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Background: Gene expression analysis of breast cancer largely relies on homogenized tissue samples. Due to the
high degree of cellular andmolecular heterogeneity of tumor tissues, bulk tissue-based analytical approaches can
only provide very limited system-level information about different signaling mechanisms and cellular interac-
tions within the complex tissue context.
Methods: We describe an analytical approach using in situ sequencing (ISS), enabling highly multiplexed, spa-
tially andmorphologically resolved gene expression profiling. Ninety-one genes including prognostic andpredic-
tive marker profiles, as well as genes involved in specific cellular pathways were mapped within whole breast
cancer tissue sections, covering luminal A/B-like, HER2-positive and triple negative tumors. Finally, all these fea-
tures were combined and assembled into a molecular-morphological OncoMap for each tumor tissue.
Findings: Our in situ approach spatially revealed intratumoral heterogeneity with regard to tumor subtype as
well as to the OncotypeDX recurrence score and even uncovered areas of minor cellular subpopulations. Since
ISS-resolvedmolecular profiles are linked to their histological context, a deeper analysis of the core and periphery
of tumor foci enabled identification of specific gene expression patterns associated with these morphologically
relevant regions.
Interpretation: ISS generatedOncoMaps represent useful tools to extend our general understanding of the biolog-
ical processes behind tumor progression and can further support the identification of novel therapeutical targets
as well as refine tumor diagnostics.
Fund: Swedish Cancerfonden, UCAN, Vetenskapsrådet, Cancer Genomics Netherlands, Iris, Stig och Gerry
Castenbäcks Stiftelse, BRECT, PCM Program, King Gustaf V Jubilee Fund, BRO, KI and Stockholm County Council,
Alice Wallenberg Foundation.
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1. Introduction

The concept of precision medicine within oncology has emerged
over the last decade. Precision oncology addresses the need for molecu-
lar characterization of individual tumors to enable tailored treatment
for each patient. However, increasing knowledge about intratumoral
heterogeneity is challenging this concept, since multiple subclones
with varied therapeutic sensitivity and/or phenotypic characteristics
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can exist within the same tumor [1], thus making the decision towards
selection of a specific therapy more difficult. Furthermore, this high-
lights the need for spatially resolving techniques, which allow an in
depth characterization of thedifferent cellular niches and their signaling
pathways within the tumor tissue in order to reveal information about
the biology of their regulation.

Current breast cancer diagnostics relies on the combined evaluation
of histopathology including tumor grade and immunohistochemical
staining of ER, PR, HER2 (to be combined with ISH/FISH) and KI67. Ad-
ditionally, complementary molecular analyses such as next generation
sequencing, Mammaprint [2], OncotypeDX recurrence score [3] and
PAM50 [4] are done on bulk cell lysates from homogenized tissues.
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Research in Context
Evidence before this study

Given the high degree of cellular and molecular heterogeneity of
tumor tissues, bulk tissue-based analytical approaches can only
provide very limited system-level information and dismiss informa-
tion about the spatial distribution and interaction of different cell
types and their signaling mechanisms within the complex tissue
context.
Review of most recent literature on precision medicine notes, that
the clinical benefits derived till date based on this bulk approaches
remain relatively limited and are therefore in need to be more re-
fined. Such refinement could be the addition of spatial information
connecting and relating highly multiplexed transcriptomic data
points to each other aswell as to the histological and cellular tissue
context.

Added value of this study

In this study,we demonstrate the development of an analytical ap-
proach using our established in situ sequencing (ISS) assay to gen-
erate highly multiplexed, spatially and morphologically resolved
gene expression profiles of breast cancer tissue. All these features
are combined and assembled into a molecular-morphological
OncoMap for each tumor tissue, which allows refined diagnostics
through the extended molecular and morphological context of the
data. But the utility ofOncoMaps goes further beyond the diagnos-
tic aspect as they can concurrently help to gain better understand-
ing of regulatory signaling mechanisms in different tumor niches.

Implications of all available evidence

Taken together ISS-basedOncoMaps represent a useful tool for re-
fined tumor diagnostics but also to extend our general understand-
ing of the biological processes behind tumor progression and
therewith guide the development of future therapies.
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Breast cancer displays both inter- and intratumoral genetic heterogene-
ity with thousands of differentmutations and several copy number var-
iations uniquely combined in each tumor [5–7], as well as subclonal
variation with diverse genomic alterations [8]. Moreover, intratumoral
heterogeneity of ER [9] and KI67 [10] expression is frequently observed
in breast tumors, also heterogeneous ERBB2 (HER2) amplification in
HER2-positive breast cancer [11–14]. However, molecular analysis on
bulk tissue only captures the average of all subclones within the
tumor and patient stratification will be based on the largest clone pres-
ent. Moreover, great genetic similarity has been observed between pri-
mary tumors and their metastasis, suggesting a late dissemination of
metastatic cells from the primary lesion [15–19]. By identifying
subclones with different transcriptomic profiles (although genetically
similar) that could be associatedwithmetastasis already in the primary
tumor, we could gain novel insight in the biological mechanisms of in-
vasion and metastasis. This knowledge could assist the development
of future therapeutical strategies to prevent disease recurrence [20,21].

Thus, there is a clear need for spatially resolved tissue analytics in
breast cancer to resolve both inter- and intratumoral heterogeneity
and to address the significance and regulation of subclonal variations
at system level. During the past few years, a number of methods has
been developed for spatially resolved transcriptomics [22]. Some are
untargeted transcriptome wide methods, where RNA in tissue is trans-
ferred to spatially barcoded slides, where spatial barcode sequences
are incorporated during the cDNA synthesis step of next-generation se-
quencing library preparation [23,24]. The spatial resolution is limited by
the feature size of the spatially barcoded slides, and the sensitivity is
currently low (b0.1% capture efficiency). The strength is the hypothesis
free generation of transcriptome-wide spatially resolved expression
data. Other methods are targeted heavily multiplexed in situ methods
that can be divided into unamplified single-molecule FISH (sm-FISH)
based methods, and rolling-circle amplification (RCA) based methods.
Multiplexing in sm-FISH is achieved by non-combinatorial labelling
[25], combinatorial labelling [26,27], or a combination thereof [28].
The in situ based methods have sub-cellular resolution and expression
data can directly be linked to morphology. The main advantage of
sm-FISH methods is the high sensitivity, where close to 100% detection
efficiency can be achieved. The main disadvantage is the low signal
intensity of the fluorescence signals, which requires high-NA, high-
magnification (60-100×) objectives, and thus slow imaging across
tissues. Moreover, the fluorescence signals are typically lower than the
autofluorescence level of human tumor tissues, which makes tumor
samples less tractable for this method [29]. The main advantage of the
RCA based methods is the strength of the amplified detection signal,
which permits fast imaging using 20× magnification, and the signals
stand out over the autofluorescence background even in tumor tissue
[30].Multiplexing is achieved by carrying out next-generation sequenc-
ing chemistry within the preserved tissue context [31]. This in situ se-
quencing (ISS) method has been demonstrated for multiplexed
expression profiling in breast and prostate tumor tissues [31,32], for im-
mune profiling of heavily crosslinked tuberculosis infected mouse lung
sections [33], and for lineage tracing in mouse brain by reading virus
encoded cellular barcodes in situ [34].

Here we describe an analytical approach based on ISS [31] that al-
lows highly multiplexed and spatially resolved gene expression analy-
sis. For each sequencing read, x and y coordinates are generated that
correspond to its location within the tissue, thereby couplingmolecular
features directly to tumor morphology.

2. Materials and methods

2.1. Tissue specimens

Fresh frozen tissue sections (5 μm) from nine breast cancer tumors,
collected at the Erasmus MC in Rotterdam were used for gene expres-
sion profiling. A protocol for studying biological markers associated
with disease outcome was approved by the medical ethics committee
of the Erasmus Medical Center Rotterdam, The Netherlands (MEC
02.953). The present study, in which coded tumor tissues were used,
was performed in accordance with the Code of Conduct of the Federa-
tion of Medical Scientific Societies in the Netherlands (https://www.
federa.org/codes-conduct). Tumorswere from lymph node negative pa-
tients which did not receive systemic adjuvant treatment (clinical data
is summarized in Table S1).

2.2. In situ sequencing (ISS)

ISS was performed as described previously [31] using a padlock-
probe panel described below. Briefly, tissue sections were mounted
onto Superfrost Plus slides (ThermoFisher Scientific), fixed in 4% PFA
for 45 min and permeabilized with 0.1 mg/ml pepsin (Sigma) in 0.1 M
HCl 37 °C for 90 s. SecureSeal™ reaction chambers were mounted on
top of the tissues or cells (Grace Biolabs, Bend, United States). cDNA
was synthesized in situ using random decamer primers (IDT, Leuven
Belgium). Single-stranded cDNAwas created through Rnase H cleavage
and padlock probeswere hybridized and ligated, followed by rolling cir-
cle amplification (RCA). For ISS, the padlock probes were equippedwith
short unique barcode sequences that become clonally amplified in the
RCA products. The RCA products were then identified and sequenced
by ligation (according to [35]) in several cycles using fluorophore-
labelled interrogation probes (sequences are listed in Table S2). Nuclei
were stained with 4′,6-diamidino-2-phenylindole (DAPI). There were
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some changes compared to the published protocol [31], in addition to
the specific base stain, every sequencing cycle was also stained with a
general anchor stain (coupled with AF750) that was used for alignment
of the sequencing cycles. Imageswere acquiredwith an automated Zeiss
Axioplan II epifluorescence microscope (Zeiss, Oberkochen, Germany)
using a z-stack of 0.49 μm × 5 and a tile overlap of 15%. Images were
scanned with a 20× objective and the exposure times DAPI: 1 ms,
FITC: 272.5 ms, Cy3: 178.6 ms, Cy5: 385.6 ms, Texas Red: 103.1 ms
and AF750: 700 ms. Orthogonal projections and stitching of tiles were
done with the ZEN software (Zeiss). Images from the respective se-
quencing cycles were aligned and decoded using Cellprofiler v.2.1.1
(Broad Institute, MA, United States) and an in-house Matlab script
(Mathworks, Sweden). Quality scores ranged from 0.33–0.4, unex-
pected and homomer reads ranged from 3.7–9.1 and 0.7–6.6% of total
reads, respectively. After the ISS analysis, the tissue sections where
stained with hematoxylin (Sigma) or PanCK antibody.

2.3. Gene expression profiling

In total 91 genes were selected for expression profiling in situ, in-
cluding the OncotypeDX scoring [3], molecular subtyping [36,37] and
genes involved in proliferation, DNA repair, EMT, invasiveness,
stemness and angiogenesis. Also targets for stromal and immunological
featureswere included (Table S3). One padlockprobeper targetwasde-
signed, sequences are listed in Table S3 (IDT, Leuven Belgium).

2.4. Microarray and SNP data

Microarray and SNP data were previously generated from the nine
tumors collected at Erasmus MC, Rotterdam. Microarray data was
from the Affymetrix Human Genome U133A 2.0 Array [2,38]
(GSE2034, GSE5327) and SNP data from the Affymetrix GeneChip
HumanMapping 100 K Array [39] (GSE10099). GEO numbers are listed
in Table S4. The data was generated before sections were prepared for
our ISS analysis, thus the tissue parts used for microarray and SNP call-
ing could vary.

2.5. Correlation of consecutive sections and ISS data to microarray data

ISS data and microarray data were log2-transformed and correla-
tions between the data sets were tested using Pearson's correlation. In
order to enable log2-transformation of the dataset in the presence of
zero values for certain genes, “1” was added as a constant to all values
of the dataset. Missing genes in the corresponding microarray data for
the tumors were NANOG, POU5F1 and ZNF703 and these were excluded
from the analysis.

2.6. Immunohistochemistry of PR, KI67 and PanCK

Immunohistochemistry (IHC) of PR and KI67 were performed on 5
μm sections consecutive to the ones used for ISS. PanCK was performed
on the same section subjected to ISS. Slides were fixed for 10 min with
3.7% Formaldehyde. Peroxidase-blocking solution (DAKOREAL)was ap-
plied for 15 min, followed by incubation with serum-free protein
blocking solution (DAKO) for 30 min. Sections were incubated with
mouse monoclonal KI67 (clone MIB1) or PR (clone PgR 636) antibody
(both DAKO) or PanCK antibody (clone AE1/AE3, DAKO) diluted 1:100
in DAKO REAL antibody diluent overnight at 4 °C. Thereafter secondary
ImmPRESS HRP Anti-mouse IgG (VectorLaboratories) was applied for
30min and chromogenic visualization was performedwith DAB Perox-
idase substrate kit (Vector laboratories) according to themanufacturer's
instructions. Slideswere counterstainedwithMayer's HTXHematoxylin
(Histolab, Goteborg, Sweden) and mounted. PR and KI67 stained IHC
images were further aligned to the H&E stained images from the ISS
experiments.
2.7. ISS-based molecular subtyping

For subtyping of tumors we considered the gene expression of ER
(ESR1), PR (PGR), HER2 (ERBB2), KRT5/6/8, KI67 (MKI67) and EGFR.
These geneswere used to approximate the breast cancermolecular sub-
groups according to the following criteria, luminal A-like (ER+ and/or
PR+, HER2-, KI67 low and KRT8+), luminal B-like (ER+ and or PR+,
HER2-, KI67 high and KRT8+), HER2-positive (ER−/+, PR−/+ and
HER2+) and triple negative breast cancer (TNBC) (ER-, PR-, HER2-,
EGFR+ and/or KRT5/6+). Subtyping was performed on whole tissue
sections or on binned data (tissue scans were divided into hexagon
bins, 500 μm in diameter). ISS data, from whole tissue sections or bins,
were normalized to the sum of all reads for each tumor/bin. Based
on the microarray data, thresholds were set to distinguish between
ER/PR/HER2-positive or negative tumors as well as KI67, KRT5/6/8 and
EGFR high or low tumors (Fig. S1). Bins with b100 total ISS reads and
b 10 EPCAM/CDH1 reads were excluded from the analysis.

2.8. OncotypeDX recurrence scoring in situ

The 21 genes included in the OncotypeDX recurrence scoring were
reference genes (ACTB, GAPDH, RPLP0, GUSB and TFRC), proliferation
markers (MKI67, AURKA, BIRC5, CCNB1 and MYBL2), genes associated
with invasiveness (MMP11 and CTSL2), ER hormone receptor status
(ESR1, PGR, BCL2 and SCUBE2), HER2 status (ERBB2 and GRB7) and un-
grouped (GSTM1, CD68 and BAG1) [3,40]. OncotypeDX recurrence scor-
ing in situ was based on the published algorithm [3] with some
modifications. Count data was first log-transformed using the rlog func-
tion of the DESeq2 package from within the R statistical environment.
Logged expression values for each gene were then normalized to the
mean value of the five reference genes. Normalized data was further
used to calculate scores for each of the four gene groups “HER2”, “ER”,
“proliferation” and “invasion” and combined with the normalized ex-
pression values of the remaining three ungrouped genes. The final
unscaled recurrence score was scaled to a value between 0 and 100
and divided into three groups (low risk; RS b 18, intermediate risk; RS
≥ 18 and b 31, high risk; RS ≥ 31). OncotypeDX recurrence scoring was
performed on whole tissue scans and scans divided into hexagonal
bins (500 μm in diameter). Bins with b100 total ISS reads and b 10
EPCAM/CDH1 reads were excluded from the analysis.

2.9. Gene expression analysis of selected regions

For regions selected based on gene markers or morphology, each
read count was normalized to the total read count for that region.
Genes in the whole tissue with a read count of b0.02% of total read
counts were excluded from the analysis. Normalized region-specific ex-
pression was compared to the normalized expression of another region
(markerlow for all of the marker-based regions and tumor core for the
two morphology-based regions). The most differently expressed genes
were the genes with highest fold change in the respective comparison.
Specific gene expression patterns were illustrated with Kernel density
estimation using a bandwidth of 200–300 μm. ISS expression fold
changes of MKI67 and PGR in the morphology-based regions of sample
880356 were further validated by IHC (Fig. S2).

2.10. Trendsceek

Trendsceek identifies spatial gene expression patterns through a
nonparametric approach that usesmarked point processes. Themethod
tests for significant dependency between the spatial distribution of cells
(points) and their gene expression levels (marks) [41]. The tissue scans
were divided into hexagon bins (100 μm in diameter) and analysed
using Trendsceek. Zero values for certain genes were corrected through
adding “1” as a constant to all values of the dataset. Genes having at least
3 bins with a minimum read count of 5 were included in the analysis.

https://doi.org/10.1016/j.ebiom.2019.09.009
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The Benjamini-Hochberg correction for multiple comparisons was per-
formed and alpha valuewas set to 0.01. Genes tested for spatial gene ex-
pression trends were CXCL12 and CXCL14 for tumor section 870556 and
900196_2, CTSL2 andMMP11 for 880356 and 900196_1 as well as VAV1
and XBP1 for 880842 and 930492.

2.11. Dimensionality reduction of ISS data by tSNE analysis

The tissue scans were divided into hexagonal bins (100 μm in diam-
eter) and read counts were extracted from each bin. The genes ACTB,
GAPDH, GUS1, TFRC, RPLP0 (reference genes) and COL3A1 (highly
expressed in all tumors) were excluded from the analysis, also genes
with a read count b0.02% of total read count, as well as bins with b3
total ISS reads were omitted. tSNE was used for dimensionality reduc-
tion of the ISS binned gene expression data into three dimensions and
translated into RGB colors.

3. Results

3.1. Spatially resolved gene expression profiling by in situ sequencing (ISS)

We used the ISS method to spatially resolve the expression of 91
genes simultaneously in breast cancer tumors, thereby generating
molecular-morphological maps of the tumor tissues. The method em-
ploys target-specific DNA barcoded padlock probes to detect mRNA in
fixed tissue and has been described previously [31]. In brief, after a re-
verse transcription of mRNA in situ, the padlock probes are hybridized
to their specific targets and circularized through ligation. Circularized
padlock probes are amplified by rolling circle amplification (RCA). Tar-
get identification is achieved through sequencing of the barcodes in
the RCA product using sequencing by ligation chemistry and
fluorophore-labelled interrogation probes. Stepwise, an anchor primer
is hybridized next to the barcode sequence and extended by ligation
with one of four random nonamer interrogation probes, labelled with
a fluorophore according to the base of the barcode position that will
Fig. 1.Gene expression profiling by in situ sequencing. Tissue sectionswere fixed and RNAwas
were hybridized to the cDNA and (b) circularized by ligation. (c) Amplification of the circular
products were subjected to (d) sequencing by ligation to retrieve the barcode information. T
ligation with one of four random (N) nonamer interrogation probes, labelled with a fluoropho
is performed over four cycles until all four bases of the barcode are sequenced and the ba
generated through combination of the molecular ISS data with the histological context. Morp
section. D1/2 = drug 1/2, S = sensitive clones, R = resistant clones, V = vessel, T = T-cells, IN
be sequenced. Sequencing by ligation is performed over four cycles
until all bases of the barcodes are sequenced and the barcode can be
decoded and matched to its target (Fig. 1).

Selected gene targets included prognostic and predictivemarkers for
breast cancer such as molecular subtyping, OncotypeDX recurrence
scoring, and genes involved in proliferation, DNA repair, EMT, invasive-
ness, stemness and angiogenesis (Table S3). Also targets for stromal and
immunological features were included. Here we describe different ap-
proaches for analysing ISS data, such as spatially resolved recurrence
scoring/subtyping, molecular marker- and morphology-driven charac-
terization of specific regions, as well as tSNE dimensionality reduction
[42] for visualization of tumor heterogeneity. Hematoxylin stains of all
tumor sections subjected to ISS can be visualized in Fig. S3.

3.2. Validation of the ISS gene expression panel

In order to validate the performance of the ISS gene expression
panel, we tested the panel for its reproducibility and correlation with
microarray data. For two tumors (860502 and 900196), the reproduc-
ibility of ISS was tested by analysis of two non-consecutive sections
from the same tumor (referred to as _1 and _2, respectively), showing
high agreement (Pearson's R = 0.93 and 0.96 respectively, Fig. S4).
For all genes in the gene expression panel, total ISS read counts (similar
to bulk measurements) were compared to microarray data from the
same tumors. Pearson's R values ranged from 0.46 to 0.69, only one
sample displayed values R b 0.50 (Table S5).

3.3. Establishment of ISS-based molecular subtyping and OncotypeDX
recurrence scoring

Intrinsic subtyping (according to [36]) of microarray data was previ-
ously done on the tumors subjected to ISS [43]. In total, four of the tu-
mors were classified as luminal A-like, one as luminal B-like, two as
HER2-positive and two as TNBC (Table 1). In an initial step, ISS-based
molecular subtyping using the expression of ER (ESR1), PR (PGR),
reversely transcribed in situ. (a) Padlock probes carrying target-specific barcode sequences
ized padlock probe was done using rolling circle amplification (RCA). The generated RCA
herefore, an anchor primer is hybridized next to the barcode sequence and extended by
re according to the base of the barcode position to be sequenced. Sequencing by ligation
rcode can be matched to its target (e) A molecular-morphological map (OncoMap) is
hological tumor features are outlined based on hematoxylin staining of the same tissue
F = inflammation and MØ = macrophages.
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Table 1
Comparison of protein, microarray and ISS spatial data with regards to molecular subtype.

Comparison between ISS (blue) and previously acquired microarray (MA, green), and histological protein stain (purple). Discrepancies between the data sets are highlighted in grey. For
the ISS subtype column, / indicates the various subtypes detected. TNBC = triple negative breast cancer.
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HER2 (ERBB2), KRT5/6/8, KI67 (MKI67) and EGFR was done with total
read counts of ISS data (similar to bulk measurements) through com-
parison with the available microarray data. The thresholds for each of
the molecular subtyping targets were set guided through correlation
scatter plots with microarray and ISS data from each tumor, applying
the intrinsic subtype information as a guide to define thresholds for
negative/positive target expression to the ISS data (Fig. S1).

Of note, gene expression based on total ISS read counts correlated
very well with the microarray data for all subtyping genes (Pearson's R
N 0.84) except for PR, that did not correlate (Pearson's R = 0.47)
(Fig. S1). However, when comparing the microarray data with the spa-
tially resolved ISS data (described in detail in the next section) and the
histological protein stain, three tumors that were negative for PR with
microarray data were positive with ISS (positive in b30% of the tumor)
and in the protein staining (860502, 880842 and 930492, Table 1).
Discrepancies were seen for two tumors (870556 and 880356) that
were positive for PR with ISS (in 81% and 31% of tumors, respectively)
but negative with bothmicroarray and histological protein stain. There-
fore, PR expressionwasadditionally testedby IHCon tissue sectionscon-
secutive to the ones used for ISS. The stainingwas in agreementwith the
ISS data and indicated that the two differentiating tumor tissues were
highly heterogeneous in their distribution of PR positive cells (Fig. S5),
which could explain the discrepancies to the microarray and protein
data. Additionally, one tumor (870556) was ER positive (8%) only with
ISS and two tumors (900196 and 900317)were positive for ERwithmi-
croarray and ISS data but not in the histological protein stain (Table 1).

OncotypeDX recurrence scoring includes expression of 21 genes di-
vided into four functional groups, the HER2, ER, proliferation and inva-
sion gene groups. Based on the published algorithm [3] with some
minor adjustments for ISS data (see Materials andMethods for detailed
description), each gene group was scored and the recurrence score was
then calculated. The OncotypeDX score based on total ISS read counts
(similar to a bulk measurement) agreed with RT-qPCR based scoring
previously done on the same tumors (Table S6). Six of the tumors
displayed a high RS, one tumor showed an intermediate score and
two tumors low RS (Table S6).

Overall, the results indicate that ISS was well suited for tumor
subtyping and OncotypeDX recurrence scoring.

3.4. Diagnostic and prognostic heterogeneity observed within tumors

As a next step,we aimed to investigate the diagnostic and prognostic
heterogeneity within tumor tissues with regard to molecular subtype
and RS score by ISS. We therefore divided the tumor scans into large
hexagonal spatial bins (500 μm in diameter) to ensure a sufficient num-
ber of ISS reads of subtyping and OncotypeDX recurrence scoring re-
lated genes within each bin. The same thresholds as determined based
on total ISS read counts were applied to the subtyping genes in each
bin (Fig. S1 and S6).

Four tumors displayed intratumoral heterogeneity, where different
areas of the same tumor were classified into different subtypes
(Fig. 2a and Fig. S6) due to regionally high expression of KI67 (MKI67,
tumor 880356 and 860502), HER2 (ERBB2, tumor 880842) or the hor-
mone receptor PR (PGR, tumor 930492) (Fig. 2b). The two tumors
showing heterogeneity of luminal A and B regions, also displayed a het-
erogeneous distribution of KI67 positive cells by immunohistochemical
staining (Fig. 5 and Fig. S7). Interestingly, one tumor classified as TNBC
in themicroarray bulk subtyping approach showed PR positive bins that
correlated with the PR positive histological protein staining (tumor
930492, Table 1 and Fig. S6). A summary of the comparison between
ISS, microarray and histological protein data is given in Table 1. Of
note, for one tumor only (900196), the subtyping intratumoral hetero-
geneity did not fully relate with the observed ISS KI67 expression levels
and the IHC stain done on a consecutive section (Fig. S8).

With regard to intratumoral heterogeneity, four tumors showed dif-
ferent RS scoreswithin the tumor (Fig. 3a). In three cases, high RS scores
were associated with less ER gene group expression (t-test p b .05) and
in one case with increased proliferative (t-test p b .05) or increased in-
vasive (t-test p b .05) gene groups (Fig. 3b and c).

3.5. Specific gene expression patterns with inter- and intratumoral
heterogeneity

Since we observed intratumoral heterogeneity of diagnostic and
prognostic gene profiles, we next examined if this was also reflected
for other molecular markers such as genes involved in immune signal-
ing, invasiveness and chemokine signaling (Table S3). Indeed, we ob-
served both inter- and intratumoral heterogeneity in the spatial
expression of specific genes, e.g. VAV1, XBP1, CTSL2, MMP11, CXCL14
and CXCL12 (Fig. 4a, verified by Trendsceek p b .01, that identifies spatial
gene expression trends [41] and Methods). For instance, specific genes
were expressed within the tumor compartment for some samples,
whereas other samples displayed expression of the same gene mainly
in the stroma or at the tumor/stroma boundary. This is illustrated in
Fig. 4a, showing spatial expression patterns of the six genes in relation
to the tumor compartment, demonstrated by EPCAM/CDH1 spatial

https://doi.org/10.1016/j.ebiom.2019.09.009


Fig. 2. Intratumoral heterogeneity with regards to subtype within breast cancer tumors. Tumors were divided into hexagonal bins (500 μm in diameter) and subjected to molecular
subtyping. a) Images illustrate the four tumors displaying subtype heterogeneity. Yellow = luminal A bins, magenta = luminal B, cyan = HER2-positive and grey = triple-negative
breast cancer (TNBC). The colored bins are overlaid on the hematoxylin stain. b) Kernel density maps showing expression patterns of four subtyping genes. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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expression. For three of the genes (XBP1, MMP11 and CXCL14), regions
with high gene expression were selected and their respective expres-
sion patterns andmorphological features were evaluated. Gene expres-
sion analysis of the selected regions revealed increased expression of
BRCA1 and decreased expression of KRT8, VEGFA, MET, CLDN3 and
three genes involved in EMT (CTSL2, KLF4 andMMP11) for the XBP1high

region. The MMP11high region showed enrichment of CCL18 and two
genes involved in DNA repair (EMSY and RAD51) as well as less
expression of PDGFRB, BCL2 and KRT5. The CXCL14high regions
showed gene expression characteristic of SFRP1, GRB7, CDH2 and TNF
(Fig. 4b). Morphologically, the XBP1high region contained mostly
immune cells, the MMP11high region fibroblast and immune cells, and
the CXCL14high region a mixture of epithelial, fibroblast and immune
cells (Fig. 4c).

https://doi.org/10.1016/j.ebiom.2019.09.009


Fig. 3. OncotypeDX recurrence score heterogeneity within breast cancer tumors. Tumors were divided into hexagonal bins (500 μm in diameter) and subjected to recurrence scoring.
a) Images illustrate four tumors displaying OncotypeDX recurrence scoring heterogeneity. Colour-coded bins are overlaid on the hematoxylin stain. b) Mean of OncotypeDX gene
group scores (HER2-, ER-, proliferation- and invasive group) in bins with low, medium or high recurrence scores, error bars represent standard deviation (t-test). c) Distribution of ISS
reads for the OncotypeDX gene groups, plotted as dots in their spatial location within the tissues. Colour of dots represents: black = HER2 group, green = ER group, blue =
proliferation group and red = invasive group. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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3.6. Molecular profiling of morphologically relevant regions within tumor
samples

Then, we proceeded from a histological perspective by identifying
morphological features, and characterized their molecular profiles.
Current breast cancer diagnostics largely relies on histological evalua-
tion of tumors [37]. Hence, we investigated if morphological pheno-
types could be correlated to their molecular characteristics. For this,
two tumor regions selected from the core and the periphery of a
tumor foci were characterized. This analysis was performed on two
samples (samples 880842 and 880356) which differed strongly in
their number of KI67 positive cells as measured by immunohistochem-
istry (Fig. 5a and b).Molecular analysis revealed, thatwithin the KI67low

sample (880842), the periphery of a tumor foci showed increased ex-
pression of PPM1D, VAV1, SFRP1, LRP6 and genes involved in stemness
(ALDH1A1 and NANOG), EMT (KLF4 and ZEB1), macrophages (CD163
and CD68) and chemokine signaling (CXCL12 and CXCL14) as compared
to the core region. In contrast, within the KI67high sample (880356) the
periphery of a tumor foci displayed an increase in expression of POU5F1,
BRF2 and BRCA2 (Fig. 5a) as compared to its core region. Morphologi-
cally, the peripheral areas of both tumor foci was enriched in stromal
cells and extracellular matrix with clusters of epithelial cells migrating
from the core out into the surrounding tissue, whereas the core regions
for both tumors showed very dense epithelial cells (Fig. 5b).

3.7. Tumor heterogeneity visualized using tSNE analysis

We continued to explore the ISS data with an unsupervised ap-
proachusing tSNE cluster analysis [42].With this approach, heterogene-
ity within the tissue could be visualized through clustering into distinct
colour schemes. Tumor scans were divided into small hexagonal spatial
bins (100 μmindiameter; required size to obtain sufficient readnumber
for subsequent tSNE) and tSNE dimensionality reduction was per-
formed on the binned ISS gene expression data for each tumor. The
datawere reduced into three dimensions and translated into RGB colors
where bins with similar gene expression profiles get similar colors
(Fig. S9). Examples for four tumors are displayed in Fig. 6, showing the
tSNE clustered and colored bins plotted in their original location within
the tissue section. In general, two main shades for each tumor were
identified, one shade corresponded to the epithelial part of the tumor
tissue section whereas the other corresponded to the stromal part.
Many tSNE clusters were defined by the expression of one specific
gene, although most genes were not expressed in a single cluster
(Fig. S10, S11 and S12). Expectedly, the tumors showed similar
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Fig. 4. Heterogeneous expression of specific genes across tumor samples. (a) Presentation of selected genes that showed distinct expression patterns across tumor sections. Top; Kernel
densitymaps of the selected geneticmarker presented in red ormagenta. Bottom;Kernel densitymaps of EPCAM/CDH1 expression displayed as grey to indicate the epithelial regionwithin
the section. (b) For XBP1,MMP11 and CXCL14 specific regions were selected based on the Kerneldensity map displayed in (a). The outlined regions (markerhigh) are shown on top of the
PanCK IHC stain. ISS datawas retrieved from these regions and compared to the rest of the tissue (markerlow). Log2-transformed fold changes of the 10most differently expressed genes for
each selected region are displayedwith heatmaps, non-transformed fold changes are indicated. Red squares indicate regions shown in (c). (c) High power views of themorphology in each
region. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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heterogeneous spatial patterns as observed in the previous analyses,
where tumors 880356 and 880842 had indicated distinct prognostic
intratumoral heterogeneity (Fig. 3) and tumor 930492 a distinct
XBP1high region (Fig. 4), which is seen as a dark blue/green region in
the tSNE analysis.

3.8. Tumor-specific OncoMaps generated by ISS

To summarize the information acquired, findings from the different
analysis approaches were combined to generate a molecular-
morphological map of the tumor tissue (OncoMap). OncoMaps were
generated for four tumors, displaying the spatial intratumoral heteroge-
neity with regards to subtype, RS and specific expression patterns,
thereby enabling a detailed map of each tumors' molecular characteris-
tics and possible variation in therapeutic sensitivity. For example, tumor
900196, classified as an ER+ luminal A-like tumor with bulk RNA anal-
ysis, displayed KI67 and CXCL14 intratumoral heterogeneity as well as
generally high expression and amplification of CCND1 (Fig. S13), associ-
ated with poor prognosis in ER+ tumors [44]. This patient showed
metastases 37 month after surgical treatment for the primary tumor
(Table S1). Tumor 930492, a medullary carcinoma, displayed an
immunosupressive/ER stress response region (XBP1high [45,46]) at the
tumor/stroma boundary, stromal CXCL14 (Fig. S14, associated with
shorter survival in breast cancer [47]) and subtype intratumoral hetero-
geneity due to regionally high expression of PR (PGR). This tumor devel-
opedmetastases after 9 months (Table S1). For the tumors, 880356 and
880842, specific regions with higher RS and a more aggressive subtype
were identified (Fig. 7). Tumor 880842 presented with metastasis
7 months after primary surgery (Table S1).

Of note, immune cell related targets were commonly enriched in
peritumoral stroma areas.

4. Discussion

Current applications of precision medicine in cancer are mainly in-
formed by the results of bulk molecular profiling. However, the clinical
benefits derived till date based on this bulk approach remain relatively
limited [48,49]. This could possibly be explained by the lack of

https://doi.org/10.1016/j.ebiom.2019.09.009


Fig. 5. Characterization of morphologically relevant regions. (a) Regions selected for molecular profiling are outlined in red on top of the KI67 immunohistochemistry stain. Log2-
transformed fold changes of the 15 most upregulated genes in each region are displayed with heat maps, non-transformed fold changes are indicated. Left, comparison of the
peripheral region (red outline) and core (black outline) of a KI67low tumor foci (tumor 880842). Right, comparison of the peripheral region (red outline) and core (black outline) of a
KI67high tumor foci (tumor 880356). (b) Enlarged images of the morphology in each region. (For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)
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morphologically and subclonally resolved molecular profiling ap-
proaches. Extended information that correlates both the molecular
and morphological information at various levels would be practically
helpful to bring these studies closer to clinical relevance.
We have developed an analytical method that couples highly
multiplexed gene expression profiling to the morphological features of
the tumor tissue. Here we present different approaches for analysing
this type of data and how to spatially assemble all information together
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Fig. 6. Intratumoral heterogeneity visualized by tSNE analysis. The tumors were divided into small hexagonal bins (100 μm in diameter). tSNE dimensionality reduction into three
dimensions was performed on each bin and translated into RGB colors, bins with similar colors have similar gene expression patterns. For visualization of tumor heterogeneity and
gene expression patterns, the tSNE clustered and colored bins were plotted in their original location within the tissue.
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within a so-called OncoMap of each tumor. These OncoMaps reveal
intratumoral heterogeneity in the expression of molecular markers
with regard to subregions of different tumor subtype, recurrence score
or gene expression profile directly within the tissue context. Thereby,
OncoMaps offer the unique feature that they can complement cancer di-
agnostics and at the same time deliver important information about the
underlying biological processes within the different tumor niches.

From a diagnostic point of view, heterogeneity with regards to mo-
lecular tumorsubtype could have great impact on patient outcome,
due to possible variations in therapeutic sensitivity within the tumor.
For instance, we identified a tumor with a region positive for PR (PGR)
resulting in a different subtype, which is in accordance with the histo-
logical protein stain but missed out with microarray bulk RNA analysis
approach. Furthermore, we observed intratumoral subtyping heteroge-
neity due to regionally high expression of KI67 (MKI67). Recently, het-
erogeneity with regards to presence of both ER positive and negative
regions within a tissue, was associated with worse long-time survival
in breast cancer, also for patients with luminal A tumors that are com-
monly considered to be the least aggressive of the invasive breast tu-
mors [50]. This finding demonstrated the importance of diagnostic
approaches that take heterogeneity into account. Of note, most clinical
routine approaches already score prognostic KI67 as percentage of pos-
itive tumor cells within multiple hot spot areas of the tumor tissue
[51,52].

The intratumoral prognostic heterogeneity we observed by spatial
mapping of the OncotypeDX RS, indicates that the scoring could
differ depending on the tumor part analysed, and that smaller regions
with potentially aggressive features could be missed in bulk tissue
processing.
Besides the diagnostic aspects, ISS-based OncoMaps also deliver rel-
evant links between histological and molecular tumor features and can
thereby help to gain better understanding of regulatory signalingmech-
anisms in different tumor niches. For example, we demonstrate molec-
ular profiling of clinically-relevant regions exemplified by in depth
analysis of the core and periphery of tumor foci, thus enabling a more
distinct characterization of potentially metastatic molecular profiles.
This approach can extend our general understanding of the biology
behind tumor invasion and metastasis, as well as potentially guide de-
velopment and selection of targeted therapies to prevent disease
recurrence.

Our OncoMaps assign molecular profiles to different stromal,
immune or tumor compartments of the tissue, enabling identification
of differences in specific gene expression patterns both within
and between tumor samples. Indeed, we observed both inter- and
intratumoral heterogeneity with regards to the spatial expression of
specific genes, as exemplified for three genes generally associated
with poor prognosis (Fig. 4). Being able to spatially characterize and
define the expression of biomarkers should be advantageous for im-
proving both the prognostic capability of molecular analysis as well as
therapeutic strategies. For example, it has been shown that increased
stromal, but not epithelial, CXCL14 expression is associatedwith shorter
survival in breast cancer [47]. And indeed, we observed stromal CXCL14
expression in the tumor stroma of one patient with poor outcome
(tumor 930492, Fig. S14 and Table S1).

A limitation of the presented proof-of-concept study is though the
relative low number of analysed breast cancer patients. In order to cor-
relate features of ISS-based OncoMaps to clinical outcome or treatment
response, follow-up studies need to be performed on larger clinically
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Fig. 7.Molecular-morphological OncoMaps. Findings from thedifferent analysis approacheswere summarized for each tumor and assigned to the histological context. Spatial intratumoral
heterogeneity with regards to OncotypeDX recurrence score (RS; green), tumor subtype (magenta) and specific gene expression patterns (red and blue) as well as histological
observations (black) are displayed on top of the hematoxylin stain. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
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well-annotated patient cohorts. Such studieswill also offer the opportu-
nity to develop novel algorithms needed to connect multi-layer
biomarker signatures to clinical endpoints. Nevertheless, for future
high-throughput analyses with minimal technical variation as well as
for integration into clinical pathology routines, the ISS assay needs to
be fully automatized combining ideally both fluidics and optics systems.
Current efforts are heading in this direction and will be interesting to
follow [22].

We further demonstrate the use of an unsupervised approach, tSNE
dimensionality reduction, for analysing spatial gene expression data
that allows visualization of heterogeneous gene expression patterns.
In a large sample cohort, such an approach could possibly be useful for
identifying tissue areas of common prognostic and predictive gene sig-
natures or markers of biological processes within different patients.
Generally, the spatial intratumoral heterogeneity observed with other
analysis approaches could also be visualized using tSNE analysis. How-
ever, some findings were not picked up by the unsupervised approach,
for example the CXCL14 intratumoral heterogeneity observed in tumor
900196 (Figs. 4 and 6), indicating that the use of several different anal-
ysis approaches might be advantageous.

In conclusion, we provide the first proof of principle application of
spatially resolved molecular profiling by ISS-based OncoMaps. Through
spatialmapping of heterogeneity in the expression of therapeutic sensi-
tivity and prognosticmarkers, our approach can complement diagnostic
information and potentially improve patient stratification. Simulta-
neously, OncoMaps can deliver corresponding gene expression infor-
mation on system level to clinically relevant tumor regions and
thereby offer new opportunities to gain a better insight of the biological
processes regulating tumor progression.
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