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Background: While several studies support an association of white matter hyperin-
tensity (WMH) volume and regional cerebral blood flow (rCBF) with cognitive decline in 
Alzheimer’s disease (AD), no reports have simultaneously considered the effects of both 
factors on cognitive decline.

Objective: The purpose of the present study was to compare WMH volume and rCBF 
in relation to cognitive function by developing a new software program to fuse magnetic 
resonance imaging (MRI) and single-photon emission computed tomography (SPECT) 
data.

Method: We used MRI, SPECT, and neuropsychological data from 182 serial outpatients 
treated at the memory clinic of our hospital.

results: Twenty-nine AD patients fulfilled the inclusion criteria (18 females, mean age: 
73.1 ± 7.9 years, mean Mini-Mental State Examination: 23.1 ± 3.0). Analysis of variance 
revealed that posterior deep WMH (DWMH) volume was significantly larger than both 
anterior periventricular hyperintensity (PVH) and DWMH, and posterior PVH volumes. 
Multivariate regression analysis showed that increased volumes of the anterior PVH and 
the posterior DWMH and decreased rCBF of the parietal cortex negatively affected cog-
nitive function. The other areas had no significant negative effects on cognitive function.

conclusion: Our findings show that the volume of the posterior WMH was significantly 
larger than that of other areas, and the increased posterior WMH volume and decreased 
rCBF of the parietal cortex negatively affected cognitive function. Therefore, the poste-
rior WMH volume and the parietal rCBF are key parameters of cognitive decline in AD 
patients.

Keywords: cognitive decline, dementia, alzheimer’s disease, white matter hyperintensity, single-photon emission 
computed tomography, neuropsychological test
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inTrODUcTiOn

White matter hyperintensities (WMHs) on T2-weighted fluid-
attenuated inversion recovery (FLAIR) magnetic resonance 
imaging (MRI) sequences are linked to a risk of developing 
Alzheimer’s disease (AD) (1–4). WMHs have multiple histo-
pathological correlates including demyelination, ependymal loss, 
cerebral ischemia, venous collagenosis, and microcystic infarcts 
and represent alterations in axon structure, gliosis, and small ves-
sel disease (5–7). The longitudinal progression of WMH is associ-
ated with vascular risk factors such as aging (8), hypertension 
(9), and diabetes (10). In addition, WMHs modulate cognitive 
decline in AD (11–23).

Previous characterization of AD patients using single-photon 
emission computed tomography (SPECT) revealed decreased 
regional cerebral blood flow (rCBF) in the parietal, temporal, and 
posterior cingulate cortices (24–29). In this regard, SPECT has 
been useful for diagnosing AD (30). In addition, several studies 
have revealed age-related differences in rCBF and metabolism 
with hypoperfusion in the parietal lobe in early onset AD and 
medial temporal lobe in late-onset AD (31, 32).

While several studies support an association between the WMH 
volume or rCBF and cognitive decline in AD, no reports have 
simultaneously considered the effects of both WMH volume and 
rCBF on cognitive decline. Several methods have been proposed for 
performing quantitative white matter lesion load measurements on 
MRI (33–40). However, there is currently no software that allows 
fusion of MRI and SPECT data. The purpose of the present study 
was to compare WMH volume and rCBF in relation to cognitive 
function by using a software to fuse MRI and SPECT data. We 
hypothesized that WMH volume and rCBF have specific additive 
and independent effects on cognitive decline. We developed a novel 
software program to examine the relationship between WMH 
volume and cognitive function for different cognitive domains and 
used technetium-99m-ethyl cysteinate diethylester (99mTc-ECD) 
SPECT to evaluate whether the relationship between WMH vol-
ume and cognitive function is independent of rCBF.

MaTerials anD MeThODs

Participants
In accordance with the principles of the Declaration of Helsinki, 
we prospectively registered 182 serial patients who consulted the 
memory clinic of the Mie University Hospital. All procedures 
followed the clinical study guidelines of the ethics committee of 
the Mie University hospital and were approved by the internal 
review board. All procedures were described to the patients, and 
informed consent was obtained from them or their caregivers 
in the written form. Neurologists with sufficient experience in 
examining patients with dementia comprehensively examined 
each patient in our study. We collected data from the patients who 
fulfilled the following inclusion criteria: (1) patients who consulted 
the Memory Clinic of the Mie University Hospital from October 
2013 to August 2016 and were diagnosed with AD based on pre-
established criteria, fulfilling the criteria for probable AD of the 
National Institute of Neurologic Disorders and Stroke/Alzheimer 
Disease and Related Disorders Association (NINCDS-ADRDA) 

(41); (2) patients who received a neuroimaging examination on 
a 3T-MRI; (3) patients who received a 99mTc-ECD SPECT exami-
nation; and (4) patients who underwent neuropsychological 
assessments. The exclusion criteria were as follows: (1) patients 
who were not examined using MRI and 99mTc-ECD SPECT;  
(2) patients who were not administered neuropsychological 
assessments; (3) patients who were diagnosed with dementia other 
than AD; and (4) patients who had normal cognitive function.

Mri Protocol and evaluation of WMhs
Magnetic resonance imaging studies were performed using two 
different 3T-MRI scanners (Achieva and Ingenia; Philips Health 
Care, Best, the Netherlands). We used 3D-FLAIR and T1-weighted 
images. The parameters for 3D FLAIR were as follows: repetition 
time (TR), 6,000  ms; echo time (TE), 310  ms; inversion time, 
2,000 ms; turbo factor, 203; sensitivity encoding factor, 3; field of 
view (FOV), 25 cm; matrix size, 480 × 256; and section thickness, 
1.14 mm. The parameters for T1-weighted images were as follows: 
TR, 7.6 ms; TE, 3.6 ms; flip angle, 8°; FOV, 250 mm × 250 mm; in-
plane resolution, 1.04 mm × 1.04 mm; and slice thickness, 0.7 mm.

Tissue quantification was performed using a novel in-house 
software (FUsed Software for Imaging Of Nervous system: 
FUSION) that yielded an individualized volumetric profile of 
brain tissue. The obtained T1-weighted and FLAIR images were 
imported from DICOM format files for processing. To increase the 
accuracy of segmentation, we used the Lesion Segmentation Tool 
for lesion filling (42). Lesion filling was applied to T1-weighted 
images that were in alignment with the lesion probability map. 
For the preprocessing level, T1-weighted images were coregis-
tered to FLAIR images. Next, to separate WM, segmentation was 
performed by using the T1-weighted images and a mask of cer-
ebral ventricles. The preprocessing function was based on SPM 8 
(Wellcome Trust Centre for Neuroimaging, UCL). Second-level 
tissue segmentation was performed to separate WMHs from 
WM, using a semiautomated operation that extracted the pixels 
falling within predetermined value as WMHs. The WMH vol-
ume, which appeared as hyperintense areas on FLAIR images, 
was quantified for each area. The brain tissue was classified into 
four areas based on the division of the longitudinal fissure of the 
cerebrum and central sulcus. WMHs were automatically clas-
sified as periventricular hyperintensity (PVH) or deep WMH 
(DWMH), and their corrected volumes were calculated in cubic 
centimeters (cc).

sPecT Protocol and evaluation of rcBF
Intravenous radionuclide angiography was performed by bolus 
injection of the reconstituted 99mTc-ethyl cysteinate dimer 
(ECD) (600  MBq). Passage of the tracer from the aortic arch 
to the brain was monitored in a 128 × 128 format for 120 s at 
1-s intervals using a three-head gamma camera system (GCA-
9300A/DI, Toshiba, Tokyo, Japan) equipped with low-energy 
high-resolution fanbeam collimators. SPECT images were 
reconstructed by filtered back-projection using a ramp filter 
follower and postprocessing with a Butterworth filter. The triple-
energy window technique was employed for scatter correction. 
ROIs were placed manually over the aortic arch and bilateral 
cerebral hemispheres. Time activity curves of these two ROIs 
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FigUre 1 | A patient with larger posterior white matter hyperintensity (WMH) 
volume and decreased regional cerebral blood flow of parietal region shown 
as a typical example of fused WMH and single-photon emission computed 
tomography (SPECT) images for quantitative volume analysis.

TaBle 1 | Clinical characteristics.

Mean (sD) Prevalence n (%)

Age (years) 73.1 (7.9)
Female 18 (62.1)
Education (years) 10.9 (2.6)
Hypertension 12 (41.0)
Hyperlipidemia 6 (21.0)
Diabetes mellitus 4 (14.0)
MMSE 23.1 (3.0)
RCPM (score) 24.4 (4.6)
RCPM (time, s) 546.7 (322.4)
RBMT (SPS) 8.6 (5.2)
RBMT (SS) 3.3 (2.5)
TMT A (s) 252.3 (118.9)
WF (category, /min) 10.5 (3.7)
WF (category, /min) 5.9 (2.8)
Construction (cube) 2.4 (0.8)
Construction (Necker cube) 2.2 (0.9)

MMSE, Mini-Mental State Examination; RBMT, Rivermead behavioral memory test; 
RCPM, Raven’s colored progressive matrices; WF, word fluency.
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were plotted and the brain perfusion index (BPI) was determined 
as described previously. BPI was then converted to the mean CBF 
(mCBF) value. The rCBF values were obtained by the conver-
sion of total counts in brain SPECT into mCBF, using Lassen’s 
correction (43).

A three-dimensional stereotactic region of interest (ROI) 
template (3DSRT) program (FUJIFILM RI Pharma Co., Ltd.) was 
applied to assess the regional quantitative value (44–48). 3DSRT 
is a fully automated rCBF quantification program that can be 
used to examine a total of 636 ROIs. These ROIs are categorized 
into six brain segments on the 3DSRT template: bilateral parietal, 
temporal, and posterior cingulate cortices determined by previ-
ous studies (24–29). The blood flow to each ROI was quantified 
in mL/100 g/min.

Finally, the results of evaluation of the SPECT images were 
fused with WMHs on MRI scans (Figure 1).

neuropsychological assessments
The Mini-Mental State Examination (MMSE) (49) and Raven’s 
Colored Progressive Matrices (RCPM) (50) were used to quantify 
intellectual function. Memory was evaluated using the Rivermead 
Behavioural Memory Test (RBMT) (51). Assessment of visuospa-
tial constructional ability was based on the method described by 
Strub and Black (52). A simple cube and a Necker cube were shown 
to the participants, and they were asked to draw them one by one. 
Each drawing was scored by assigning one of four possible grades 
(0: poor, 1: fair, 2: good, and 3: excellent). Frontal lobe function 
was assessed using two tasks, word fluency (WF) and the trail-
making test A and B (TMT-A/-B) (53). The WF test consisted of 
category and letter domains. For the categorical WF, participants 
were asked to name as many animals as possible in 1 min. For the 
letter WF task, participants were asked to say the name of objects 
that begin with each of four phonemes, ka, sa, ta, and te (54).

statistical analyses
Statistical analyses were performed with the Statistical Package 
for the Social Sciences, Version 20 (IBM Corp., Armonk, New 
York, NY, USA). Statistical analyses were conducted using one-
way analysis of variance for continuous variables and the Ryan 
method for pairwise comparisons. We performed multivariate 
regression analysis using a generalized linear model. As predic-
tor variable, we used age, and the PVH, DWMH, and CBFs of 
temporal, posterior cingulate, and parietal regions. As a response 
variable, we used MMSE, RCPM, RBMT, TMT-A/B, WF, and 
visuospatial constructional ability. A p-value of <0.05 was 
regarded as statistically significant.

resUlTs

clinical Data
A total of 182 patients were registered for the present study, 
and 29 patients fulfilled the inclusion criteria. Their clinical 
characteristics are shown in Table 1. The mean (±SD) age was 
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TaBle 2 | Study participant WMH volumes (a) and rCBF values (b).

(a)

region (WMh) cubic centimeter [mean (sD)]

Total 18.4 (19.3)
PVH Right anterior 2.4 (1.9)
Right posterior 2.3 (1.3)
Left anterior 1.9 (1.8)
Left posterior 1.5 (1.2)
DWMH Right anterior 2.1 (3.3)
Right posterior 3.4 (3.9)
Left anterior 2.2 (3.3)
Left posterior 2.8 (4.5)

(b)

region (rcBF) Mean (sD)

Callosomarginal (R) 37.2 (6.8)
Callosomarginal (L) 37.1 (6.8)
Precentral (R) 40.1 (6.9)
Precentral (L) 39.2 (6.6)
Central (R) 40.7 (7.5)
Central (L) 41.2 (7.0)
Parietal (R) 38.8 (7.1)
Parietal (L) 38.9 (7.0)
Angular (R) 42.8 (7.7)
Angular (L) 42.5 (7.4)
Temporal (R) 36.9 (6.7)
Temporal (L) 36.3 (6.1)
Occipital (R) 42.7 (7.1)
Occipital (L) 43.2 (6.9)
Pericallosal (R) 37.5 (7.3)
Pericallosal (L) 37.2 (7.1)
Lentiform nucleus (R) 36.9 (6.6)
Lentiform nucleus (L) 35.6 (5.6)
Thalamus (R) 32.4 (6.9)
Thalamus (L) 32.2 (6.2)
Hippocampus (R) 27.6 (4.9)
Hippocampus (L) 27.0 (4.8)
Cerebellum (R) 47.0 (8.7)
Cerebellum (L) 47.9 (8.4)
Posterior Cingulate (R) 42.1 (8.1)
Posterior Cingulate (L) 40.1 (7.4)

WMH, white matter hyperintensity; PVH, periventricular hyperintensity; DWMH, deep 
WMH; rCBF, regional cerebral blood flow.
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(Table  3). The analysis showed that increased age correlated 
negatively with intellectual function (p = 0.008).

Multivariate regression analysis also showed that WMHs and 
rCBF were significantly associated with memory and intellectual, 
frontal, and visuospatial functions, as follows. An increased ante-
rior PVH volume negatively affected visuospatial constructional 
ability (p = 0.016) and increased posterior DWMH volume nega-
tively affected WF (category), whereas increased volumes in other 
areas did not have negative impacts on cognitive function. In 
addition, decreased rCBF in the parietal areas negatively affected 
RCPM (time) (p = 0.033), TMT-A (p < 0.001), and visuospatial 
constructional ability (p  =  0.012), whereas decreased rCBF in 
other areas did not.

In particular, the anterior PVH, the posterior DWMH, and the 
parietal regions were key areas that negatively affected cognitive 
function. We present a representative patient with increased pos-
terior WMH volume and decreased rCBF of the parietal region 
as a typical example in Figure 1.

summarize the results
We compared MRI and SPECT findings with neuropsychological 
data from outpatients of the memory clinic of our hospital. An 
analysis of variance revealed that the posterior DWMH volume 
was significantly larger than the anterior PVH, anterior DWMH, 
and posterior PVH volumes. Multivariate regression analysis 
showed that increased anterior PVH and left posterior DWMH 
volumes and decreased rCBF of the parietal area correlated nega-
tively with cognitive function, whereas other areas did not have 
negative effects on cognitive function.

DiscUssiOn

We developed a novel software program for quantitative volume 
analysis of WMHs and SPECT using fused imaging data. Our 
software has some advantages over other programs and showed 
reasonable results in accordance with previous studies. Although 
several software programs have been developed for WMH 
analysis (39, 40), none are available for discrimination of PVH 
and DWMH on the anatomical basis of blood flow cliff or for the 
combined evaluation of rCBF. Measuring white matter volume 
is critical for the diagnosis of dementia, and fusion images of 
WMHs and rCBF are also useful in clinical settings. In addition to 
these regional analyses, we examined brain tissue after classifica-
tion into four areas based on division of the longitudinal fissure 
of the cerebrum and central sulcus. Other anatomical ROIs have 
also been used (55); nonetheless, the regions we investigated may 
be useful in practical settings.

Previous studies have reported that the WMH posterior 
volume was larger than the anterior volume (56–58) in patients 
with cerebral amyloid angiopathy (CAA) as well as AD (59). CAA 
induces cerebral hypoperfusion in the white matter as a result of 
amyloid β deposition in the microvessels of the cerebral cortices 
and is found in more than 80% of all patients with AD (60). It is, 
therefore, likely that most patients in our cohort had comorbid 
CAA. Our results showed that the posterior WMH volume, 
especially that of the DWMH, was larger than the anterior and 
posterior PVH volumes. The results of the present study are in 

73.1 ± 7.9 years, and 18 of the participants were female. The mean 
(±SD) MMSE was 23.1 ± 3.0.

WMh Volume and rcBF
The participants’ WMH volumes and rCBF values are shown in 
Table 2 (a,b). The mean total WMH volume was 18.4 ± 19.3 cc. 
Analysis of variance [F(3,84)  =  2.748, p  <  0.05] and pairwise 
comparisons revealed that posterior DWMH volume was signifi-
cantly larger than the anterior PVH (p = 0.038), anterior DWMH 
(p = 0.043), and posterior PVH volume (p = 0.009).

association of WMh, rcBF, and cognitive 
Decline
The effect of regional WMHs and rCBF on neuropsychological 
test results was evaluated with multivariate regression analysis 
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TaBle 3 | Regional WMH effects on neuropsychological assessment results were evaluated with multivariate regression analysis.

rcPM (score) rcPM (time, s) TMT a (s) WF (category, /min) Visuospatial constructional 
ability (necker cube)

Intercept 20.58 (9.96−42.52)*** 129.08 (17.70−941.53)*** 644.34 (169.02−2456.32)*** 14.20 (3.84−52.49)*** 1.41 (0.29−6.81)
Age 1.00 (0.99−1.01) 1.03 (1.01−1.06)**,a 1.01 (0.99−1.03) 0.99 (0.98−1.01) 1.00 (0.98−1.02)
PVH (A) 0.97 (0.89−1.06) 1.00 (0.79−1.26) 1.17 (0.98−1.40) 1.08 (0.93−1.25) 0.80 (0.66−0.96)*,a

PVH (P) 1.01 (0.92−1.11) 0.96 (0.73−1.28) 0.87 (0.70−1.08) 1.05 (0.88−1.24) 1.02 (0.85−1.22)
DWMH (A) 1.06 (1.00−1.13) 1.05 (0.90−1.21) 0.91 (0.81−1.03) 1.02 (0.92−1.13) 1.17 (0.96−1.41)
DMWH (P) 0.97 (0.93−1.01) 0.98 (0.88−1.09) 1.08 (0.99−1.17) 0.89 (0.83−0.96)**,a 0.96 (0.85−1.09)
CBF/parietal 1.01 (0.99−1.04) 0.94 (0.89−1.00)*,a 0.92 (0.88−0.96)***,a 0.98 (0.95−1.02) 1.08 (1.02−1.14)**,a

CBF/temporal 1.02 (0.99−1.05) 1.01 (0.94−1.09) 1.05 (1.00−1.11) 1.01 (0.96−1.06) 0.94 (0.88−1.00)
CBF/posterior 
cingulate

0.98 (0.96−1.00)** 1.04 (0.98−1.09) 0.99 (0.95−1.03) 1.01 (0.98−1.05) 0.99 (0.93−1.06)

Odds ratio (95% CI).
*p < 0.05.
**p < 0.01.
***p < 0.001.
aNegative effect.
A, anterior; P, posterior; PVH, periventricular hyperintensity; DWMH, deep white matter hyperintensity; MMSE, Mini-Mental State Examination; RCPM, Raven’s Coloured Progressive 
Matrices; RBMT, Rivermead Behavioural Memory Test; SPS, Standardized Profile Score; SS, screening score; TMT, trail making test; WF, word fluency.
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agreement with those of previous studies and further indicate 
that posterior volume, especially posterior DWMH, may be a key 
characteristic of AD.

The present study showed that WMHs were significantly 
associated with cognitive functions, which is in accordance with 
previous findings (11–23). Additionally, our results indicated that 
increased volumes of the anterior PVH and posterior DWMH 
negatively affected frontal and visuospatial function, both of 
which decline in AD (33). Given the larger posterior WMH 
volume, it is reasonable to hypothesize that posterior WMH 
negatively affected cognitive function in AD. On the other hand, 
SPECT results indicated that the parietal region more negatively 
affected cognitive function than did other regions. The area also 
negatively affected intellectual, frontal, and visuospatial function. 
A previous study showed that distinct cognitive profiles are asso-
ciated with anterior and posterior WMH progression (61), When 
simultaneously considering the effects of both WMHs and rCBF 
factors (as shown in Figure 1), modulation of posterior regions 
may underscore neurodegeneration in the posterior association 
cortex and cognitive decline in AD. While increased WMH 
volume and decreased rCBF negatively affected cognitive func-
tion, some areas were associated with improvement in certain 
cognitive domains.

The present study has several limitations, including the 
small number of patients, investigating only patients with AD, 
and a lack of gray matter volume measurements. The patient 
cohort was small due to the prohibitive cost of SPECT imaging 
and standardized data collection form ECD as a radiolabeled 
ligand. Most patients in our cohort had AD, preventing us from 
establishing a significant effect of pathological background. 
Besides patients with AD, information is lacking in other 
types of dementias. Future studies that investigate other types 
of dementias, as well as gray and white matter volumes, could 
advance WMH and rCBF analysis to predict cognitive decline 
more accurately.

cOnclUsiOn

Our results agreed with those of previous studies, indicating that 
our software is a reliable tool. Collectively, the existing evidence 
suggests that posterior WMH volume and parietal cortex rCBF 
may predict cognitive decline in AD.

eThics sTaTeMenT

In accordance with the principles of the Declaration of 
Helsinki, we prospectively registered 182 serial patients who 
consulted the memory clinic of the Mie University Hospital. All 
procedures followed the clinical study guidelines of the ethics 
committee of the Mie University hospital and were approved 
by the internal review board. All procedures were described to 
the patients, and informed consent was obtained from them or 
their caregivers.
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