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Abstract

Background: Knowledge of the relationships between patient-reported and
performance-based walking measures in Parkinson’s disease (PD) should inform clini-
cal decision-making. The Walk-12G reliably captures perceived walking difficulties
but has not been compared to performance-based walking in laboratory or free-
living settings or across different groups.

Objectives: To investigate the relationship between patient-reported walking diffi-
culties (Walk-12G) and performance-based walking in laboratory and free-living con-
ditions and to determine whether the Walk-12G can distinguish between the
subgroups, (i) people with/without PD and (ii) mild/moderate disease stages.
Methods: Forty-seven people without and 49 people with PD (Hoehn and Yahr stage
Il and 11l) were assessed in relation to patient-reported walking difficulties (Walk-12G
scale); spatiotemporal gait characteristics (Pace; Rhythm; Asymmetry; Variability;
and Postural control) using a laboratory-based electronic walkway; and walking be-
havior (mean steps/day and minutes of brisk walking/day) using accelerometers in
free-living conditions.

Results: The Walk-12G correlated moderately with the spatiotemporal domain step
velocity (r = -0.46) and walking behavior, measured as mean steps/day (r = -0.46).
Weaker correlations were observed for step length and minutes spent in brisk walk-
ing (r=-0.36 and r = -0.35, respectively). Poor correlations were observed for all
other spatiotemporal domains. The Walk-12G could distinguish between people with
and without PD (Effect size, r = 0.82) and between those at mild/moderate disease
stages (r = 0.34).

Conclusions: Perceived walking difficulties showed weak to moderate associations
with performance-based measures of walking in mild-moderate PD. As the strongest
associations were observed for step velocity and walking behavior, targeting these

specific gait aspects could improve perceived walking difficulties in daily life.
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1 | INTRODUCTION

Impairments in gait manifest in the early disease stages of Parkinson’s
disease (PD) and gradually increase in line with disease progression
(Galna, Lord, Burn, & Rochester, 2015; Hausdorff, 2009). PD-specific
gait impairments, such as shorter, more variable, and shuffling steps,
can lead to a negative spiral of activity limitations, physical inactivity,
and muscle weakness, which further predisposes this group to falls
and related injuries (Allen, Schwarzel, & Canning, 2013; Lord, Godfrey
et al.,, 2013; van Nimwegen et al., 2011). Additionally, impaired gait
negatively affects a person’s social participation, which can further
reduce quality of life (Hammarlund, Andersson, Andersson, Nilsson,
& Hagell, 2014). Gait training is therefore an integral approach within
PD rehabilitation, and there is strong evidence that improvements in
walking can be maintained up to 6 months after training has ceased
(Mak, Wong-Yu, Shen, & Chung, 2017). Assessment of walking is not
only an essential marker of rehabilitation effectiveness, but can also
potentially identify those at risk for physical inactivity or falls who re-
quire targeted preventive efforts (Canning, Paul, & Nieuwboer, 2014).
Walking is a multidimensional activity that can be assessed using
a range of clinical outcome assessments. These assessments are se-
lected to measure a specific concept of interest and can be classi-
fied according to the person or means by which judgment affected
the measurement; patient-reported; clinician-reported; observer-
reported; or performance outcomes (Walton et al., 2015).
Performance outcomes at the microlevel of gait assessment
include spatiotemporal characteristics, which are reliably cap-
tured using electronic walkways (Godinho et al., 2016). A recent
gait model, validated on a PD population, found five independent
domains to represent the overarching construct of gait—Pace;
Rhythm; Variability; Asymmetry; and Postural control (Lord, Galna,
& Rochester, 2013). Whereas the PD-specific symptoms, bradykine-
sia and rigidity, contribute to disturbances in the Pace and Rhythm,
the unilateral debut of these symptoms manifests as increased gait
Asymmetry (Lord, Galna, Verghese et al., 2013; Peterson & Horak,
2016). Gait Variability increases in line with disease progression
and may have the potential to predict falls in PD (Hausdorff, 2005,
2007). Impaired Postural control is seen in the size of voluntary
and reactive stepping responses and can be measured using step
width (Peterson & Horak, 2016). According to the International
Classification of Functioning, Disability and Health, gait analysis
using electronic walkways represents measures of walking capac-
ity in a standardized test situation. However, laboratory-based gait
assessments are often conducted during highly controlled circum-
stances in a specific situation and may not represent actual walking
behavior, thereby limiting the ecological validity. Instead, walking
behavior in everyday life can be measured using accelerometers,
which are wearable devices measuring body acceleration during a
specific wear-time period (Matthews, Hagstromer, Pober, & Bowles,
2012). Measuring walking in everyday life is especially relevant in
PD as this group are less physically active than people without the
disease (van Nimwegen et al., 2011). While such objective gait as-
sessments provide important information, they are not feasible in

most clinical settings. Self-reported measures, on the other hand,
are easily accessible and provide important complementary informa-
tion. As individual perception of one’s abilities in a specific situation
is likely to influence actual behavior, it appears highly relevant to
investigate how this relates to actual abilities, particularly regarding
waking in individuals with PD. Indeed, due to the progressive nature
of PD, it is vital to remain physically active, while at the same time be
conscious about limitations in order to avoid injuries. Indeed, exces-
sive risk-taking has been identified as a particular risk factor for falls
in individuals with PD (Smulders, Esselink, Cools, & Bloem, 2014).
To achieve collaborative patient-centered rehabilitation in PD, it
is necessary to target and assess training which is responsive to pa-
tient preferences. Therefore, when assessing walking, performance
measures should be complemented with patient-reported measures
reflecting perceived difficulty in everyday life (van der Eijk, Nijhuis,
Faber, & Bloem, 2013). The generic walking scale (Walk-12G) is a
patient-reported measure of walking difficulties in 12 everyday situa-
tions. It stems initially from a Multiple Sclerosis Walking questionnaire
(Hobart, Riazi, Lamping, Fitzpatrick, & Thompson, 2003), was adapted
for other neurological conditions (Holland, O'Connor, Thompson,
Playford, & Hobart, 2006) and then into a non-disease-specific ver-
sion which is available in Swedish (Bladh et al., 2012). The Walk-12G
is quick to complete and shows good data completeness and high
test-retest reliability in PD, which further motivates its clinical ap-
plication (Bladh et al., 2012). Although moderate correlations are re-
ported between the Walk-12G and clinical assessments of mobility
and gait speed in a small sample of people with PD (Bladh et al., 2012),
no previous study has tested the extent to which the scale relates
to capacity or behavior-based measures of walking in controlled and
free-living environments. Such knowledge would highlight the extent
to which objective performance-based measures are in line with how
people with PD perceive their walking ability. This information would
in turn further enable clinicians to target those aspects of gait most
strongly linked to patient-perceived walking ability. Additionally, it
has not been confirmed if the Walk-12G can differentiate between
different subgroups of individuals with established differences in
walking abilities, such as people with and without PD and between
people with different PD severity. This knowledge would add to the
interpretability of the Walk-12G and provide further evidence for its
clinical application. This study aims to investigate the relationship
between patient-reported walking difficulties in PD (the Walk-12G)
and performance-based measures of walking tested in laboratory and
free-living conditions. We also aimed to investigate the ability of the
Walk-12G to discriminate between healthy older adults and people

with PD and between those with mild and moderate disease severity.

2 | METHODS

2.1 | Design

This was a preplanned cross-sectional study whereby data collec-
tion of patient-reported walking measures was added to the follow-up
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assessments of people with PD who had previously participated in a
randomized controlled trial (RCT) of a 10-week balance training inter-
vention (Trial number: NCT1417598). Data collection for people with PD
occurred at the 9th or 12th month follow-up of the training intervention.

2.2 | Participants

We included 49 people with PD according to the following inclusion
criteria; Neurologist diagnosed idiopathic PD (Queen Square Brain
Bank Criteria); mild-moderate disease stages (stages 2-3 according
to the Hoehn and Yahr scale), Mini-Mental State Examination score
224 points and age 260 years. Exclusion criteria included coexisting
neurological conditions affecting balance. All people with PD had
participated in an RCT 1 year prior to the testing procedure. People
without PD (n = 47) were recruited according to similar criteria (apart
from PD diagnosis) and data collection occurred cross-sectionally.
All participants received written and verbal information about the
study prior to inclusion and provided written informed consent upon
inclusion. The study was approved by the regional Ethical Review

Board in Stockholm, Sweden.

2.3 | Procedure

Testing occurred during 2013-2014 at Karolinska Institutet, and com-
menced with an interview, followed by questionnaire administration
and concluded with capacity tests to avoid performance influencing
participants’ subjective reports. People with PD followed their nor-
mal scheme of medication intake and were tested during their medi-
cation ON state. Accelerometers were distributed at the end of the
test sessions along with verbal and written instruction for continuous
wear (apart from during bathing and sleeping) during a 7-day period.

Participants also filled in a wear-time diary during this period.

2.4 | Outcomes measures

2.4.1 | Patient-reported walking difficulties

The Walk-12G was self-administered by participants at the test site.
The total score ranges between 0 and 42 points, with higher scores
reflecting greater perceived walking difficulties and responses refer
to perceived walking difficulties during the previous 2 weeks. The
first two items explore the frequency of perceived need to use sup-
port when walking indoors and outdoors, whereas the third item
concerns the ability to run (items 1-3, response categories = 0-2).
The remaining 9 items explore perceived difficulty regarding as-
pects of walking such as; exertion level; instability; distance; walking
speed, and stair climbing (response categories = 0-4).

2.4.2 | Spatiotemporal gait characteristics in the
laboratory setting

Spatiotemporal gait variables were collected in a gait laboratory dur-
ing intermittent walking on a 10-m pressure sensor mat (GAITRite;
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CIR Systems Inc., Franklin, NJ, USA). The GAITRite mat records each
foot imprint using pressure sensors (active zone 8.3 meters) and
is considered a gold standard for spatiotemporal gait assessment
(Bilney, Morris, & Webster, 2003). Participants were instructed to
walk at “a normal comfortable pace” and the average values for six
walks was used in the analysis. To ensure a steady-state walking
speed, participants walked a distance of 3 m at both ends of the walk-
way to allow for acceleration and deceleration. Five independent gait
domains, each consisting of two subdomains, were calculated from
the GAITRite data output and included; Pace (Step velocity and Step
length); Rhythm (Step time and Swing time); Variability (Step length
variability and Step time variability); Asymmetry (Swing time asym-
metry and Step time asymmetry); and Postural control (Step length

asymmetry and Step width) (Lord, Galna, Verghese et al., 2013).

2.4.3 | Walking behavior in free-living environments

Walking behavior was measured using the Actigraph GT3X+ ac-
celerometer (Actigraph Pensacola, FL, USA) which assesses the
frequency, duration, and intensity of physical activity in free-living
conditions. The accelerometer records time-varying changes in ac-
celeration in three planes of the axis; vertical; anteroposterior; and
mediolateral. These data thresholds are previously validated using
criterion measures in comparison with total energy expenditure
(Sasaki, John, & Freedson, 2011) and have been tested for reliabil-
ity. The outcomes mean steps per day and minutes of brisk walking
(minutes of walking >1.05 m/s) per day represent walking behavior.
In the calculation of these outcomes, raw acceleration data was fil-
tered and translated into counts using the “ActilLife 6” software. Data
settings were chosen using a 15-s epoch and episodes of 290 min of
no registered acceleration were recorded as non-wear time and ex-
cluded from the analysis. Data from a minimum of four and maximum
of 7 days was included and days where wear time was <540 min
were excluded from the analysis according to recommendations
(Matthews, Ainsworth, Thompson, & Bassett, 2002). Calculation of
minutes of brisk walking was based on a previous calibration study
among people with PD (Nero, Benka Wallen, Franzen, Stahle, &
Hagstromer, 2015).

2.4.4 | Data analysis

Statistical analyses were performed using Stata 15.1 (StatCorp.,
College Station, TX, USA). The normality of the data distribu-
tion for each outcome measure was assessed using descriptive
statistics and visual data inspection. Due to the skewed nature
of the data Spearman’s rho test was used to test the strength of
the correlation between the Walk-12G and performance-based
measures. The strength of the correlations was classified as;
<0.40 = poor, 0.41-0.60 = moderate, 0.61-0.80 = good, and 0.81-
1.00 = very good (Riffenburgh, 2012). Multiple comparisons were
accounted for using the Bonferroni adjustment. Nonparametrical
Mann-Whitney U tests were used to establish the between-group
differences in total Walk 12-G score among (a) People with and
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without PD and (b) those at H & Y stage Il and Ill. Effect size (ES)
was calculated to estimate the magnitude of the between-group
differences. We used the following formula to calculate effect size
from nonparametric tests r = Z/vn (Fritz, Morris, & Richler, 2012).
Cohen reports the following intervals for r; 0.1-0.3, small effect;
03-0.5, medium effect; and 0.5 and higher, large effect (Cohen,
1988). Receiver operating characteristic (ROC) curves were calcu-

lated and areas under the curve (AUC) estimated as a test of how

People with PD (n = 49)

People without PD (n = 47)

well the Walk-12G performed distinguishing between different
groups (people with/without PD and at those at mild/moderate
disease stages) with regards to sensitivity (true positive propor-
tion) and specificity (true negative proportion) (Swets, 1988). In
terms of discriminative strength, AUC values between 0.5 and 0.7
were considered poor; 0.7 and 0.9 were considered moderate; and
above 0.9 considered excellent (Hanley & McNeil, 1982). Although

ROC curves are measures of diagnostic accuracy, it should be

TABLE 1 Characteristics of all
participants, n = 96

Demographics Mean (SD)? Range Mean (SD) Range
Sex (Female), n (%) 28(50.9) 20 (42.5)
Age (year) 75 (5.9) 63-89 71 (6) 60-88
Body mass index 25.7 (3.5) 17.6-32.9 23.9 (2.3) 19.6-29.6
Years with PD, median 6(3-9) 1.5-26 - -
(q1-g3)°
Hoehn & Yahr stage®
I, n (%) (1) 22 (45)
111, n (%) (111 27 (55)
MMSE,? median (q1-q3) 28 (27-29) 24-30 29 (27-29) 25-30
GDS,* median (q1-g3) 3 (1-6) 0-12 1(0-2) 0-7
Mobility
Walking aid indoors, n (%) 4 (8) - 0 -
Walking aid outdoors, 20 (41) - 2 (4.3) -
n (%)
UPDRS motor (Part I1)f 40(10.9) 12-67 - -
Physical functioning,® 65 (45-80) 5-95 29 (28-30) 0-30
median (q1-q3)
Freezing during walking", n (%)
Never/seldom 39 (79.6)
Sometimes 5(10.2)
Often 5(10.2)
Balance and falls
Mini-BESTest' 19.8 (3.9) 10-27 22.8(2.6) 16-27
Falls previous 24 (47) 8(17)
12months, n (%)
Falls efficacy _ 27.7 (8.4) 16-48 179 (2.1) 16-24
scale-international’
Patient-reported walking difficulties
Walk 12-G, median 12 (7-20)
(a1-a3)
Daily levodopa 635 (306) 120-1,846 - -

equivalent dose (mg)

Notes. PD, Parkinson’s disease.

25D, standard deviation unless otherwise stated. °q1-q3, 25th-75th percentile. “Stages |-V of dis-
ease progression (I =minimal disability, V = confined to bed/wheelchair). dMini-Mental State
Examination, 0-30 (higher score = greater impairment). Geriatric Depression Scale, 0-20 (higher
score = greater likelihood of depression). "Motor examination of the Unified Parkinson’s Disease
Rating Scale, 0-108 (higher score = greater severity). 8Physical functioning scale of the SF-36,0-100
(higher score = lesser severity). Pltem 14 of the Unified Parkinson’s Disease Rating Scale- Activities
of daily living (UPDRS-ADL). ‘Mini-Balance Evaluation Systems Test, 0-28 (higher score = better bal-
ance). JFalls Efficacy Scale-International, 16-64 (higher = greater perceived difficulty).
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stressed that we do not consider the Walk-12G suitable for deter-

mining the presence or absence of PD or disease severity.

3 | RESULTS

Ninety-six subjects performed the testing and were included in the
analysis (PD, n = 49, people without PD, n = 47). Disease duration for
the PD group ranged from 1.5-25 years. Demographic, mobility, and
balance characteristics are outlined in Table 1. Two participants had
undergone a Deep Brain Stimulation (DBS) procedure.

3.1 | Patient-reported and performance
measures of gait

In relation to the five gait domains (Pace; Rhythm; Variability;
Asymmetry; and Postural control) assessed using the electronic
walkway, Walk-12G scores showed moderate correlation with the
Pace domain variable Step velocity (r = -0.46, p = 0.001) and moder-
ate/poor correlations with Step length (r = -0.36, p = 0.01) as well as
Step time variability (r = 0.32, p = 0.027). The negative correlations
reflect that decreased Step velocity and Step length were associated
with increased perceived difficulties (Table 2). Perceived walking

TABLE 2 Spearman’s rho correlations
between the Walk-12G and performance-
based measures of walking
Spatiotemporal gait
domains
Pace
Step velocity (m/s)
Step length (m)
Rhythm
Step time (ms)
Swing time (ms)

Variability
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difficulty correlated poorly with all other spatiotemporal gait param-
eters related to Rhythm and Postural control.

In relation to walking behavior assessed using accelerometry,
Walk-12G scores showed a statistically significant association
(r=-0.46, p = 0.001) with mean steps per day and a weaker cor-
relation with time spent in brisk walking (r = -0.35, p = 0.022).
That is, more steps taken per day and the more time spent in
brisk walking, respectively, were related to less perceived walking
difficulties.

3.2 | Perceived walking difficulties in
different groups

People with PD reported significantly greater difficulties during
walking than the healthy elderly group, with moderate-large effect
size (ES = 0.82), see Table 3. The ROC analysis for these groups pro-
duced AUC values of 0.97 (Figure 1a), which indicates that the Walk-
12G had excellent capability to distinguish between people with PD
and those without in our sample. Those at Hoehn and Yahr stage IlI
reported significantly greater difficulties walking than people at the
Hoehn and Yahr stage Il (ES = 0.34) (Table 3). The area under the
ROC curve for these two groups was 0.70 (Figure 1b), suggesting
that the Walk-12G has moderate capability to distinguish between

People with PD (n = 49)

Step length variability (m)
Step time variability (ms)
Asymmetry
Swing time asymmetry (ms)
Step time asymmetry (ms)
Postural control
Step length asymmetry (m)
Step width (m)
Habitual walking

Steps per day, median
(q1-a3)

Brisk walking (min/day)?,
median (q1-q3)

Notes. PD, Parkinson’s disease; SD, standard deviation; m/s, meter/second; m meters; ms,

millisecond.

Walk-12 PD
Mean (SD) Range rho p
1.18 (0.19) 0.67-1.6 -0.46 0.001
0.62(0.09) 0.33-0.85 -0.36 0.01
527 (40) 406-640 0.14 0.349
381 (32) 293-455 -0.05 0.683
0.025 (0.006) 0.02-0.04 0.03 0.803
18.4(5.2) 10-31.5 0.32 0.027
11.0(8.3) 0.99-32.9 0.15 0.320
7.5(6.9) 0.5-27 0.27 0.053
0.033 (0.025) 0.00-0.10 0.21 0.164
0.07 (0.02) 0.01-0.12 -0.05 0.736
3653 (1853, 5890) 215-12 569 -0.46 0.001
23.5(5.4,42.2) 0.9-94.3 -0.35 0.022

?Mins/day spent walking at a speed > 1.05 m/s.
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Median (q1-q3) Range Median (q1-q3) Range
PD (n = 49) Controls (n = 47)
Walk-12G 12 (7, 20) 1-34 0(0,1) 0-8
Mild (n = 22) Moderate
(n=27)
Walk-12G 8.5 (6, 13) 1-25 15 (7, 23) 2-34

Notes. PD, Parkinson'’s disease.
2Effect size (ES), r = Z/VN.

disease stages. Analysis of the data upon removal of the two sub-
jects who had undergone DBS surgery showed no significant differ-
ences in our findings (Supporting information Tables S1-S3).

4 | DISCUSSION

The main finding of this study was that perceived walking difficul-
ties in daily life appear to be most strongly associated with Step
velocity—a laboratory-assessed performance measure, and steps
per day—a measure of walking behavior in free living among peo-
ple with mild to moderate PD. Additionally, subgroup comparisons
showed that the Walk-12G has moderate ability to distinguish be-
tween mild-moderate PD stages and excellent ability to distinguish
between people with and without the disease. These findings fur-
ther support the clinical utility of the Walk-12G in people with mild
to moderate PD.

Walk-12G scores correlated significantly with Step velocity, pos-
sibly reflecting that the latter is a robust parameter of walking be-
havior. Step velocity is a variable of the Pace domain which explains
the highest proportion of total variance in a comprehensive PD gait
model (Lord, Galna, Rochester et al., 2013). Gait speed, due to its ro-
bust nature, is therefore the recommended and most frequently used
measure of walking performance in PD clinical trials (Lord, Galna,
Rochester et al., 2013; Lord, Galna, Verghese et al., 2013). It is also
possible that Step velocity, unlike other spatiotemporal domains cap-
tured in a controlled environment, is the most intuitive feature of
walking and more likely therefore to influence perceived walking abil-
ity. Our observed moderate correlation with step velocity (r = -0.46),
however, is weaker than that previously reported between the
Walk-12G and clinically assessed gait speed (r = -0.65) (Bladh et al.,
2012). Disparities in testing protocols and disease duration between

TABLE 3 Between-group differences

a
P ES of Walk-12G for people with/without PD
and at mild/moderate disease stages
<0.001 0.82
0.018 0.34

the samples (mean 13 years), compared to the current study (mean
6 years) may account for these observed differences (Sustakoski,
Perera, VanSwearingen, Studenski, & Brach, 2015). Although sim-
ilar investigations of the relationships between the Walk-12G and
performance-based gait measures are lacking, fear of falling has been
associated with slower gait speeds in healthy older adults (Maki,
1997) and people with PD (Bryant, Rintala, Hou, & Protas, 2014;
Rochester et al., 2008). Additionally, Curtze et al. report that aspects
of the pace domain were those most highly correlated with balance
confidence, albeit when measurements occurred in the OFF phase of
medication (Curtze, Nutt, Carlson-Kuhta, Mancini, & Horak, 2016).

We observed a poor correlation between perceived walking
and Step time variability, a gait feature altered at early disease
stages, prior to detectable changes in gait speed (Baltadjieva, Giladi,
Gruendlinger, Peretz, & Hausdorff, 2006). The literature concerning
gait variability and fear of falling in PD—a separate patient-reported
construct largely explained by perceived walking difficulties—may
be used for comparative purposes. A recent meta-analysis reporting
a weak relationship between fear of falling and variability parame-
ters (Ayoubi, Launay, Annweiler, & Beauchet, 2015) also highlights
the complexity of this relationship and how it may be confounded
by both gait speed (Reelick, van lersel, Kessels, & Rikkert, 2009)
and previous falls (Ayoubi et al., 2013). Additionally, the clinometric
properties of gait variability are not as firmly established as that of
the pace domain and the use of variability measures to assess clinical
training effects currently lacks efficacy (Galna, Lord, & Rochester,
2013; Lord, Galna, Rochester et al., 2013). Another factor for consid-
eration in the interpretation of the results is that the specific items
of the Walk-12G focus less on walking features such as variability as
they do factors such as speed, distance, and perceived effort.

We observed no correlation between perceived walking difficul-
ties and aspects of gait Rhythm, Asymmetry, or Postural control. In

(a)C> People with/without PD (b)o Mild/moderate PD
=g 2

; g g 3 FIGURE 1 The receiver operating

& ° AUC = 0.97 8 ° characteristic (ROC) curve with regard to
& &4 AUG =0.70 the Walk-12G'’s accuracy to distinguish

between (a) people with and without
AL ‘ ‘ ! ‘ Rt ‘ ‘ ‘ Parkinson'’s disease and (b) people with
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.75 1.00

1 - Specificity

1 - Specificity

mild and moderate disease severity
(Hoehn and Yahr stages /111, respectively)
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comparison with previous studies of gait characteristics in PD (Galna
et al., 2015), Asymmetry measures for our PD cohort were relatively low,
which may explain these findings. It is also possible that the relatively
low prevalence of freezing in our sample (only 10% of people reported
freezing “often”), attenuated these relationships. In relation to the lack
of correlation between aspects of Postural control and perceived walk-
ing, it is possible that our intermittent straight-walking testing protocol,
which did not measure turning while walking, limited the extent to which
dynamic balance was challenged during walking. Mancini et al. used in-
ertial sensors to continuously monitor aspects of turning in the home
environment and reports strong correlations between turning velocity
and the UPDRS motor score (Mancini et al., 2015).

We report a moderate correlation between the Walk-12G and
mean steps per day and time spent in brisk walking in free-living
environments. This is a previously unreported finding and provides
further validity for the clinical use of the Walk-12G in PD. The correla-
tion we observed between walking behavior and the Walk-12G must
be viewed in relation to the literature where validity coefficients be-
tween patient-reported and performance measures of physical activ-
ity levels range from weak to moderate at best (Helmerhorst, Brage,
Warren, Besson, & Ekelund, 2012). It should also be noted that in the
current study we are comparing separate constructs over different
time periods—walking behavior over a 1-week period compared with
perceived walking difficulties during a period of 2 weeks.

The Walk-12G is a patient-reported outcome that assesses
perceived walking difficulties during everyday life, which cannot
be captured by performance-based measures alone. It has previ-
ously been shown that the Walk-12G does not solely reflect walk-
ing capacity, but is largely influenced by nonmotor factors such
as self-efficacy and depressive symptoms as well as self-reported
freezing of gait and fatigue (Kader, Ullen, Iwarsson, Odin, &
Nilsson, 2017). This is a recognized attribute of patient-reported
as opposed to performance-based measures among elderly with
disability, whereby patient-reported function can have stronger
associations with psychosocial factors than with physical function
(Bean, Olveczky, Kiely, LaRose, & Jette, 2011). The combination
of performance-based and patient-reported outcomes of walking
is therefore necessary to enable comprehensive assessment. Our
findings concerning the ability of the Walk-12G to distinguish be-
tween the subgroups PD and non-PD as well as mild-moderate
disease stages, are in line with a previous investigation of the dif-
ference in objectively measured gait abilities between these sub-
groups (Lofgren, Benka Wallen, Sorjonen, Conradsson, & Franzen,
2017). These results can be interpreted as providing further evi-

dence for the clinical applicability of this scale.

5 | LIMITATIONS AND FUTURE
PERSPECTIVES

The main limitation of this study was that the sample was based
on a convenience sample of people who had participated in a RCT
study that addressed gait and balance problems. Moreover, only
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those with H & Yahr stages II-1Il were included. These aspects af-
fect the external validity of the findings, which therefore need to
be confirmed in future studies. Additionally, although the PD sam-
ple size of 49 is acceptable for gait laboratory data, the sizes of
the subgroups of disease stages were small which limits the con-
clusions that can be drawn. These analyses need to be enhanced
using larger samples of people at PD stages |-IV. At last, although
this correlational study can determine the strength of the asso-
ciations’ study findings cannot indicate the nature of causality

between patient-reported and performance measure of walking.

6 | CONCLUSIONS

The Walk-12G is an easily administered questionnaire which
can be quick to apply in the clinical context to capture patient
perspectives, for example, in the initial screening of walking
among people with PD, prior to therapy. By focusing specifically
on walking situations, Walk-12G scores provide the opportu-
nity for healthcare professionals to plan task-specific training
in line with patients’ needs. Our findings indicate how features
of walking, such as Asymmetry and Rhythm, although reported
to explain equal variance in gait models, are poorly reflected in
patient-reported outcome measures. This study provides evi-
dence for the relationship between the Walk-12G and both ob-
jectively measured walking pace and behavior in controlled and
free-living conditions, respectively. These findings indicate that
patient-centered training interventions should primarily address
these gait aspects if they are also affected patient-perceived
walking difficulties in daily life.
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