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Error-Gated Hebbian Rule: A Local 
Learning Rule for Principal and 
Independent Component Analysis
Takuya Isomura & Taro Toyoizumi

We developed a biologically plausible unsupervised learning algorithm, error-gated Hebbian rule 
(EGHR)-β, that performs principal component analysis (PCA) and independent component analysis 
(ICA) in a single-layer feedforward neural network. If parameter β = 1, it can extract the subspace 
that major principal components span similarly to Oja’s subspace rule for PCA. If β = 0, it can separate 
independent sources similarly to Bell-Sejnowski’s ICA rule but without requiring the same number of 
input and output neurons. Unlike these engineering rules, the EGHR-β can be easily implemented in a 
biological or neuromorphic circuit because it only uses local information available at each synapse. We 
analytically and numerically demonstrate the reliability of the EGHR-β in extracting and separating 
major sources given high-dimensional input. By adjusting β, the EGHR-β can extract sources that are 
missed by the conventional engineering approach that first applies PCA and then ICA. Namely, the 
proposed rule can successfully extract hidden natural images even in the presence of dominant or non-
Gaussian noise components. The results highlight the reliability and utility of the EGHR-β for large-scale 
parallel computation of PCA and ICA and its future implementation in a neuromorphic hardware.

The ability to separate blind sources (blind source separation; BSS)1,2 is important for animals to perceive their 
environment. However, the most basic form of Hebbian plasticity, where synaptic strengths are updated by the 
pure product of pre- and postsynaptic activity, is insufficient to perform BSS and a state-dependent Hebbian 
plasticity is a strong candidate mechanism for neuronal BSS3. A biologically plausible independent component 
analysis (ICA) algorithm called the error-gated Hebbian rule (EGHR) was recently developed4. The EGHR mod-
ulates the magnitude of Hebbian plasticity by a global (error) factor. This global factor represents average activity 
of output neurons, which can be easily computed and read out in a biological system. This is the so-called local 
learning rule to achieve ICA. By contrast, engineering ICA rules5–7 are difficult to implement using neural net-
works (the so-called non-local learning rules8) because each neuron needs non-physiological information such 
as synaptic strengths between other neurons. Mathematical and numerical analyses of the EGHR support the 
stability of ICA solutions and the absence of major spurious solutions. Unlike some other ICA rules, this is the 
case even when the number of neurons is greater than that of the sources (the undercomplete condition)4. Thus, 
the EGHR is a biologically plausible and reliable unsupervised learning rule for ICA.

Apart from ICA, principal component analysis (PCA) is another classic method widely used for data compres-
sion9, i.e., removing minor components and extracting principal components from a high-dimensional dataset. 
PCA is often used to explore the low-dimensional hidden representation underlying the data. The brain is also 
believed to perform PCA-like learning. For example, visual inputs are largely high dimensional; thus, the visual 
system needs to reduce these dimensions in order to perceive objects10. However, similarly to ICA algorithms, 
current PCA algorithms are either non-local11 or requires a specialized circuit that subtracts a leading principal 
component one by one in a sequential manner12. A simple local learning rule would be useful to explore neuronal 
mechanisms underlying the PCA-like learning.

Here, we develop a new local learning rule called EGHR-β. It smoothly interpolates between performing PCA 
and ICA as parameter β that controls the weight of PCA varies. This algorithm can achieve dimensionality reduc-
tion and ICA simultaneously. While PCA is often used as a pre-processing step before applying ICA to perform 
BSS, this cascade is not always optimal. Notably, depending on parameter β, the EGHR-β can extract sources 
with large and negative kurtosis (i.e., sub-Gaussian sources) that the PCA-to-ICA cascade cannot extract in the 
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presence of large noise. Hence, the EGHR-β can solve BSS by separately extracting either major or sub-Gaussian 
independent sources from the ensemble of high-dimensional sensory inputs.

In the following sections, we first analytically and numerically show that depending on β, the EGHR-β can 
extract either principal components or sub-Gaussian sources from high-dimensional inputs. Next, more gen-
erally, we demonstrate that the EGHR-β can extract the hidden natural images by removing noise. Finally, the 
advantages and limitations of the EGHR-β are discussed.

Results
A novel local learning rule for PCA and ICA (the EGHR-β).  First, we define a novel, biologically plau-
sible local learning rule that performs BSS by combining PCA and ICA, termed as the EGHR-β. Let us consider a 
BSS problem of inverting a linear generative model using a single-layer feedforward neural network. The genera-
tive model consists of the M-dimensional hidden sources s ≡ (s1, …, sM)T that are independently generated from 
source distributions p(s) ≡ Πipi(si) and the M-dimensional sensory inputs x ≡ (x1, …, xM)T ≡ As that are gener-
ated by multiplying the sources with an M × M mixing matrix A. A single-layer neural network receives sensory 
inputs x and computes the N-dimensional neural outputs u ≡ (u1, …, uN)T ≡ Wx by multiplying the inputs with 
an N × M synaptic strength matrix W, where N ≤ M (see also Fig. 1). The cost function of the EGHR-β is defined 
by
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As shown later, the first and second terms of L represent the cost for ICA and PCA, respectively. Note that 
0 ≤ β ≤ 1 is a parameter that controls the weight of PCA, 〈•〉 is an expectation over p(x), and p0(•) is the prior 
distribution that the sources are assumed to follow. Hence, a gradient descent learning rule of synaptic weights 
that minimizes L is given by
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where the dot over W denotes a temporal derivative, g(u) ≡ dE(u)/du is a nonlinear activation function, and E0 ≡ 1 
+ 〈E(u)〉 = 1 − 〈logp0(u)〉. We will refer to Eq. (3) as the EGHR-β. Note that this definition of E0 is slightly different 
from the original definition 1 − 〈logp0(s)〉4 but the resulting behavior turns out to be quite similar (see below for 
comparison). In the following, E(u), Eu(u), and Ex(x) are referred to as global factors (global signals) that represent 
neuron non-specific error signals. The cost function of the EHGR-β consists of the ICA and PCA terms weighted 
by 1 − β and β, respectively, and its derivative provides a local learning rule for PCA and ICA. As we will see, the 
ICA term (the first term of Eq. (3)) makes the outputs independent of each other, while the PCA term (the second 
term) increases the correlation between the output and input squared-norms by decreasing (Eu(u) − Ex(x)) close 
to zero. Importantly, the EGHR-β can be represented using only local connections because W is updated according 

Figure 1.  Model structure of EGHR-β. Note that s1, …, sM are hidden sources; x1, …, xM are sensory inputs; u1, 
…, uN a re neural outputs; A11, …, A1M, A21, …, AMM are elements of a mixing matrix; W11, …, W1M, W21, …, 
WNM are synaptic strengths; and scalars E, Eu, and Ex are global factors.
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to the product of pre- and post-neurons’ activities and the global signal (Fig. 1). This property is highly desirable 
for parallel computing and neuromorphic engineering (see Discussion). The EGHR-β becomes a local learning 
rule for ICA when β = 0 and that for PCA when β = 1. More generally, it can extract principal components from 
high-dimensional inputs while separating signals into individual sources when 0 < β < 1.

The features of EGHR-β.   We start by investigating how the PCA and ICA terms of the EGHR-β are related 
to previously proposed non-local learning rules: Oja’s subspace rule for PCA11 and Bell-Sejnowski’s ICA rule5,6, 
respectively.

A simple analysis shows that the PCA term of the EGHR-β is equal to Oja’s subspace rule for PCA11 up to a 
multiplication with a positive definite matrix when the sources independently follow Gaussian distributions (see 
Eq. (8) in Methods). Next, the ICA term of the EGHR-β is equivalent to Bell-Sejnowski’s ICA rule around the 
neighborhood of ICA solutions when the number of input and output neurons are equal (M = N) and the source 
distribution is given by p(s) ∝ Πiexp(−b|si|a) with positive constants a and b (see Eqs (12)–(13) in Methods). Note 
that the definition of E0 in this paper is slightly altered from the original one4 to straightforwardly demonstrate the 
relationship with Bell-Sejnowski’s rule. However, the resulting ICA performance is similar to the original version–
mathematical analyses give the same linear stability condition for ICA solutions (see Methods and Supplementary 
Information); and numerical simulations show the absence of major spurious solutions when random mixing 
matrices with up to 20 dimensional sources are studied (Fig. S1) and the robustness of the outcome to the choice 
of nonlinear function g(u), derived within the sub- or super-Gaussian family (Fig. S2).

Unlike the classical learning rules, the EGHR-β can perform these computations only using local information 
available at each synapse. Moreover, unlike Bell-Sejnowski’s rule, its ICA term can handle a greater number of 
inputs than the number of output neurons, which makes the EGHR-β a great candidate to perform both dimen-
sionality reduction and separation of independent sources. Notably, beyond the above conditions, the behavior of 
the EGHR-β can be better than Oja’s subspace rule and/or Bell-Sejnowski’s ICA rule as we analytically and 
numerically study in the following. Throughout the result section, we use a uniform prior distribution (p0(si) = 
1/2 3 for |si| < 3  or 0 for otherwise) to preferentially extract sub-Gaussian sources with negative kurtosis.

We analytically study the existence and stability of the solutions of the EGHR-β (see Eqs (14)–(18) in Methods 
for details) and find that the EGHR-β can perform PCA without assuming Gaussian sources and ICA without 
assuming the equal number of input and output neurons. Namely, (1) if β ≈ 1, the only stable fixed point of the 
EGHR-β is such that the outputs are spanned by the major principal components; hence, the EGHR-β with β ≈ 
1 performs PCA (see Case 1 in Methods and Supplementary Methods S2, S3); and (2) if β ≈ 0, the only stable 
fixed point is such that the outputs represent sub-Gaussian independent sources; hence, the EGHR-β with β ≈ 0 
performs ICA (see Case 2 in Methods and S2, S3). These properties are also confirmed by numerical simulations, 
where four independent Gaussian sources and four independent uniformly-distributed sources with different var-
iances are mixed as inputs (Fig. 2). Typical outputs with β = 0 and 0.8 are illustrated in Fig. 2A. When β = 0.8, the 
EGHR-β succeeded in extracting the subspace of four major principal components from eight-dimensional data 
(PCA-like condition), while when β = 0, the EGHR-β succeeded in extracting sub-Gaussian sources (ICA-like 
condition). Note that we showed the result of β = 0.8 here (rather than β = 1) because, in addition to performing 
PCA, the EGHR-β can separate independent sub-Gaussian sources. The preference of sources gradually shifts 
from the ICA-like to the PCA-like one as β increases (Fig. 2B).

For comparison with the EGHR-β, we consider three non-local algorithms: Oja’s subspace rule for PCA11, 
Amari’s ICA rule7, and the cascade of the Oja and Amari rules (see Eqs (5) and (11) in Methods). Note that the 
results of Bell-Sejnowski’s ICA rule5,6 are the same as those of Amari’s ICA rule. PCA13 and ICA7 cost functions 
are used as measures (see also Eqs (6) and (9) in Methods for their details), and plotted as the spread of eigen-
values is continuously changed. As expected from the mathematical analyses (see Methods and Supplementary 
Methods S2–S4), both the EGHR-β (β = 0.8) and Oja’s subspace rule can extract a subspace of major princi-
pal components by reducing the normalized PCA cost by a similar amount (Fig. 2C). Note that the Oja’s sub-
space rule achieves the theoretical optimum. Next, we explore how these different methods reduce the ICA cost 
that assumes a uniform prior distribution p0 (Fig. 2D). This cost function is minimized if independent uniform 
sources are extracted as outputs. Interestingly, reducing this cost function is not trivial for conventional learning 
rules. Amari’s ICA rule alone cannot separate sources as it works only when the number of neurons matches that 
of unknown sources4. A common strategy in this scenario is to first apply PCA and then apply ICA to its output. 
Interestingly, this PCA-to-ICA cascade fails to reduce the cost function because the first PCA step discards the 
minor uniformly-distributed sources. Only the EGHR-β (β = 0) can separately extract minor sub-Gaussian inde-
pendent sources (Fig. 2D).

An application to extract natural and artificial images.  We demonstrate the performance of the 
EGHR-β using mixtures of natural and artificial images as inputs. Twelve high-variance colored noise images 
with zero kurtosis, four pictures of a distinct hedgehog with negative kurtosis, and 84 low-variance white noise 
images with negative kurtosis were used as sources (Fig. 3A). The color intensities of the individual pixels were 
converted to real numbers and then centered to be zero mean following4,14 (see also Methods). The 100 images 
were superposed to produce 100 mixed images using a random but fixed 100 × 100 rotation matrix (Fig. 3B). 
One pixel was randomly sampled from the identical position of these 100 mixed images at a time, and fed as input 
into a one-layer feed-forward neural network that has four output neurons (as in Fig. 1). Synaptic strength matrix 
W of the model was updated according to the EGHR-β with β = 0, 0.02, or 0.8 (Eq. (3)). Note that we used the 
uniform distribution as the prior p0 because the natural images tended to follow a sub-Gaussian distribution with 
negative kurtosis4. For comparison, we introduced the same input into a two-layer feed-forward neural network 
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(100-4-4), in which the first and second layers are updated by Oja’s subspace rule11 and Amari’s ICA rule7, respec-
tively (the cascade of the Oja and Amari rules).

Pictures reconstructed from neural outputs after training are displayed in Fig. 3C (see also Supplementary 
Movie S1 for the learning process). We found that the cascade of the Oja and Amari rules (Fig. 3C bottom) 
extracted mixtures of colored noise images and natural images. These images were extracted because ICA rules 
generally cannot separate mixed Gaussian sources and the mixed hedgehog image represents the primary princi-
pal component of the input owing to the small but non-negligible correlation between the four hedgehog images. 
Hence, the Oja rule extracted the subspace spanned by the three colored noise images and the mixed hedge-
hog image as major components, and the following Amari rule simply segregated this non-Gaussian hedgehog 
image from the rest. Next, the EGHR-β with β = 0.8 extracted four high-variance colored noise components 
(Fig. 3C third line). The reason that the EGHR-β dropped the primary principal component (the mixed hedge-
hog image in Fig. 3C bottom) can be understood from the stability analysis (see Eq. (16) in Methods for details), 
which shows that if eigenvalues are similar to each other, the EGHR-β solution for β ≈ 1 becomes more stable 
when the outputs extract sources with positive large kurtosis. Accordingly, the EGHR-β with β = 0.8 extracted 
Gaussian colored noise images rather than the (barely) primary sub-Gaussian principal component (i.e., the 

Figure 2.  Results of EGHR-β. (A) Final distribution of outputs u = (u1, u2, u3, u4)T with PCA rate β = 0 (left 
panels) and β = 0.8 (right panels). Panels show samples of output signals pooled over 104 step displayed in u1 − 
u2 and u3 − u4 planes. When β = 0, final states of u represent sources that follow a uniform distribution, while 
when β = 0.8, they represent major components (top four). (B) Correlations between outputs and sources 
depending on PCA rate β. Horizontal axis is PCA rate 0 ≤ β ≤ 1, while vertical axis is value of correlation 
between specific source and output that best describes the source, | |u sarg max corr( , )i i j . Green curves represent 
correlations with Gaussian sources (s1, s3, s5, s7), while red curves represent correlations with uniform sources 
(s2, s4, s6, s8). Eigenvalues of the mixing matrix A (i.e., variances of sources) are defined as Λ11 = Λ22 = 4, Λ33 = 
Λ44 = 2, Λ55 = Λ66 = 1, and Λ77 = Λ88 = 0.5. Simulations are conducted 40 times for each parameter set, and 
mean is shown. Shaded areas represent standard error. (C), (D) Performance of EGHR-β (with β = 0 and 0.8) is 
compared with that of other three rules: Oja’s subspace rule for PCA11, Amari’s ICA rule7, and cascade of Oja 
and Amari rules. Maximum eigenvalue (horizontal axis) indicates amplitude of largest sources (Λ11 = Λ22), 
while other eigenvalues are defined such that Λ = Λ = Λ Λ = Λ = Λ,33 44 11

2/3
55 66 11

1/3, and Λ77 = Λ88 = 1. In (C), 
PCA performance is evaluated by the normalized PCA cost (Eq. (6) in Methods divided by the sum of all 
eigenvalues of A), while in (D), ICA performance is evaluated by the ICA cost (Eq. (9) in Methods) assuming a 
uniform prior distribution. Simulations are conducted 10 times for each parameter set, and mean is shown. 
Shaded areas represent standard deviation. See Methods for detail on experimental parameters. Note that 
source codes of EGHR-β are appended as Supplementary Source Codes.



www.nature.com/scientificreports/

5Scientific REPOrTS |  (2018) 8:1835  | DOI:10.1038/s41598-018-20082-0

mixed hedgehog image). By contrast, the EGHR-β with β = 0.02 successfully extracted and separated all minor 
hedgehog images even in the presence of large Gaussian noise (Fig. 3C second line). This β = 0.02 parameter 
preferentially extracted images with negative kurtosis, while discarding low-variance noise. Finally, the result of 
EGHR-β with β = 0 varied depending on the initial synaptic weights as it does not efficiently utilize the variance 
of images. It tended to extract some minor hedgehog images and some mixtures of noise images. Figure 3C top 
shows an example, where three hedgehog images and one mixed noise image are extracted. Because the β = 
0 parameter preferentially extracts independent components with negative kurtosis, the extracted noise image 
included the low-variance sub-Gaussian noise but the algorithm was tolerant to its contamination with colored 
noise images (see top right inset panel in Fig. 3C for the magnified image). Therefore, the EGHR-β can flexibly 
extract either high-variance images or minor natural images with large and negative kurtosis depending on the 
tuning of β, purely in an unsupervised manner. Furthermore, only the EGHR-β with β slightly larger than 0, but 
not the cascade of PCA and ICA algorithms, can extract sources with intermediate variance and negative kurtosis, 

Figure 3.  Dimensionality reduction and BSS using natural and artificial images. (A) Original natural and noise 
images as hidden sources. They consist of 12 high-variance colored noise images (var = 0.023, kurt = 0), four 
minor natural images (hedgehogs; var ≈ 0.02, kurt ≈ −1), and 84 low-variance white noise images (var = 0.002, 
kurt = −1.2) (var; variance, kurt; kurtosis). (B) One hundred randomly superposed images provided as input to 
neural network. (C) Final states of the four-dimensional outputs of neural network reconstructed some original 
images. Transitions of outputs are shown in Supplementary Movie S1. Top: EGHR-β with β = 0 extracts and 
separates three natural images and a mixture of noise images. Second line: EGHR-β with β = 0.02 successfully 
extracts and separates all four natural images. Third line: EGHR-β with β = 0.8 extracts colored noise images 
(major principal components). Bottom: cascade of Oja and Amari rules extracts mixtures of colored noise and 
natural images as some natural images correlate with each other and produce a major principal component. 
Three inset panels in the right display magnified images, which show that only the result of the EHGR-β with 
β = 0, but not the others, includes low-variance white noise images. We retrieved these hedgehog pictures from 
the Caltech101 dataset40 and processed them accordingly. See Methods for detail on experimental parameters.
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discarding both high-variance Gaussian noise and low-variance sub-Gaussian noise. This result demonstrates the 
benefit of performing both PCA and ICA by the same set of neurons.

Discussion
In this study, we developed a novel learning rule for PCA and ICA, the EGHR-β. The EGHR-β can compress 
data by removing minor components and extracting either principal components or sub-Gaussian sources from 
a high-dimensional dataset by adjusting the parameter β. The learning rule updates each synaptic strength in a 
single-layer linear feedforward network based on the sum of PCA and ICA terms, where each term is given by a 
simple product of pre- and postsynaptic neurons’ activity and a global scalar factor. Hence, the proposed scheme 
is much simpler than conventional ICA methods that require non-local information5–7,15, dense and plastic lat-
eral inhibition between output neurons16–18, or an additional preprocessing stage for PCA to remove background 
noises11,19. This simplicity is a great advantage for the EGHR-β because it can reduce the number of processing 
layers and connections, and the related energy costs, making its implementation in a neuromorphic chip20 sig-
nificantly easier.

If sources follow a Gaussian distribution, we showed that the EGHR-β can extract the subspace that principal 
components span in a way that is mathematically equivalent to the well-known Oja’s subspace rule (see Eq. (8) in 
Methods). Whereas, if sources follow non-Gaussian distributions, the fixed point and the linear stability are influ-
enced by the kurtosis of discarded components. Because of this property, the EGHR-β can robustly perform BSS 
even in the presence of large Gaussian noise, where a standard cascade of PCA-to-ICA processing cannot. While 
the EGHR-β generally consists of a sum of PCA and ICA terms, we can approximately express it by a single-term 
three-factor rule when the source distributions are close to Gaussian. In this case, the postsynaptic factor, g(u), 
of the ICA term becomes identical to that of the PCA term, u, and, hence, the net global error signal becomes 
the weighted sum of those for the PCA and ICA terms. Note that an additional mechanism may be required 
to extract minor sources with positive kurtosis (i.e., super-Gaussian sources) because a solution that extracts 
super-Gaussian sources can be unstable in the presence of large noise.

In biological neural networks, associative (Hebbian) plasticity occurs depending on the timing of pre- and 
post-neurons’ activity (i.e., a two-factor learning rule)21–23. However, recent studies show that third factors, such 
as neuromodulators24–29, GABAergic inputs30,31, and glial factors32, can modulate the original associative plasticity 
in various ways (the so-called three-factor learning rule33,34). The EGHR-β is one of the three-factor learning 
rules and each of its PCA and ICA terms updates the synaptic strength by the product of pre- and postsynaptic 
activities and a global error signal. The global error signals are defined as the non-linear sum of output activi-
ties, similarly to inhibitory neurons in the visual cortex35,36, and they change the learning rate and even invert 
Hebbian to anti-Hebbian in a manner similar to what has been reported for GABA31. Note that the PCA and ICA 
learning could happen at non-overlapping timing in a biological setup, such as in a wake and sleep condition37. 
Importantly, this process only uses information that actual neurons can access via their synaptic connections to 
achieve PCA and ICA. Thus, the EGHR-β is a local rule, while conventional methods, such as the Oja and Amari 
rules7,11, use non-local information (synaptic strengths of non-connected neurons) to update synaptic strengths. 
This demonstrates the utility of the EGHR-β also as a model of learning processes in a biological neural network.

In summary, we developed the EGHR-β by enhancing the original EHGR to handle largely high-dimensional 
inputs in a biological manner. The EGHR-β would be useful in engineering for improving object recognition 
accuracy in noisy background. Because the EGHR-β is easily implemented with recently advanced neuromorphic 
chips and can process the “big data” in parallel with energy efficiency, the EGHR-β is expected to have an impact 
in various fields such as engineering and life science.

Methods
First, we describe the relationship between the EGHR-β and the original EGHR4. Next, for comparison with 
the EHGR-β, we introduce non-local PCA11,13 and ICA5–7 rules. Finally, we analyze fixed points and their linear 
stability of the EHGR-β.

Relationship between the EGHR-β and the original EGHR.  In this paper, the definition of the cost 
function of the ICA part of the EHGR-β is slightly different from that of the original EGHR4. Their relationship 
is represented by

− 〈 〉 −
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where the left hand side is the cost of the original EGHR, while the first term in the right is the cost of the ICA part 
of the EHGR-β. The constant factor makes no difference. The second term in the right gives an additional stability 
to the original EGHR by minimizing the difference between 〈E(u)〉 and 〈E(s)〉. However, since the first term of 
the right hand side (i.e., the ICA part of the EGHR-β) alone has the ICA ability, this second term is not necessary 
(see Supplementary Figures S1 and S2). Moreover, their linear stability conditions around ICA solutions are the 
same. Although only the original EGHR has an additional tr(dK)2 term in its second-derivative4, this does not 
change the linear stability condition. Indeed, the second-derivative of the ICA part of the EGHR-β is more similar 
to that of the well-known Bell-Sejnowski’s ICA rule5,6 around ICA solutions as we describe below.
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Conventional non-local rules for comparison.  In this section, we introduce conventional learning rules 
to perform either PCA or ICA. Unlike the EGHR-β introduced above, all rules introduced here are non-local. For 
a comparison of PCA, Oja’s subspace rule for PCA is considered11.

∝ − .W Wu x u( ) (5)T T

This rule is an enhancement of Oja’s original model38 and can extract a subspace that the first to the Nth prin-
cipal components span by the N-dimensional neural output. Importantly, Oja’s subspace rule is a non-local rule 
because it needs to calculate the product of WT and u (alternatively, it needs to prepare new neurons y = WTu, 
but how to extract WT in a biological setting is open to discussion). While Oja’s subspace rule does not have a 
cost function, Xu proposed a similar learning rule that is derived as a gradient descent rule of a cost function and 
achieves PCA13. The cost function is defined by

≡ −L Wx u1
2 (6)X

T 2

because the purpose of PCA is to obtain a representation using a small number of output units with the least loss. 
The dynamics of W are defined by

∝ −
∂
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W
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Equation (7) is termed the least mean squared error-based PCA13. Empirically, the second term converges to 
zero quickly. Consequently, the least mean squared error-based PCA finds the same solution as Oja’s subspace 
rule (Eq. (5)). We use this cost function in Fig. 2 to quantify the success of PCA.

Indeed, when sources follow a unit Gaussian distribution, the PCA term of the EGHR-β becomes Oja’s sub-
space rule11 except a multiplication with a positive definite matrix. Suppose β = 1 and x follow a Gaussian distri-
bution with zero mean and variance of AAT. From Bussgang theorem39, the EGHR-β becomes

∂
∂

= | | − 〈| | 〉 − | | + 〈| | 〉

= − + | | − 〈| | 〉 − | | + 〈| | 〉 〈 〉

= − .

L
W

W I

W AA

u u x x ux

u u x u u x x xx

u u x

1
2

( )

( ) ( )

( ) (8)

T

T T T

T T T

2 2 2 2

2 2 2 2

This is equivalent to Oja’s subspace rule up to a multiplication with positive definite matrix AAT. For a com-
parison with non-Gaussian sources, see the fixed point analysis of Case 1 below, where their fixed points are also 
similar.

In addition, for a comparison of BSS ability, Amari’s ICA rule is considered7. The cost function of Amari’s ICA 
rule is defined by the Kullback-Leibler divergence9 between p(u) and p0(u).

≡ || ≡ − .L D p p p pu u u u[ ( ) ( )] log ( ) log ( ) (9)A KL 0 0

The gradient of LA gives Bell-Sejnowski’s non-local ICA rule5,6

∝ −
∂
∂

= −−
W L

W
W g u x( ) , (10)

A T T

while the natural gradient of LA gives Amari’s non-local ICA rule7

∝ −
∂
∂

= − .W L
W

W W W g Wu u( ) (11)
A T T

The ICA term of the EGHR-β is close to Bell-Sejnowski’s ICA rule5,6. Suppose M = N, β = 0, and u = Ks with 
square matrix K ≡ WA. From Lemma S1.1 in Supplementary Methods S1, the EGHR-β becomes

∂
∂

= 〈 − 〈 〉 − 〉

= 〈 + − 〈 〉 − 〉 + − 〈 〉 −

= 〈 〉 − + − 〈 〉 −

=
∂
∂

+ − 〈 〉 −

+

−

�

� ������ �������

L
K

E E g

K K g E E I E E dg

KK g K E E dg

KK L
K

E E dg

u u u s

u s u u u u s

u s u u s

u u s

( ( ) ( ) 1) ( )

( ) ( ( ) ( ) 1) ( ( ) ( ) 1)

( ( ) ) ( ( ) ( ) 1)

( ( ) ( ) 1) ,
(12)

Kg dg

T

T T T

T T T T

T A T

s( )

0

where dg ≡ g(u) − Kg(s). We numerically check that the second term in the last line is smaller than the first 
term. Furthermore, when W is around ICA solutions (i.e., K = I + dK is close to the identity matrix), from 
Lemmas S1.1 and S1.3, the EGHR-β becomes
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∂
∂

= + + 〈 〉 − + − 〈 〉 − +

= 〈 〉 − + + 〈 〉 − + ΔΩ +

=
∂
∂

+ ΔΩ +

−

−
� ������ ������ �

�

L
K

I dK dK g K E E dg dK

g K dK dK g I dK dK

L
K

dK dK

u s s s s

u s s s

( )( ( ) ) ( ( ) ( ) 1) ( )

( ( ) ) ( ) ( ( ) ) ( )

( ),
(13)

T T T T

T T T T

A

2

0

2

2







where dg = Diag[g′(s)]dKs − dKg(s), ° is Hadamard product (element-wise product), and ΔΩ is a constant 
matrix that expresses the difference between coefficient matrices for the EGHR-β and Bell-Sejnowski’s ICA rule. 
Specifically, when sources follow p(s) ∝ Πiexp(−b|si|a) with positive constants a, b, ΔΩ becomes zero. See4 for 
derivation details.

Fixed point of the EGHR-β.  Below, we mathematically analyze the fixed points of the EGHR-β (Eq. (3)). 
Suppose mixing matrix A consists of A = RΛ1/2B. Without loss of generality, R and ∈ ×B M M  are rotation 
matrices, and Λ ∈ ×M M is a diagonal matrix. Note that the diagonal elements of Λ are the eigenvalues of AAT 
up to permutations. Moreover, suppose that s1, …, sM independently follow even distributions with zero mean 
and unit variance. We define a matrix ≡ ∈ ×K WA N M . We investigate fixed points in the following three 
cases. See Supplementary Methods S2 for derivation details, and the next section for their linear stability 
analysis.

Case 1. Suppose B = I. If we use the Gaussian prior distribution =p u u( ) ( )0   for the ICA term, where  •( ) is a 
unit Gaussian distribution, the necessary and sufficient condition for a (nonzero) fixed point is

=K P O( , ), (14)

where ∈ ×P N N  is a full-rank orthogonal matrix that holds

β β
κ

=




 Λ +

−
+





.P P Diag 1

1 /2 (15)
T

ii
i

Note that Diag[•] is a diagonal matrix in which the ith (i = 1, …, N) diagonal element is •, and κ = 〈 〉 −s 3i i
4  

is the kurtosis of the ith source distribution. If β = 1, = ΛP C 1
1/2 satisfies Eq. (15), where ∈ ×C N N  is any rotation 

matrix and Λ = Λ ∈ ×Diag[ ]ii
N N

1  is any sub-diagonal matrix of Λ. Similarly, a necessary and sufficient condi-
tion for a fixed point of Oja’s subspace rule is K = (P, O) with = Λ

∼P PT
1, where Λ∼1 is another N × N-dimensional 

sub-diagonal matrix of Λ (see Supplementary Methods S4). Thus, both the outputs of the EGHR-β and Oja’s 
subspace rule span an arbitrary subspace of N principal components at a fixed point.

Case 2. (A special case of following Case 3) Suppose β = 0. Moreover, suppose s1, …, sN independently follow the 
identical even prior distribution p0(si) with zero mean and unit variance, and sN + 1, …, sM independently follow 
distributions with zero mean and unit variance. Then, = ∈ ×K I O( , ) N M with the N × N identity matrix I and 
the N × (M − N) zero matrix O is a fixed point of the EHGR-β. At this fixed point, the outputs represent the N 
independent sources whose distributions are matched to the prior distribution.

Case 3. Suppose β(≥0) is a small constant, s1, …, sN independently follow the identical even distribution p0(si) 
with zero mean and unit variance, and sN + 1, …, sM independently follow distributions with zero mean and unit 
variance. Then,  β= + ∈ ×K I O( , ) ( ) N M is a fixed point. See Supplementary Methods S2 for detailed values 
of β( ) .

Linear stability of the EGHR-β.  Below, we investigate the linear stability of the fixed points described 
in the above section (Cases 1–3 below are the same cases as those in the above section). See Supplementary 
Methods S3 for derivation details.

Case 1. The fixed point of Eqs (14–15) is linearly stable if and only if

β κ β
κ

Λ − + Λ + −



 +

−





> ≤ ≤ + ≤ ≤ .i N N j M( (1 /2) ) (1 ) 1
1 /2

1 0 for 1 , 1
(16)

ii j jj
i

In the special case of β = 1 and sN + 1, …, sM following a unit Gaussian distribution, the condition for linear 
stability is Λii ≥ Λjj for 1 ≤ i ≤ N and N + 1 ≤ j ≤ M. Thus, the state is stable when the output u represents a space 
that is spanned by the first to Nth principal components, while the state is unstable when u involves other minor 
components, meaning that the EGHR-β can extract major principal components. More generally, when sN + 1, 
…, sM follow non-Gaussian distributions, the linear stability condition also depends on the kurtosis (κi ≥ −2) as 
shown above.

Case 2. The fixed point in Case 2 in the above section is stable if and only if
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+ Ω > ≤ = ≤
Ω Ω > ≤ ≠ ≤

Ω > ≤ ≤ + ≤ ≤

i j N
i j N
i N N j M

1 0 for 1 ,
1 for 1 ,

0 for 1 , 1 , (17)

ii

ij ji

ij

where Ω ij is defined by Ω = − ′p s g s scov( log ( ), ( ) )ii i i i0
2  for i  =  j ,  and Ω = − ′ +p s g scov( log ( ), ( ))ij i i0

− 〈 ′ 〉Θ ≤p s s g s j Ncov( log ( ), ) ( ) [ ]j j i0
2  for i ≠ j. (Note that Θ[j ≤ N] is 1 for j ≤ N, and 0 otherwise.) To see how the 

shape of the source distribution influences the linear stability, let us consider the special case in which s1, …, sN 
follow p0(si) ∝ exp(−b|si|a), where a > 0 is a positive constant and b > 0 is tuned such that 〈 〉 =s 1i

2 , and sN + 1, …, 
sM follow distributions with zero mean and unit variance. In this case, we can straightforwardly show that a > 2 is 
a necessary and sufficient condition to be linearly stable. Namely, when s1, …, sN follow a sub-Gaussian distribu-
tion (a > 2) and sN + 1, …, sM follow Gaussian or super-Gaussian distributions, s1, …, sN are chosen as outputs. By 
contrast, when s1, …, sN follow a super-Gaussian distribution (a < 2), s1, …, sN may not be extracted simultane-
ously. Hence, the EGHR-β extracts sub-Gaussian sources.

Case 3. If we suppose B = I and s1, …, sN follow p0(si) ∝ exp(−b|si|a), the fixed point in Case 3 in the above section 
is stable if and only if

β κ β β κ+ Λ − 〈 ′ 〉 + −
−

〈 ′ 〉 + − + Λ >

≤ ≤ + ≤ ≤ .

g s a
a

g s

i N N j M

(1 /2)( 1) ( ) (1 ) 2 ( ) (1 (1 /2) ) 0

for 1 , 1 (18)

i ii i i j jj

Hence, the EGHR-β can extract either sub-Gaussian or major sources depending on β.
For Fig. 2: In the simulations, M = dim(s) = dim(x) = 8 and N = dim(u) = 4 are used. An 8 × 8 mixing 

matrix A = RΛ1/2 consists of a rotation matrix R and a diagonal matrix of eigenvalues Λ. We suppose that ampli-
tudes of sources satisfy Λ11 = Λ22 = 4, Λ33 = Λ44 = 2, Λ55 = Λ66 = 1, and Λ77 = Λ88 = 0.5 in Fig. 2A and B, or 
Λ = Λ Λ = Λ = Λ Λ = Λ = Λ, ,11 22 33 44 11

2/3
55 66 11

1/3, and Λ77 = Λ88 = 1 in Fig. 2C and D. Moreover, we suppose 
that odd-numbered sources (s1, s3, s5, s7) follow a unit Gaussian distribution (  π= = −p s s s( ) ( ) exp( /2)/ 2i i i

2 ), 
while even-numbered sources (s2, s4, s6, s8) follow a unit uniform distribution =p s( ) 1/2 3i  for <s 3i  and 0 
otherwise). The training time and the learning rate are defined by T = 2 × 107 and η = 8 × 10−6, respectively. In 
all cases, R is a random rotation matrix, and W starts from a random matrix in which each element Wij follows a 
Gaussian distribution with zero mean and a variance of 0.25. Note that source codes of the EGHR-β are appended 
as Supplementary Source Codes.

For Fig. 3: The performance of the EGHR-β is demonstrated using a natural image dataset. We prepare a 
total of 100 sources (M = 100): 12 high-variance colored-noise images with zero kurtosis, four low-variance 
natural images (hedgehogs), and 84 low-variance white-noise images with negative kurtosis. These sources 
consist of 200 × 200 pixels with RGB color. The natural images were retrieved from the Caltech101 dataset 
(http://www.vision.caltech.edu/Image_Datasets/Caltech101/)40, rescaled between 0 and 1, and adjusted to have 
a variance of 0.02. High-variance colored-noise images are created by enlarging 50 × 50 white noise images 
by a factor of four, and the original small-size images are produced by linearly summing truncated Gaussian 
noise (in the 0–1 range) and Laplace noise in order to have a mean of 0.5, variance of 0.023, and kurtosis of 0. 
Low-variance white-noise images are generated from a uniform distribution with a mean of 0.5 and variance 
of 0.002. We use these natural and noise images according to the protocol explained in4,14 by first subtracting 
the constant mean of 0.5 (i.e., the gray background). Each of 100 images (200 × 200 pixels, RGB) is treated as 
a vector (40, 000 pixels × 3 colors = 120, 000 dimensions). This source data composed of these 100 vectors 
(a 100 × 120, 000 matrix) is mixed by a 100 × 100-dimensional rotation matrix R. A column of the resulting 
input data is randomly sampled at each step for training (T = 3 × 107 steps in total). The mixed signals are 
introduced as input into a one-layer feed-forward neural network (as in Fig. 1) to obtain the four-dimensional 
output (N = 4). Synaptic strength matrix W is updated by the EHGR-β with β = 0, 0.02, or 0.8. Hence, the 
input to output dimensions are

β→ − .Input (100) EGHR (4)

For a comparison, a two-layer feed-forward network is considered in which synaptic strengths in the first 
and second layers are updated by Oja’s subspace rule and Amari’s ICA rule, respectively. In this case, the input to 
intermediate representation to output dimensions are

→ → .Input (100) Oja’s subspace rule (4) Amari’s ICA rule(4)

The learning rate is defined by η = 2 × 10−3. For all algorithms, R is a common random rotation matrix, and 
W starts from the identity matrix.
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