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A two-layered brain network model 
and its chimera state
Ling Kang1, Changhai Tian1,2, Siyu Huo1 & Zonghua Liu1

Based on the data of cerebral cortex, we present a two-layered brain network model of coupled neurons 
where the two layers represent the left and right hemispheres of cerebral cortex, respectively, and the 
links between the two layers represent the inter-couplings through the corpus callosum. By this model 
we show that abundant patterns of synchronization can be observed, especially the chimera state, 
depending on the parameters of system such as the coupling strengths and coupling phase. Further, 
we extend the model to a more general two-layered network to better understand the mechanism 
of the observed patterns, where each hemisphere of cerebral cortex is replaced by a highly clustered 
subnetwork. We find that the number of inter-couplings is another key parameter for the emergence 
of chimera states. Thus, the chimera states come from a matching between the structure parameters 
such as the number of inter-couplings and clustering coefficient etc and the dynamics parameters such 
as the intra-, inter-coupling strengths and coupling phase etc. A brief theoretical analysis is provided to 
explain the borderline of synchronization. These findings may provide helpful clues to understand the 
mechanism of brain functions.

In the fields of nonlinear dynamics and complex network, a long standing and fascinating topic is the under-
standing of brain functions. Many experiments have shown that the brain dynamics/cortical waves span orders 
of magnitude in space and time1,2, especially in human sleep spindles3 and slow-wave sleep4, and thus open many 
questions. For examples, what is the basis for neural population to show rich activities? How do particular activi-
ties/waves appear and disperse or do there exist deeper unifying principles? To answer these questions, numerous 
efforts have been taken and greater progresses have been achieved. For example, previous studies have shown the 
relationship between the electrical activity of brain and complex psychophysiological processes such as alertness5, 
arousal6, attention7, memory8, and executive functions9. Moreover, it has been observed that in brain, functional 
assemblies of neurons may display distinct interdependent synchronous oscillations10, and abnormal synchroni-
zation are closely related to epileptic seizure11,12.

Many evidences have shown that brain functions are driven by dynamic interactions between large-scale neural 
circuits or networks13, indicating that the underlying anatomical connectivity of the brain provides a crucial back-
bone to brain functions. It has been hypothesized that cognitive responses and human behavior are the outcome of 
complex interactions between network structure and regional populations of neurons14–16. However, fundamen-
tal principles constraining these dynamic network processes have remained elusive. A promising way toward this 
direction is the partial synchronization, which has been intensively studied in the last decade from two aspects, i.e. 
chimera state17–30 and cluster synchronization31–43. The former represents the coexistence of coherent (synchronized) 
and incoherent (desynchronized) patterns of identical oscillators20,44, while the latter denotes the case where the 
oscillators synchronize with one another in groups, but there is no synchronization among the groups.

Chimera state was first observed by Kuramoto and Battogtokh in 200217 and then named by Abrams and 
Strogatz in 200420. After that, the study of chimera state has been the focus of extensive research in a wide num-
ber of models, including the neuron systems45–52, chaotic oscillators53,54, high dimensional systems18,55–58, and 
experimental systems33,59–63, see reviews64,65 for details. For examples, Uhlhaas and Singer pointed out in 2006 
that chimera state is strongly connected to various types of neuronal diseases such as Parkinsons disease, epileptic 
seizures, Alzheimers disease, schizophrenia and brain tumors66. Abrams et al. constructed a simplest system of 
chimera state in 2008, which consists of two clusters of N identical oscillators44. Sethia et al. examined the case 
of time-delay in 2008 and found clustered chimera states19. To explain the alternative patterns between the hem-
ispheres over time from the EEG data on dolphins67, Ma et al. considered a two-cluster network with environ-
mental forcing in 2010 and found that with proper tuning of the interaction strength, the two clusters alternate 
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between coherence and incoherence68. Laing showed in 2011 that chimera or chimera-like states have strong 
connection to the bump behavior of neuronal networks, which has been associated with the mechanisms of visual 
systems, head direction systems and working memory69. In 2013, Omel’chenko demonstrated multiple chimera 
states in a ring of non-locally coupled phase oscillators70. In 2014, Zhu et al. discussed chimera state in complex 
networks71. Recently, some attention has been even paid to the control of chimera state72–76. Instead of passively 
observing chimera states, the aim of control is to actively exploit chimeras for applications by making the spatial 
location accessible. For example, the controlled position of localized synchrony may encode information and 
perform computations74.

Chimera state has been successfully used to explain the phenomenon of unihemispheric sleep that during 
the sleep of some birds and marine mammals, their half brain is synchronized and the other half is unsynchro-
nized44,68,77–79. A more interesting example is the first-night effect in human sleep80, where one hemisphere is more 
vigilant than the other as a night watch to monitor unfamiliar surroundings during sleep.

While cluster synchronization does not require the coexistence of synchronized and desynchronized groups but 
only the emergence of synchronized clusters. In cluster synchronization, the local dynamics in synchronized clusters 
can be different from the dynamics in the other cluster(s)40,41. So far, cluster synchronization has been observed in 
many networked systems, where a network organizes in separate domains of synchronized elements31–33,35,36,38,39,42. 
To understand the underlying mechanism, it has been shown that the formation of clusters is closely related to the 
symmetries of network topology34,35,42. Recently, it was shown that cluster synchronization may also emerge for 
those nodes that are not related by symmetries but receive the same total amounts of inputs from their neighboring 
nodes in different clusters43. Cluster synchronization has even been experimentally demonstrated in networks35,40.

In fact, it is possible for the chimera state and cluster synchronization to show up simultaneously in some 
systems32,33, although they are generally studied independently. A paradigmatic system for this situation is the 
brain network where neurons and their interconnections through synapses form a very complicated structure. In 
brain network, neurons are linked together to perform certain tasks and cognitive functions, such as pattern rec-
ognition, function approximation, data processing, etc. Recent works have begun to link the existence of chimeras 
in globally coupled networks to clusters50,81,82. However, these works ignore some important factors of real brain 
network such as the specific structure of the left and right hemispheres and their connection by the corpus cal-
losum. Thus, an intuitive question is what will happen if we consider these factors. To make the problem simple, 
we here only focus on the study of chimera state but leave the study of cluster synchronization for the next step. 
In this sense, the question will be equivalent to ask: what will happen if we study the chimera state directly from 
the data of experimentally measured cerebral cortex, instead of the previous studies on artificial brain networks.

We here answer this question by constructing a two-layered brain network model from the data of cerebral cor-
tex. In this model, we let the two layers represent the left and right hemispheres of cerebral cortex, respectively, and 
the links between them represent the inter-couplings through the corpus callosum. We focus on how the dynamical 
patterns of brain network are connected to their structural connectivity, i.e. the key parameters of network, which is 
also a big issue in the neuroscience. By numerical simulations, we find abundant patterns of chimera states, depend-
ing on the parameters of system such as coupling strengths and coupling phase. Further, to provide this finding a 
solid foundation, we extend the model to a more general two-layered network where each hemisphere of cerebral 
cortex is replaced by a highly clustered network. We find that the emergence of chimera states depends not only on 
the structure parameters such as the number of inter-couplings and clustering coefficient etc but also on the dynam-
ics parameters such as the intra-, inter-coupling strengths and coupling phase, i.e. their matching. Very interesting, 
we find that in phase diagrams, the three states of synchronization, partial synchronization, and disorder are not 
clearly separated by three regions, but distinguished to each other by many segmented regions, i.e. forming specific 
boundaries between states. A brief theoretical analysis is provided to explain the borderline of synchronization.

Results
A two-layered brain network model based on the data of cerebral cortex.  According to the data 
measured noninvasively by using diffusion spectrum imaging (DSI) in refs83,84, the network of cerebral cortex 
consists of 998 nodes and 17865 links, where each node represents a cortical region (ROI) and each link between 
two ROIs is derived from the number of fibers found by the tractography algorithm. By checking the data we find 
that there are 9 isolated nodes with no links. We remove them in this work, which results in 989 nodes remained. 
A characteristic feature of this brain network is that it can be divided into two hemispheres connected by the cor-
pus callosum. Figure 1(a) shows the distribution of these 989 nodes on the cerebral cortex, where the subnetwork 
of right hemisphere has 496 nodes (from i = 1 to 496) and the subnetwork of left hemisphere has 493 nodes (from 
i = 497 to 989). We see that they are not homogeneously distributed. Figure 1(b) shows the connection matrix of 
the 17865 links, where the upper left represents the right hemisphere with 8037 links (i.e. 〈k〉 ≈ 32.4), the lower 
right represents the left hemisphere with 7773 links (i.e. 〈k〉 ≈ 31.5), and the other two parts represent the 2055 
inter-connected links between the two hemispheres.

Intuitively, we can consider Fig. 1 as a two-layered brain network model where the two layers denote the two 
hemispheres, respectively. The links between A and B represent the inter-couplings between them through the 
corpus callosum. Figure 2 is the schematic figure of this model, where the parameter λin represents the coupling 
strength of the links in each of the two-layers and λout the coupling strength between the two-layers. To distin-
guish the intra- and inter-couplings, we let λin and λout be different. We let out be the number of inter-connected 
links, which equals 2055 in Fig. 1(b).

To conveniently discuss the dynamics of brain network, we here mainly consider the case that both the intra- 
and inter-couplings are the electric coupling. While the discussion on the case of chemical inter-coupling will 
be put into the Supplementary Information (SI). Each node of Fig. 2 represents a neuron and the connection 
between two nodes is implemented by the connection matrix of Fig. 1(b). For convenience, we let the following 
FitzHugh-Nagumo (FHN) neuron to represent the behavior of each node in the network A of Fig. 2
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Figure 1.  Nodes and links of cerebral cortex from refs83,84. (a) The 989 nodes distributed on the cerebral cortex. 
(b) Connection matrix of the network of cerebral cortex where the upper left and lower right represent the 
right and left hemispheres, respectively, and the other two parts are for the inter-connections between the two 
hemispheres. Each black point denotes a connection.
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Figure 2.  Schematic figure of the two-layered brain network model where A and B represent the two 
hemispheres, respectively, “circles” denote the nodes or neurons, and λin and λout represent the intra- and inter-
coupling strengths, respectively.
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where i = 1, 2, …, N, ui
a and vi

a denote the fast and slow variables, respectively. kin,i
a and kout,i

a are the intra- and 
inter-degrees of node i, respectively. Aij and (AB)ij denote the intra- and inter-coupling matrices, respectively.  is 
taken as  = 0.05. a is a parameter so that an isolated neuron will be in the excitable state when |a| > 1 and oscilla-
tory state when |a| < 11,45,51,85–87. Considering that our purpose here is to understand how the brain network 
structure, especially the corpus callosum, influences the collective behaviors of brain, we would like to choose the 
oscillatory regime in this work, i.e. a = 0.5. By following refs37,45,46, the coupling is considered as the rotational 
coupling matrix
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which depends on the coupling phase α. This parameter α represents the relative phase difference of interact-
ing oscillators.

Similarly, each node in the network B of Fig. 2 satisfies
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We introduce an average phase velocity to study the collective behaviors of Eqs (1) and (3), defined as

ω
π

=
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= 
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T

i N2 1, 2, , (4)i
a i

for the i-th node in the network A of Fig. 2, where ΔT is the measured time interval in stabilized state and Mi 
is the measured firing number of node i in this time interval, with Mi being large enough. In the same way, we 
define ωi

b for the network B of Fig. 2. In the following, we study how the parameters α, λin and λout influence the 
collective behaviors of Eqs (1) and (3).

As the concept of the space is lost on complex networks, we here follow the ref.71 to rearrange the number of 
oscillators by the ascending order of ωi such that i ≥ j if ωi ≥ ωj. Then, we integrate Eqs (1) and (3) by randomly 
choosing the initial conditions of ui(0) and vi(0) as in previous studies28,45,52,88. But we find that the observed 
results can be also obtained by other initial conditions, i.e. robust to initial conditions. Figure 3 shows the stabi-
lized results of rearranged ωi for four typical cases where the up panels are for the network-A, down panels for 
the network-B, and the insets are their corresponding dynamics of ui at a moment t. The parameter α is fixed as 
α = π/2 − 0.1. The panels (a) and (e) represent a typical case of disorder with λin = 0.1 and λout = 0.3; (b) and (f) a 
typical case of chimera state with λin = 0.1 and λout = 1.8; (c) and (g) a specific case of disordered network-A and 
synchronized network-B, i.e. an emergent state conceptually similar to the state of unihemispheric sleep, with 
λin = 0.4 and λout = 3.5; and (d) and (h) a typical case of synchronization with λin = 4.0 and λout = 3.5. We see that 
there is a plateau of ωi for the case of chimera state, a constant of ωi for the case of synchronization, and randomly 
distributed ωi for the case of disorder. From the insets of Fig. 3(b,f) we see that the synchronized and unsynchro-
nized ui(t) are coexistent, marking the feature of chimera state. And from the insets of Fig. 3(c,g) we see that ui(t) 
is disordered in one hemisphere but synchronized in another one, marking the first-night effect. Our numerical 
simulations further show that the parameter region for the unihemispheric sleep-like emergent state is much 
smaller than that of chimera state, confirming the difficulty of observing the first-night effect.

It will be interesting to see what will happen if we do not rearrange the order of oscillators. Figure 4 shows the 
results corresponding to Fig. 3, without rearranging the order of oscillators. From Fig. 4(a,e) we see that both ωi

a 
and ωi

b are randomly distributed, which are consistent with the varying ωi
a and ωi

b in Fig. 3(a,e). From Fig. 4(b,f) 
we see that both ωi

a and ωi
b are divided into two parts, i.e. one constant and the other non-constant, which are 

consistent with the constant and varying parts of ωi
a and ωi

b in Fig. 3(b,f). From Fig. 4(c,g) we see that ωi
a are 

disordered while ωi
b are synchronized, which are consistent with the varying ωi

a and constant ωi
b in Fig. 3(c,g). 

Further, we see that Fig. 4(d,h) are the same as Fig. 3(d,h). Thus, we conclude that Fig. 3 reflects the same phe-
nomena as that of Fig. 4, except that it is much easier to distinguish the chimera state in Fig. 3 than in Fig. 4. In the 
following, we will use the approach of rearranging the order of oscillators.

On the other hand, it is maybe necessary to discuss the neuroscientific inferences of parameter ranges. For 
this purpose, we pay special attention to the coupling strengths of λin and λout in the different states of Figs 3 and 
4. We may notice that both λin and λout are weak in the disorder state of Figs 3(a,e) and 4(a,e); λin is weak but λout 
is relatively strong in the chimera state of Figs 3(b,f) and 4(b,f); λin is relatively strong but λout is very strong in 
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the unihemispheric sleep-like state of Figs 3(c,g) and 4(c,g); and both λin and λout are very strong in the synchro-
nization state of Figs 3(d,h) and 4(d,h). These values tell us some neuroscientific information. Firstly, weak λin 
and λout imply that both the intra- and inter-couplings are not strong, indicating no running brain functions. A 
typical situation of this state is the resting state of brain with random behaviors. Secondly, for the case of weak λin 
and relatively strong λout, the relatively strong λout implies some communications between the two hemispheres 
of cerebral cortex, indicating a normal functional state involved an ensemble of neurons distributed in different 
brain regions. Thirdly, the case of relatively strong λin but very strong λout is beyond the couplings for a normal 
brain functional state, which may be launched by a vigilance and thus is consistent with the case of the first-night 
effect. Finally, the case of both very strong λin and λout represents an abnormal synchronization, which is well 
known for epileptic seizures.

From Fig. 3 we see that the chimera state may appear, provided that the parameters α, λin, and λout are 
matched. We wonder whether it is possible to observe chimera state for other values of these parameters. For this 
purpose, we study how the parameters of both network structure and dynamics influence the emergence of chi-
mera state in the whole parameter plane. We would like to take the measure of chimera state in ref.89 introduced 
by Kemeth et al. for a general classification of chimera patterns. In their approach, a measure g0 is used to charac-
terize the degree of spatial coherence, with g0 = 1 for a fully synchronization, g0 ≈ 0 for incoherence, and 0 < g0 < 1 

Figure 3.  Four typical behaviors in the cerebral cortex of Fig. 1 with α = π/2 − 0.1 where the up and down 
panels represent the two hemispheres, respectively, and the insets are their corresponding dynamics of ui at 
a moment t. The parameters are λin = 0.1 and λout = 0.3 in panels (a,e) of disorder; λin = 0.1 and λout = 1.8 in 
panels (b,f) of chimera state; λin = 0.4 and λout = 3.5 in panels (c,g) of an emergent state conceptually similar to 
the state of unihemispheric sleep; and λin = 4.0 and λout = 3.5 in panels (d,h) of synchronization.

Figure 4.  Corresponding case of Fig. 3 without rearranging the order of oscillators where all the parameters in 
each panel are the same as in the corresponding panels of Fig. 3.
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for chimera patterns. In this work, we use its average g1 = 〈g0(t)〉t to measure the degree of synchronization, i.e. 
g1 = 1 for a fully synchronization, g1 ≈ 0 for incoherence, and 0 < g1 < 1 for chimera patterns.

In ref.89, the state with 0 < g1 < 1 is defined as chimera state. Using this approach to the case of cluster synchro-
nization, we will have g1 ≈ 1 when the system can be divided into a few synchronized clusters. In this case, the 
value of g1 can be used to distinguish the chimera state and cluster synchronization, but it cannot distinguish the 
fully synchronization and cluster synchronization. However, when the number of synchronized clusters in a net-
work is very large, the boundary oscillators between synchronized clusters will be also large and thus have a sub-
stantial contribution to g1. As these boundary oscillators represent the spatial heterogeneity and thus contribute a 
local g1 = 0, resulting in a 0 < g1 < 1 for the whole system. In this case, the value of g1 cannot be used to distinguish 
the chimera state and cluster synchronization. To avoid confusion, we here call the state with 0 < g1 < 1 as partial 
synchronization, without distinguishing whether it is the chimera state or cluster synchronization. Additionally, 
the system will be chimera state when their snapshots of ui or vi show a coexistence of coherence and incoherence.

We now study how the parameters of both network and dynamics influence the collective behaviours of sys-
tem. Figure 5 shows the results where the up and down panels are for the two networks-A and -B, respectively, 
(a) and (c) represent the values of g1 in the parameter plane of λin and λout for fixed α = π/2 − 0.1, and (b) and 
(d) the case in the parameter plane of λout and α for fixed λin = 3.0. From the four panels of Fig. 5 we see that the 
three states of disorder, partial synchronization and synchronization are distributed in the phase diagram and 
their individual regions are not very large, indicating that all the parameters α, λin, and λout are the key factors to 
cooperate to make the collective behaviors.

Extension of the two-layered model to a general case of human brain network.  Noticing that the 
network of Fig. 1 is only for a specific brain network, it is necessary to extend it to a general case of human brain network, 
within the framework of Fig. 2. For this purpose, we keep the characteristic features of Fig. 1 but allow the key parame-
ters such as the size N, the coupling strengths λin and λout, and the number of inter-coupling links out to be changeable.

It is well known that the brain network has a small-world topology characterized by dense local clustering and 
a short path length between any (distant) pair of nodes due to the existence of relatively few long-range connec-
tions4,90. This modular organization can support both segregated/specialized and distributed/integrated informa-
tion processing. In this sense, a general model of brain network has to be a modular network, represented by a 
larger clustering coefficient C. We here use the algorithm of the rewiring approach91 to generate this modular 
network from a random network. In detail, we first start from two random subnetworks with size N = 200 and the 
average degree 〈k〉 = 10, i.e. the total size of network is 2N = 400. We gradually increase their clustering coefficient 
C to a larger value. Then, we randomly add links between the two subnetworks A and B until the number of 
inter-connected links reaches out. Figure 6 shows the obtained network with C = 0.7, which will be considered as 
the general model of brain network in this paper.

Now, we study the influence of the key parameters λin, λout and out on the dynamics of the network in Fig. 6. 
For this purpose, we also let the nodes of Fig. 6(a,b) be represented by the Eqs (1) and (3), respectively. We inter-
estingly find that the general model of Fig. 6 can show the similar behaviors as in Fig. 5 such as the collective 
behaviors of synchronization, partial synchronization, and disorder, depending on the parameters λin, λout, out 
and α. Figure 7 shows the results.

Figure 5.  Phase diagram of g1 for the network of cerebral cortex with electric inter-coupling, where the up 
panels are for the right hemisphere and down panels for the left hemisphere. (a,c) represent the values of g1 in 
the parameter plane of λin and λout for α = π/2 − 0.1, and (b,d) the case in the parameter plane of λout and α for 
fixed λin = 3.0.
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From Fig. 7(a,d) we see that the number of inter-coupling links out does not take effect when λin is small but 
take effect when λin is large. For the latter, we see that it will be most probably the partial synchronization when 
out is less than 200 but synchronization when out is larger than 200. These results can be understood as follows. 
When λin < 0.5, the intra-coupling is too weak to induce a collective behavior. In this situation, only a very large 
inter-coupling or a larger out can compensate the intra-coupling to make a partial synchronization or synchroni-
zation. However, when λin > 0.5, the intra-coupling is large enough to induce a partial synchronization. In this 
situation, the inter-coupling out can help to induce synchronization when out is larger than 200.

Considering that the real cerebral cortex of Fig. 1 has a network size much larger than N = 200, it is necessary 
to discuss the robustness of size N in the general model of human brain network. For this purpose, we here con-
sider a case of Fig. 6 with N = 1000, average degree 〈k〉 = 50, and C = 0.7. Figure 8 shows the results where the up 
panels are for the network-A and down panels for the network-B. Comparing the corresponding panels between 
Fig. 8 with N = 1000 and Fig. 7 with N = 200, respectively, we see that they are qualitatively similar to each other, 
confirming that the collective behaviors are robust to the network size.

A brief theoretical analysis for the borderline of synchronization.  From all the three phase dia-
grams of Figs 5, 7 and 8 we see that their synchronized regions (the red parts) are divided into different areas. 
Especially, in the parameter plane of λout and α, the synchronized areas show arc-shaped patterns. To understand 
its mechanism, we make a brief theoretical analysis.

In a synchronized state, we have δu ≡ uj − ui = 0 and δv ≡ vj − vi = 0. While in an unsynchronized state, both δu 
and δv will evolve with time t. The borderlines of synchronized regions are the boundaries between synchroniza-
tion and un-synchronization, thus the values of δu and δv for those points at the borderlines will be in between the 
two limits. In this sense, we may approximately assume that both δu and δv are non-zero and non-time dependent 
at the borderline of synchronization, i.e. non-zero constants. On the other hand, the total coupling from Eq. (1) 
can be approximately written as

λ λ α δ α δ= + +y u v( )[ cos( ) sin( ) ] (5)in out

The behavior of Eq. (1) will be determined by the value of y. As all the points on a boundary line have the same 
state, they will have the same value of y, i.e. y will be a constant at the borderline of synchronization. Thus, for a 
given y, we may obtain the relationship between λout and α for the borderline of synchronization by fixing the 
other variables of Eq. (5). For different y, we will have different borderlines of synchronization. Figure 9 shows the 
results for three typical y. We see that all the three curves are arc-shaped, confirming the arc-shaped patterns in 
the parameter plane of λout and α of Figs 5, 7 and 8.

This explanation can be also used to explain the relationship between λin and λout in Figs 7 and 8. By Eq. (5) 
we have

λ
α δ α δ

λ=
+

−
y

u vcos( ) sin( ) (6)out in

We see that λout will linearly decrease with the increase of λin, which is consistent with the borderlines of syn-
chronization in Figs 7(b,e) and 8(b,e).

Figure 6.  A general model of brain network with size N = 200, average degree 〈k〉 = 10, and clustering 
coefficient C = 0.7 in each subnetwork, which is rewired from a random network by the algorithm of the 
rewiring approach91.
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Discussion
Influence of chemical inter-coupling.  The above results are based on the electric coupling, which is the 
major coupling in brain network. However, there is about 20% chemical coupling in the real brain network. 
Hence, the interaction between neurons happens through two different synapses, namely, the electrical gap 

Figure 7.  Phase diagram of g1 with N = 200 and 〈k〉 = 10, where the up panels are for the network-A and down 
panels for the network-B. (a,d) represent the values of g1 in the parameter plane of λin and out for fixed λout = 0.5 
and α = π/2 − 0.1, (b,e) the case in the parameter plane of λin and λout for fixed = 100out  and α = π/2 − 0.1, and 
(c,f) the case in the parameter plane of λout and α for fixed = 100out  and λin = 0.6.

Figure 8.  Phase diagram of g1 with N = 1000 and 〈k〉 = 50, where the up panels are for the network-A and down 
panels for the network-B. (a,d) represent the values of g1 in the parameter plane of λin and out for fixed λout = 0.5 
and α = π/2 − 0.1, (b,e) the case in the parameter plane of λin and λout for fixed = 500out  and α = π/2 − 0.1, and 
(c,f) the case in the parameter plane of λout and α for fixed = 500out  and λin = 0.8.
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junction and chemical synapses92. In general, we have an effect of time delay in the interaction of neurons, due 
to the limited speed of signal transmission and processing in brain network. For example, the axonal conduction 
delays depend on the distance between neurons in the brain and can reach up to tens of milliseconds93. Time 
delays comparable to timescales of neuronal oscillations are known to have significant effects in the collective 
(ensemble) activity of neurons93–95. Especially, it is well known that the length of corpus callosum is much longer 
than the average distance between two neighboring neurons in each of the two hemispheres. To reflect this fea-
ture, we may distinguish the intra- and inter-couplings. That is, we ignore the time-delay for all the intra-cou-
plings but consider the influence of time-delay for the inter-couplings. In details, we let all the inter-couplings 
be the chemical coupling but remain all the intra-couplings be the electric coupling. We find that the chemical 
inter-coupling, no matter with or without time-delay, will influence the possibility for the brain network to show 
chimera state. The detailed results are shown in SI.

Implication of segmented synchronized region in the context of brain.  It is well known that the 
brain operates near a critical point so that it has a rich metastability to sustain stimulus-selective persistent activ-
ity for working memory96–99. This metastability provides a useful strategy for brain functioning, coding and mem-
ory100–102. So far, theoretical understanding of brain functions remains very primary, but our results may show 
some new insights. For example, if we assume that each local area of 0 < g1 < 1 surrounded by the segmented syn-
chronized regions in the phase diagrams of Figs 7 and 8 corresponds to a specific brain function, the large number 
of these functional local areas may be considered as the guarantee for the diversity of brain functions. Further, for 
an arbitrary point in a local area of 0 < g1 < 1, its value may come from different ways. Take the 66-region parcel-
lation83,84 as an example. For a specific brain function, one or a few of the 66-regions will be in synchronized state 
with g1 = 1 while the others remain unsynchronized with g1 = 0, resulting an averaged value of g1 with 0 < g1 < 1. 
This averaged value of g1 may not change when the synchronized regions are different. Thus, different ways to 
obtain the same g1 will also enhance the diversity of brain functions.

Limitations of the brain network model of Fig. 2.  Although the model of Fig. 2 can explain the influ-
ence of the key parameters (λin, λout, α and out etc) to the patterns of brain network, we have to point out its lim-
itations. For example, brain network models can be represented more appropriately by weighted connectivity and 
by including a stochastic element16, but we here use neither of these in the model of cerebral cortex. Another 
limitation is that for simplicity, we use single neuron model to represent the dynamics of a node, i.e. a ROI. This 
can be better replaced by the mean-field models such as the Wilson-Cowan nonlinear oscillator103,104 or the neural 
mass model105,106.

In conclusions, we have presented a two-layered brain network model of coupled neurons to study the collec-
tive patterns of brain network, based on the data of cerebral cortex. By this model we find that the two-layered 
brain network may have different states such as chimera states in either one hemisphere or the whole network, 
confirming both the unihemispheric sleep for some birds and marine mammals and the first-night effect for 
human beings. By studying the influence of the key parameters out, λin and λout, we show that the collective pat-
terns is in fact the result of the matching among them, indicating that different matching will induce different 
patterns and thus guarantee the diversity of patterns. We also find that the synchronized region in phase diagram 
is divided into unconnected areas, which has been explained by a brief theoretical analysis.
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