancer. miRNA regulatory network should be considered
as an intricate cross talk between the target mRNA and miRNA leading to post transcrip-
tional inactivation. The emergence of new miRNA knowledge and its potential role in the
cancer creates a new understanding of cell transformation. Hence, it is necessary to further
study about the different roles of miRNAs, which can contribute to early diagnosis, targeted
therapy, and prognosis evaluation of oral cancer patients. Though cancer-related miRNome
repertoire is ever-increasing, there exists a large-scale variation among the results of dif-
ferent studies. These variations could be due to change in study design, population size,
use of relevant controls (either adjacent normal or healthy control), methodology, pool
size, tumor heterogenicity, variability in ethio—physiology. Careful and logical selection,
along with functional characterization of miRNAs, is very crucial for understanding the
dynamics of miRNA regulation. Standardized and randomized validation research must
be undertaken to ensure the sensitivity, specificity, and robustness of the miRNA studies for
tailoring individual patient conditions leading to development of personalized therapeutic
regimen. Thus, it is necessary to do well-designed, multi-centered trials with large patient
groups, to mitigate external variations in data sets. This will provide useful and accurate
information for development of novel diagnostics and pave the way for more detailed
and precise studies on miRNAs and OSCC in general. Identifying basal threshold levels
or combining differentially expressed miRNAs could pave the way for development of
early diagnostic and prognostic tools. Many possibilities present for miRNA in oral cancers
include targeting genes that appear to be mediators in cancer progression, discovering
novel biomarkers for early diagnosis, identifying molecular targets, and engineering de-
livery vehicles conjugated with DNA as therapeutic devices; thus, representing the ideal
theranostic approach. A better understanding of the putative miRNA targets through
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in silico pathway and validation analysis would open up different perspectives for more
refined and effective therapeutic regimens combating oral cancer.
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