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The virus causing COVID-19 has spread rapidly worldwide and
threatens millions of lives. It remains unknown, as of April 2020,
whether summer weather will reduce its spread, thereby alleviat-
ing strains on hospitals and providing time for vaccine develop-
ment. Early insights from laboratory studies and research on
related viruses predicted that COVID-19 would decline with higher
temperatures, humidity, and ultraviolet (UV) light. Using current,
fine-scaled weather data and global reports of infections, we de-
velop a model that explains 36% of the variation in maximum
COVID-19 growth rates based on weather and demography
(17%) and country-specific effects (19%). UV light is most strongly
associated with lower COVID-19 growth. Projections suggest that,
without intervention, COVID-19 will decrease temporarily during
summer, rebound by autumn, and peak next winter. Validation
based on data from May and June 2020 confirms the generality
of the climate signal detected. However, uncertainty remains high,
and the probability of weekly doubling rates remains >20%
throughout summer in the absence of social interventions. Conse-
quently, aggressive interventions will likely be needed despite
seasonal trends.
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COVID-19 is causing widespread morbidity and mortality
globally (1, 2). The severe acute respiratory syndrome coro-

navirus 2 (SARS-CoV-2) responsible for this disease infected
more than 17 million people by August 2020 (3). Much of the
world has implemented nonpharmaceutical interventions, includ-
ing preventing large gatherings, voluntary or enforced social dis-
tancing, and contact tracing and quarantining, in order to prevent
infections from overwhelming health care systems and exacer-
bating mortality rates (2, 4). However, these interventions risk
substantial economic damage, and thus decision makers are cur-
rently developing or implementing plans for lifting these restric-
tions. Consequently, improved forecasts of COVID-19 risks are
needed to inform decisions that weigh the risks to both human
health and economy (2).
One of the greatest uncertainties for projecting future COVID-

19 risk is how weather will affect its future transmission dynamics.
SARS-CoV-2 might be particularly sensitive to weather, because
preliminary laboratory trials suggest that it survives longer outside
the human body than other viruses (5). Rising temperatures and
humidity in the Northern Hemisphere summer could reduce
SARS-CoV-2 transmission rates (6–8), providing a temporary
reprieve. Simultaneously, the Southern Hemisphere has entered
winter, and we do not know whether winter weather will increase
COVID-19 risks, especially in countries with reduced health care
capacity. Early analyses of COVID-19 cases predicted that high
temperatures would reduce summer transmission (9–11). These
predictions have been widely reported and are informing decisions
about relaxing interventions. However, these analyses relied on
the early stages of viral spread before the epidemic had reached
warmer regions and thus potentially conflated weather with initial
emergence and global transport.
We estimate how weather affects COVID-19 growth rate us-

ing data from the first four months of pandemic spread (up to

April 13, 2020) when social interventions were rare and apply
methods that improve model predictive accuracy, incorporate
uncertainty, and reduce biases. We developed several predictions
about how weather, either directly or indirectly via modified
human behaviors (e.g., aggregating indoors) or effects on im-
mune function, affects COVID-19 growth rate based on a liter-
ature review of weather impacts on SARS-CoV-2 (9, 10, 12),
related coronaviruses (8, 13–15), and viruses involved in other
epidemics such as influenza (16–19). Based on this research, we
predicted that COVID-19 growth would peak at low or intermediate
temperatures. Alternatively, other coronaviruses demonstrate weak
temperature dependence, instead depending on social or travel dy-
namics (7). High humidity also might decrease viral persistence, limit
transmission of expelled viral particles, or decrease host resistance
(13, 20–23). Ultraviolet (UV) light effectively inactivates many
viruses (19), especially larger coronaviruses (24) like SARS-CoV-1
(25). Sunny days might decrease outdoor transmission or promote
immune resistance via vitamin D production (26). We also evaluate
demographic variables, hypothesizing greater transmission in denser
(more interactions among people) and older (>60 y) populations
that are more likely to have severe symptoms and be tested as
compared to less symptomatic populations of younger people.
We modeled maximum growth rates of COVID-19 cases to

restrict analyses to the early growth phase before social inter-
ventions reduced transmission, but after community transmission
began, and when most people were still susceptible to this novel
virus. We estimated the average maximum growth rate (λ) as the
exponential increase in cases (ln Nt – ln N0)/t, where Nt = cases at
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time, t, and N0 = initial cases) based on a repeated measures
design for the three worst 1-wk intervals in each political unit
[country or state/province, depending on available data (3)], where
t = 7 d. We chose a 7-d period because of evidence that case
reporting varies significantly by day of week, with a weekly cycle in
global data described by a peak on Friday and a low on Monday
(SI Appendix, Fig. S5). Moreover, an analysis of temporal auto-
correlation in detrended data revealed significant peaks at 7 and
14 d, again corroborating a weekly pattern to reporting that is
overcome by using a 7-d period (SI Appendix, Fig. S5). However,
we also evaluated results at shorter periods and found that results
were also robust to using 1- or 3-d intervals (SI Appendix, Fig. S6).
Testing and reporting of COVID-19 varies considerably across
political units, which makes modeling differences in raw count
data unreliable. In contrast, estimated growth rates should remain
robust to the biases introduced by variable reporting rates, as-
suming detection probabilities remain relatively similar during the
short, 1-wk estimation period in a given political unit. Although
data on testing rates to evaluate this assumption are unavailable
for many political units, we believe that this approach is the least
biased approach given data limitations. We restricted analyses to
political units with >40 cases, to eliminate periods before local
community transmission. These decisions resulted in data from
128 countries and 98 states or provinces.
We applied a hierarchical Bayesian model with uninformative

priors to estimate parameters. The Bayesian approach provides a
transparent means to account for and explore uncertainty through
the posterior distribution of estimates, and thus has become the
preferred methodology of many forecasting studies. We obtained
daily infection data from ref. 3 and obtained 3-h weather data
from the European Centre for Medium-Range Weather Forecasts
Re-Analysis model (ERA5) reanalysis for the 14-d preceding case
counts and averaged these values to reflect the possibility that
infection could have occurred during the previous 14 d, consistent
with the 1- to 14-d infective period widely reported (27). Given the
uncertainty in the joint distributions of symptom onset, testing,
and reporting, as well as not knowing the degree to which variables
influenced COVID-19 case growth via transmission versus the
expression of symptoms (e.g., vitamin D immune function), we
chose to average across the potential period of infectivity, thereby
assuming weather each day in the preceding 14 d was equally
important. However, results were robust to a range of other as-
sumptions when calculating lagged weather variables, including
weighted means centered on 6, 9, and 12 d as well as different
variances. We demonstrated that the insensitivity of results to
these assumptions originated from the high similarity of weather
variables over 14 d in each political unit relative to their dissimi-
larity among political units (see SI Appendix, Fig. S7 for more
information). We used fine-scaled weather data rather than long-
term climatic monthly means to model observed weather outbreak
dynamics. Weather data were weighted by population size in each
0.25° grid cell within each political unit to capture the weather
most closely associated with outbreaks in population centers. We
used leave-one-out cross-validation, which ranks models on pre-
dictive accuracy on excluded data, to choose the highest per-
forming models. We included a random country effect to account
for differences in national control response times, health care
capacity, testing rates, and other characteristics intrinsic to country
of origin.
The best model predicted 36% of the variation in maximum

COVID-19 growth rate (Fig. 1) and 17% of the variation in-
cluding weather and demographic variables, but excluding country
effects. This model included maximum daily UV light, mean daily
temperature, proportion of elderly, and mean daily relative hu-
midity (Fig. 2A). Competing models reflected the same qualitative
results and similar parameter estimates (SI Appendix, Table S1).
UV light had the strongest and most significant effect of tested

meteorological variables on COVID-19 growth (βUV = −0.44,

95% credible interval [Ci]: −0.53, −0.36; covariates were stan-
dardized to allow for comparisons among coefficients). Many
other human viruses also peak during periods of low UV light in
winter, including influenza (19). This negative effect of UV light
on SARS-CoV-2 might be even stronger given evidence that the
large genome size of coronaviruses makes them particularly
susceptible to sunlight-derived UV irradiation (25). Alternatively,
UV light might decrease COVID-19 risk indirectly by facilitating
human immunity function by enhancing vitamin D production.
Several reports now suggest a link between vitamin D deficiency
and increased risk of COVID-19 (26, 28, 29).
Contrary to predictions, temperature positively affected COVID-

19 growth rate (βtemp = 0.23, 95% Ci: 0.15, 0.32), when combined
with UV light (see SI Appendix for discussion of alternative candi-
date models and effects of variable correlations). Like most viruses,
SARS-CoV-2 likely performs best in a moderate range of temper-
atures, such that, when combined with correlated factors such as
UV light and humidity, our model incorporates the positive aspects
of this unimodal relationship. As expected, relative humidity de-
creased growth rates (βhumidity = −0.05, 95% Ci: −0.11, 0.00). Ab-
solute humidity was strongly correlated with temperature (r = 0.88),
and adding it made little difference in model performance. Hu-
midity is frequently an important factor in reducing the transmission
of viral particles through the air, as demonstrated for the influenza
virus (22, 23).
Contrary to predictions, the proportion of elderly in a pop-

ulation was associated with decreased COVID-19 growth rate
(βprop_over60 = −0.07, 95% Ci: −0.14, −0.00), perhaps due to
outbreaks facilitated by early transmission in northern temperate
countries with older populations or risk-averse behaviors in older
populations. The model was characterized by equally strong
random effects associated with country of origin (Fig. 2B). For

Observed and predicted COVID-19 outbreak

19% 64%17%

Observed mean growth rate 
(worst 3 weeks)

(worst 3 weeks)

A B C

Fig. 1. Observed and predicted maximum growth rates for COVID-19 along
with graphical partitioning of (A) weather and demography, (B) country
effects, and (C) residual variation. Country effects are estimated relative to
global mean; 17% of variation is explained by seasonality, while 19% of
variation arises from country-specific factors, which may include quarantine
policies, health care, or reporting practices.
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instance, Turkey, Brazil, Iran, and the United States had the
highest growth rates independent of modeled factors, whereas
China, Iceland, Burkina Faso, and Sweden had the lowest. The
strong negative effect associated with China likely indicates early
interventions and is accounted for in our model.
We explored why earlier studies predicted a negative association

between temperature and COVID-19. Alone, temperature had a
weak, negative effect on COVID-19 growth rate, but this effect
became positive after adding UV (SI Appendix, Table S1). When
combined with other parameters, temperature negatively affected
COVID-19 early in the pandemic (Fig. 3, Top). Significant positive

temperature dependence emerges by late February following trans-
mission to warmer, high-UV regions of climate space, like Africa
(30) (see Fig. 3, Bottom, demonstrating filling of climate space).
Note, however, that our analysis does not specifically attempt to
reproduce previous studies, so differences are expected depending
on the details of decisions in other studies. This finding urges cau-
tion in drawing conclusions about the climatic niches of new path-
ogens from initial emergence sites and transportation hubs before
they reach an equilibrium distribution with climate. Although future
data could also alter our predictions, especially as COVID-19
becomes endemic (31), we found evidence that model predictions
might have stabilized by the end of the analysis. This evidence
includes less variable model predictions over time (Fig. 3A) and
the filling of available global climate space such that COVID-19 is
now found in most available climates of the world, and therefore
relationships are likely to reflect the multitude of possible global
weather patterns rather than the subset of weather where it
originated (Fig. 3B).
In April 2020, we predicted potential COVID-19 growth rates

for the next 12 mo relative to a weekly doubling rate (λ = 0.1;
Fig. 4). Based mostly on contributions from UV light and tem-
perature, our model predicts that COVID-19 risk will decline—
although it will not be eliminated—across the Northern Hemi-
sphere this summer, remain active in the tropics, and increase in
the Southern Hemisphere as days shorten and UV light declines
(Fig. 4, Left and Right). However, given high uncertainty, a non-
negligible risk exists throughout the world for potential outbreaks
in summer similar to that observed at the outset of the pandemic
(Fig. 4, Middle, dark blue = 30% probability of λ > 0.1). By
September, declining daylength steadily increases COVID-19
outbreak risk in the Northern Hemisphere until a peak in north-
ern winter (December−January), while risks decline during the
Southern Hemisphere’s summer. This predicted peak of COVID-
19 in winter corresponds to what we know about coronaviruses
more generally. For instance, a study of multiple human corona-
viruses in southern China found that they also peaked in
winter (15).
Predictions should not just be developed, but should ultimately

be validated with out-of-sample data in order to test them (32, 33).
During the process of revising this manuscript, it became possible
to validate predictions made in early April 2020 with data that
became available for May and June 2020. The new data were
aggregated into weekly intervals for each polity to calculate weekly
growth rates that were comparable to our original predictions. We
then took the average value over weeks within a month and
compared that to the values of predictions shown in Fig. 4 for each
polity. Because the model was fit during a period of limited in-
tervention in most regions and the validation data include a time
period when interventions are high in most regions, we hypothe-
sized downward-biased estimates. However, we expected a cor-
relation between predictions and observations (i.e., consistency)
due to weather, and found a correlation of 0.33. The considerable
scatter that remains (Fig. 5) is consistent with our expectation that
human behaviors have larger impacts on spread than climate.
However, there remains a clear signal that the climate relation-
ships we detected are reflected in validation data.
Although this model represents our best current prediction, a

range of outcomes still remain possible within the scope of our
uncertainty estimates (Fig. 4, Middle Column). Furthermore,
these predictions of potential growth need not be realized if
appropriate interventions are enacted or a vaccine is developed.
Whereas intervention will substantially influence absolute growth,
our predictions can still inform our understanding of the under-
lying annual variation in risk. For instance, the flu still cycles
seasonally and from hemisphere to hemisphere despite availability
of seasonal flu vaccines (17). Although not conclusive, the decline
in COVID-19 growth rate in the Northern Hemisphere combined
with its rapid growth in South America and South Africa in June is

Fig. 2. Median standardized estimates for (A) weather and demography
and (B) country effects for best predictive model with 95% Ci (light blue) and
medians indicated by dark blue vertical lines or diamonds, respectively.
Country codes follow GADM (Global Administration) conventions.
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consistent with predictions made in April and despite the main-
tenance of strong social interventions up to this point in time.
Our predictions were robust to the manifold decisions made

regarding data and model structure. We explored the conse-
quences of using different parameter comparisons, the effects of
7-d periods for aggregating weather data, different cut-offs for
minimum number of cases, varying number of weeks analyzed
per political unit, analyzing first or worst weeks following the
infection threshold, and using weather maxima and minima in-
stead of means. In all cases, we found no qualitative changes to

results, except that maximum daily UV light during a 14-d in-
terval substantially outperformed the mean (SI Appendix), which
was subsequently included in the top model. We also explored
the effect of excluding data from China, where interventions
occurred first, and found qualitatively similar results. Lastly, we
evaluated the effect of spatial and temporal autocorrelation on
model estimates and found little support for its impacts on
model results (SI Appendix, Figs. S3 and S4).
Understanding the true contributions of weather to human

pathogens requires combining insights from observational analyses

Fig. 3. Effect of temperature and UV on COVID-19 growth rate as the pandemic spreads to new climates. (A and B) Model coefficients and uncertainty
through time demonstrate dynamic shifts and stabilization of parameter estimates (50% and 95% Ci indicated by colored and gray fills, respectively), il-
lustrating why earlier studies likely detected a negative temperature dependence. China dominated data until February 24, after which COVID-19 spread to
new regions and novel climate space, leading to the observed shift in model coefficients. (C) Early COVID-19 outbreaks (growth rate proportional to blue
symbol area) occurred in a subset of potential temperatures (degrees Celsius) and UV light levels (joules per square meter) possible per year (background gray-
blue gradient) and per time period (red overlay) based on 2014–2019 climate averages.
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like this one and manipulative experiments that isolate factors
under controlled conditions (5, 12). Other causal factors correlated
with weather variables could have also contributed to our findings,
including weather-associated human behaviors (e.g., seasonal

aggregations for education or religion). Despite initial suggestions
that seasonality would substantially control COVID-19, we found
that weather explains 17% of the variation in COVID-19 growth
rates. Undescribed factors across political units were as important

Fig. 4. Predicted potential growth rates of COVID-19 by month using best model. (Left) Potential growth rate relative to weekly doubling time (λ = 0.1). Red
indicates faster than a weekly doubling rate, and blue indicates slower rates. (Middle) Posterior probability of growth rates exceeding a weekly doubling rate.
(Right) Indicates which predictor contributes most (based on predictor × coefficient) to COVID-19 growth rate (λ) in each 0.25° cell, with stippling indicating
negative contributions.
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as weather (19% of variation), and much of the variation (64%)
remains unexplained. Future studies should build from these me-
teorological insights and create more mechanistic epidemiological
models that include laboratory-based estimates of weather impacts,
human demography, movement, sociocultural behaviors, health
care capacity, and political interventions (e.g., refs. 2, 4, and 31).
Other epidemiological factors are likely to explain more var-

iation in epidemic growth rates beyond weather and demogra-
phy. For example, each of the 10 influenza outbreaks in the past
250 y have peaked 6 mo after the start, regardless of the season
in which they began. Although the dynamics of influenza and
SARS-CoV-2 may differ, this recurrent pattern likely occurs due
to the high susceptibility of populations to new viruses, as has
been suggested for SARS-CoV-2 (31). Yet, 17% of variation
explained by weather is still exceptional compared to meteoro-
logical models of viral outbreaks such as seasonal influenza (17,
18, 34), in which weather only explained 3% or less of variation.
In contrast, a model of the related SARS-CoV-1 virus explained
85% of the variation in transmission based on weather. Labo-
ratory research has suggested that coronaviruses might persist
longer in the environment (5) and are more susceptible to UV
inactivation (24). Together, these pieces of information suggest
that SARS-CoV-2 might be more sensitive to weather and thus
might display more climate-driven seasonality than other viral epi-
demics. However, we reinforce that effective pharmaceutical and
nonpharmaceutical interventions are far more important in altering
outbreak dynamics, with seasonality operating as a contributing
underlying factor.
We demonstrated and validated that COVID-19 growth rate

increases with reduced UV light, higher temperatures, and lower
relative humidity. We predict that COVID-19 will oscillate be-
tween the Northern and Southern Hemispheres, based largely on
seasonal variation in UV radiation and temperature without
continuing interventions like social distancing. Despite a possi-
ble, but uncertain, temporary summer reprieve in the north,
COVID-19 will likely return by autumn and threaten further
outbreaks. The north should take this time to build resilience
against future outbreaks, while assisting countries in the tropics
and Southern Hemisphere. Uncertainty remains high, however,
so we urge caution when making decisions such as removing

societal interventions before more permanent pharmaceutical
solutions can be implemented.

Methods
Overview.We examined the weekly rate of increase in the number of COVID-
19 infections as a function of weather, while controlling for human pop-
ulation structure, in order to determine the effects of the abiotic environ-
ment on the growth rate of infections. Our selection of weather variables
and the time frame within which we measured variation was based on the
limited, but rapidly expanding, experimental and observational research on
the survival and transmission of SARS-CoV-2 virus and human resistance to
the resultant COVID-19 disease (9, 12, 26, 31, 35). We performed model se-
lection to optimize model prediction of cross-validated data and performed
comprehensive sensitivity analysis with respect to both data preparation and
modeling decisions and found no qualitative differences between the findings
represented in our best model and other models using different, but reasonable,
decisions.

Infection Data. Daily infection data were obtained from the Johns Hopkins
Center for Systems Science and Engineering (3), which documents country-
level aggregations of infected individuals, except in Australia, Canada,
China, and the United States, where state-level data are available. From
these daily data, we calculated weekly growth rate assuming an exponential
model for the growth of the number of infected individuals, which fit well
to COVID-19 dynamics during the early stages of spread. The starting point
for 1-wk intervals was polity specific (either country or state level depending
on the resolution of available data), and calculated beginning on the
first day (denoted t0) that the number of infected individuals exceeded 40
(and 20 and 60; see sensitivity analysis below). This minimum was necessary
to eliminate the early dynamics of COVID-19 in locations due primarily to
transport from other regions rather than local, community transmission. This
moving window approach allowed us to capture local differences in onset
date of transmission without imposing any artificial cutoffs (e.g., based on
calendar week). By summarizing the data in this way, we had 541 observa-
tions distributed over 203 political units.

To capture periods when the spread rate was most severe, we chose to
focus on the worst 3 wk (also 2, 4 wk; see sensitivity analysis) in each political
unit based on the magnitude of lambda. We were primarily concerned about
high rates of spread and their possible meteorological and demographic
drivers, so this decision controls for differences among polities in the onset of
severe spread and differences in the timing of control measures that may
reduce growth. Hence, a focus on maximum growth rates is the best, un-
biased estimate of COVID-19 growth in the absence of control measures and
most likely to be influenced by weather. In sensitivity analyses, we also
considered using the first 2, 3, or 4 wk following t0, and found similar, but
more variable, results, owing to the likely variation among countries in the
early rates of spread (e.g., in Thailand, growth was initially low before
increasing rapidly).

Weather Data. Weather data were aggregated from 3-hourly data down-
loaded from the ERA5 model (36) and averaged at 14-d intervals preceding
the time period in which they were calculated for each polity. A 14-d interval
captures the known infective period of SARS-CoV-2, where infections are
known to occur from a period of 1 d to 14 d (27). Hence, we use the actual
observed weather during the period of viral transmission. This decision
contrasts with previous studies that used average monthly climate calculated
over the interval 1970–2000 provided by Worldclim (37). Notably, the bi-
weekly averages we calculated are, on average, expected to reflect higher
temperatures due to climate change in the last 50 y compared to historic
long-term averages. Further, our biweekly estimates better reflect the actual
conditions when infections occurred, and thus are expected to better predict
transmission if, indeed, they influence it.

Based on existing insights about SARS-CoV-2 and the onset of COVID-19,
we considered the following weather variables: temperature 2 m above land
surface, relative humidity, absolute humidity, and total incoming UV radi-
ation at the land surface. To align the weather data with infection data for a
given political unit, we determined the first day (t0) when more than 40
individuals were reported (also 20 and 60 infections; see below). We calcu-
lated the mean values of the weather variables over the 14-d window pre-
ceding t0. For example, t0 for Connecticut was March 16 (when 41 records
had accumulated), so the weather variables were averaged over the 14-d
window preceding March 10. This reflects the assumption that detected
infections between March 10 and March 16 primarily occurred between
February 24 and March 9. Although imperfect, the temporal autocorrelation

Fig. 5. Predictions were validated with data from May and June 2020 that
became available after the model was parameterized (in April 2020). Pre-
dictions generally follow a linear trend (red line) parallel to the 1:1 line
(black line), but with a positive offset (higher intercept) that shifts the trend
line up. We hypothesize that this offset reflects the effect of recent, wide-
spread interventions that were not as prevalent during model development.
Despite this offset, the similar slope of the relationship suggests that the
model still retains predictive power, even during robust social interventions.
Outliers are shown in the blue circles, and occur primarily in Australia and
New Zealand, where interventions have been largely successful, and, to a
lesser extent, in central South America.
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of weather suggests that this is reasonable (e.g., even if an infection oc-
curred on March 2, weather would be typically well correlated from March 3
to March 9).

Finally, note that we also explored the use of minimum and maximum
values of weather variables to account for the possibility that transmission
was more likely driven by extreme weather rather than average weather. We
also considered using weekly rather than biweekly intervals, to reflect the
possibility of shorter incubation periods. Outcomes were robust to these
decisions (SI Appendix, Table S1).

Previous studies have noted that the coarse spatial grain of infection data
(country or state level) makes it difficult to interpret weather variables in the
context of such large spatial units (38). To address this, we calculated weather
averages over the quarter-degree grid cells in a polity, weighted by the
population size in each cell. This resulted in weather covariates that better
reflect where most humans are and hence where infections occurred. Also,
early maximum transmission rates were usually located in large cities, and
thus our model weights weather variation in line with this potential bias.

Population Data. We obtained human population data from Worldpop.org,
focusing on total human population (density) and proportion of the pop-
ulation over age 60 y. Population density was hypothesized to control for
the number of interactions individuals in a location were likely to experi-
ence, whereas the proportion of people over age 60 y in a polity was hy-
pothesized to control for reporting rate, given that older people are more
adversely affected by the disease and thus more likely to be tested. Data
were obtained at 1-km resolution and summed to the quarter-degree grid
imposed by the weather data. Polity information was obtained based on
global standards (GADM.com). Each quarter-degree grid cell was assigned to
a polity, and cells were averaged over the polity.

Models. We focus on the growth rate of COVID-19 cases, rather than esti-
mating a climate niche for the virus based on its presence or absence or total
number of cases, as explored in preliminary studies (11), to avoid issues with
disequilibrium in the virus’ distribution. We focused on estimating the rate
of increase of infected individuals, rather than directly modeling the number
of infected individuals, in order to minimize the influence of different
reporting biases in different polities. We calculated λ as λ = (ln(N(t)) −
ln(N(t0))/t, where t was taken to be 7 d and t0 was defined as the start date
for counting infections. This formulation is independent of reporting bias,
under the assumption that the reporting bias is constant over the 7-d in-
terval. To see this, consider that the true number of infected individuals N* is
related to N via the proportion of cases reported, p, such that N = pN*.
Substituting this expression for N into the expression for λ, it is apparent that
p cancels out. Hence, so long as p is approximately constant across a 7-d
interval, it does not affect the estimate of growth rate.

We used a hierarchical Bayesian Gaussian regression with a log link on the
weekly transmission rate. This took the form

log(λ)  = α  +   Xβ + Zb  +   «

«∼N 0, σ( )

b∼N 0,Σ( ),
where λ is the growth rate of cases over one week, α is an intercept, X is a
matrix of covariates, β is a vector of coefficients for the climate, demo-
graphic covariate Z is a matrix of binary dummy variables representing the
political units, and b is a vector of coefficients describing the random in-
tercepts for each political unit. Errors « are normally distributed with mean
zero variance σ, while political unit effects b had mean zero and variance Σ.
Priors on α, β, «, and Σ were weakly informative to help stabilize models as
recommended in the documentation for the rstanarm R package used to fit
models (39). Three chains were sampled with STAN’s no-U-turn algorithm
with a burn-in of 200, and 8,000 samples thinned by a factor of 5, which was
determined sufficient based on the Raftery diagnostic (40).

The full model includedmean 14-d lagged temperature, mean 14-d lagged
relative humidity, mean 14-d lagged absolute humidity, mean 14-d lagged
UV, human population density, and proportion of the population over age 60
y. All variables were rescaled to have zero mean and unit variance to enable
comparison between coefficients. We used linear terms for all variables but
also considered a quadratic term for temperature, based on suggestions of
modality in previous studies (10, 11, 41). Based on sensitivity analyses dis-
cussed below, we found that maximum daily UV light was a considerably
better predictor than the mean (difference in Leave-One-Out Information
Criterion [LOOIC] = 35), so we used the maximum in our best model.

Country-level random effects were used to capture differences in policies,
health care, or other locally specific behaviors. We also explored state/
province-level random effects (where applicable), but country-level effects
performed considerably better in all models explored, based on model
selection criteria.

Model Selection. We were interested in developing models with high pre-
dictive ability. Thus, we performed model selection using LOOIC. This tech-
nique iteratively uses all data except for the ith data point to develop a
model; then it predicts the left-out point, and uses the divergence between
model prediction and observation to rate model performance. The sum of
these divergences across all N data points is then converted into a standard
measure of overall model performance called the LOOIC, where lower
numbers indicate models that better predict left-out data (42). This model
selection method has been found to excel over alternative Bayesian methods
such as Deviance Information Criterion, and is especially appropriate when
the objective is prediction (42).

Model selection was performed by starting with the full model and using
forward and backward stepwise selection. The full model regressed the
growth rate over a 1-wk window against linear terms for mean temperature,
mean UV light, mean relative humidity, mean absolute humidity population
density, and proportion of the population over age 60 y. We included a
quadratic term for temperature based on earlier studies suggesting a decline
in growth rate with temperature. We also included an interaction term
between temperature and UV light to account for their correlation. All these
variables were calculated in the 7-d windows preceding the interval used to
calculate growth rate. During stepwise selection, we note that there were no
cases of parameters trading off with one another and that coefficients for
each predictor always retained the same sign and approximate magnitude
regardless of which other predictors were in themodel. The only exception to
this was when UV light was excluded from a model that included temper-
ature; the temperature effect dropped from positive to near zero. Hence it is
important to interpret the positive effect of temperature in our best model as
accounting for the effect of temperature only after UV light has been in-
cluded in the models.

Once we found the best suite of predictors (excluding the quadratic
temperature term, the UV light−temperature interaction, absolute humidity,
and population density), we explored whether using the maximum or mini-
mum daily values of each weather variable, and 7- versus 14-d lagged intervals,
improved LOOIC. The only case where we found significant model improve-
ment compared to the biweekly means was for maximum UV light over both
7- and 14-d intervals. Since the 14-d interval improved model performance
most (based on LOOIC), we chose that as the summary statistic for UV light.
Notably, for all other weather variables, there was negligible difference in
LOOIC when we used weekly versus biweekly means, and hence we used bi-
weekly values for all variables for simplicity.

Sensitivity Analysis. Sensitivity analysis for a variety of model decisions was
conducted to determine whether our key finding—the relation between
COVID-19 growth rate and temperature, UV light, and relative humidity—
was affected by any of our decisions. In all cases that follow, the median of
the temperature coefficient was positive, with a 95% credible interval
sometimes overlapping zero and sometimes not, depending on the model.
In all cases, the median and 95% credible interval for UV was negative. In all
cases, the 95% intervals for relative humidity and population density always
overlapped zero, but the medians were always negative and positive, re-
spectively. The quadratic temperature term never improved the model, in-
dicating that there was no support for a unimodal response to temperature.

Sensitivity to a number of data preparation steps was assessed. During
data preparation, we considered the two, three, and four worst weeks
(highest lambda) following t0, as well as the first 2, 3, and 4 wk following t0.
We note that the first 3 wk and the worst 3 wk coincided for 554/592 data
points used for model fitting. We chose different cutoffs (20, 40, 60) for
numbers infected to account for the difficulty in determining the time when
spread became local rather than imported. Due to the strong control mea-
sures in place in China by the time our dataset begins (January 22, 2020), we
also compared our best model with and without data from China and found
no qualitative change in outcomes.

Coefficients over Time. To explore how our inference about different weather
factorsmay have changed over time as the virus approaches a geographic and
environmental equilibrium (which it may still not be at), we fit a model
each day since February 1, 2020, accumulating infection data up until the
most recent date of analysis. This analysis can illustrate 1) how earlier studies
may have inferred a negative dependence of growth on temperature, 2) the
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uncertainty inherent in earlier estimates of temperature dependence, 3) the
disequilibrium between COVID-19 and the environment early in its spread,
and 4) the smaller credible intervals, and hence increasing confidence, in our
model based on more recent data. Note that the model used to illustrate this
pattern 1) used the first (rather than the worst) 3 wk following t0 to accu-
mulate data as early as possible and thus reflect decisions made in earlier
studies, and 2) used polity (rather than country) effects because the data in
early February were predominantly from China, and thus country effects
could not be fit. Although early data gaps meant that we could not precisely
replicate previous analyses with this exercise, we obtained similar outcomes
using this model for the present analysis (again indicating model robust-
ness). As well, this exercise demonstrated how conclusions from earlier
studies may have arisen, even with our more refined model, but based on a
longer time series.

Projections. Future predictions of the potential growth rate by month were
made by projecting our highest-performing model according to LOOIC. Im-
portantly, we reinforce that our predictions pertain to the possible growth
rate in the absence of social distancing or other control measures, because it
is based on a model fit with infections that occurred primarily before pre-
cautionary policies were implemented. Note that, even if a policy was
implemented on, for example, March 14, we expect that infections reported
in the next 2 wk were initiated before the policy began. Hence, we predict
the underlying contribution of weather to future COVID-19 growth. Im-
portantly, these predictions reflect what would happen if other control
measures are relaxed and the natural dynamics of infection can begin again
in a population with little resistance. Currently, governments are deciding
when and how to relax control measures, often under the assumption that
weather will lessen the potential for spread in the upcoming months. Thus,
whereas we do not presume to predict the actual future growth rate of
COVID-19, we do hope to capture the potential maximum growth rate in
order to inform the relative risks of alternative control strategies.

To make future projections, we obtained monthly mean temperature and
relative humidity weather data from 2015 to 2019 from the same data source
as above, under the assumption that these recent years are representative of
what to expect in the coming months. Notably hotter or cloudier (lower UV
light) days in the coming months would suggest higher growth rates than we
predict. UV datawere not available in amonthly aggregation, sowe obtained
the 3-hourly data and aggregated it to monthly values. Human population
was assumed to remain constant. We projected the models without random
effects (or, equivalently, at the mean value of 0), as we were reluctant to
assume that country-level policies, reporting, or health care potential will
remain the same in the future. We expect that different country-level effects
will dominate in the future, but predicting these offsets is beyond the scope
of this study.

Caveats. As with any predictive study, we seek to use the best available data
and understanding of mechanisms to develop possible projections that make

clear underlying decisions and uncertainty. Ultimately, such predictions must
be treated with appropriate caution given the limited understanding of
SARS-CoV-2 virus, human resistance to it, and its transmission dynamics at
this time. Thus, while we seek to inform decisions, those decisions must also
recognize the inherent uncertainty in any predictive model, but especially in
the context of limited information. Future data will ultimately be the arbiter
of these predictions, and thus good predictive modeling will require re-
peated bouts of model validation, revision, and reprojection as we learn
more about this virus.

In particular, we await mechanistic information on viral physiology and
human resistance, to move beyond the correlative approach taken here by
necessity. Mechanistic models apply insights about an organism’s intrinsic
biology using parameters often collected from careful experimental ma-
nipulations. However, in the absence of this information, correlative models
can predict near-term dynamics with accuracy (43, 44). Bayesian approaches
like ours can integrate both mechanistic and correlative knowledge as these
pieces of information become available.

One thing that we do not account for in our model is human behavior and
control measures. By modeling maximum growth rate and using a threshold
number of cases, we restrict our analyses to the period during which the
disease expanded quickly, following the beginning of community trans-
mission but before major control measures were implemented. For instance,
most countries began implementing national control measures in mid-March,
which would influence infections recorded into early April, based on a 14-d
window for symptoms to emerge. Hence, we chose to limit our dataset to
records before April 7. However, we note that, following early April, growth
rates are expected to be much lower due to control measures, and these will
continue to be important to reduce growth rates below the potential values
we predict here which do not account for control.

We used available insights about SARS-CoV-2, related viruses, and ob-
servations of COVID-19 dynamics to select a list of factors that likely influ-
ence it. Although we purposefully limited these variables to reflect our best
knowledge and to avoid overfitting, certainly, other climate and epidemi-
ological factors are likely missing from the model. Future studies should
consider embedding these climate insights into epidemiological models that
include human demography, immunity, movement, behaviors, medical ca-
pacity, and control efforts (4).

Data Availability. Data and code used in this analysis are publicly available in
Github at https://github.com/cmerow/MerowAndUrban_COVID19_PNAS_2020.
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