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A utosomal dominant missense mutations in
MYH7 contribute to approximately 30% to
40% of identified mutations in adults with

familial hypertrophic cardiomyopathy (HCM) (1).
MYH7 encodes b-myosin heavy chain protein (MHC),
which is the major MHC in human adult ventricular
tissue. In the sarcomere, MHC is part of the thick fila-
ment and is responsible for the mechanochemical cy-
cle that powers muscle contraction. MHC exists as a
dimer with an amino-terminal globular head (called
S1), a neck and/or hinge region (called S2), followed
by a long a-helical tail domain. The globular S1 heads
project laterally and are responsible for adenosine
triphosphate and/or actin binding and contractile
force generation in the heart. The 2 tail domains
dimerize into a coiled-coiled motif to form the thick
filament rod. MYBPC3 encodes cardiac myosin bind-
ing protein C (cMyBP-C), which binds b-MHC in the
S2 region. The interaction of cMyBP-C with the S2 re-
gion b-MHC regulates the actin-myosin cross bridge
cycle and cardiac contraction (2). Currently, >400
different mutations have been identified in MYH7
(3). Both hypertrophic and dilated cardiomyopathy
(DCM) are associated with heart failure and
arrhythmias, and the mechanisms by which
position-specific MYH7 variants elicit distinct cardio-
myopathies has been studied using in vitro motility
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assays with purified motor proteins. HCM-associated
MYH7 missense changes cluster into distinct regions
of the myosin head, often falling into the mesa and
converter domains where they alter the super-
relaxed state of myosin (4–6).

DCM-associated MYH7 mutations have been harder
to classify, in part, because of a lack of suitable
models. Using mice to study Myh7 is compromised by
the fact that Myh6, which encodes the a-MHC, is the
major myosin of the adult mouse left ventricle.
Human-induced pluripotent stem cell�derived car-
diomyocytes (IPSC-CMs) are an attractive alternative.
However, multiple analyses have reported differ-
ences between IPSC-CMs and adult primary car-
diomyocytes in gene expression, action potentials,
calcium handling, and metabolism (7–9). Although
the relative immaturity of iPSC-CMs limits their
ability to model adult heart diseases, bioengi-
neering techniques, including nanopatterned sur-
faces and engineered heart tissues (EHTs) promote
IPSC-CM maturity and therefore improve IPSC-CMs as
a model.
The work of Yang et al. (10) in this issue of JACC:
Basic to Translational Science brings new insights not
only into the molecular pathogenesis of MYH7 mu-
tations, but also to using IPSC-CMs as a model of ge-
netic cardiomyopathy. The investigators identified a
44-year-old man after he survived sudden cardiac
arrest. An echocardiogram showed normal ventricular
wall thickness, a nondilated ventricle, and a reduced
ejection fraction of 35%. Targeted gene sequencing
identified the MYH7 E848G variant. The proband’s
sister also presented with heart failure symptoms at
age 63 years. On echocardiography, her heart showed
a similar pattern, with a reduced ejection fraction of
31% and no evidence of ventricular wall thickening or
chamber dilation. Neither the index patient nor his
sister met echocardiographic criteria for hypertrophic
https://doi.org/10.1016/j.jacbts.2018.11.005

https://doi.org/10.1016/j.jacbts.2018.11.005
http://www.basictranslational.onlinejacc.org/content/instructions-authors
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jacbts.2018.11.005&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


FIGURE 1 Methodology to Model Cardiomyopathy-Associated Mutations at the Cell and Engineered Tissue Level

Cells from the index proband and his offspring, as well as related and unrelated healthy controls were reprogramed into induced pluripotent

stem cells (IPSCs) and differentiated into cardiomyocytes (IPSC-CMs). IPSC-CMs are plated on nanopatterned surfaces to improve sarcomere

alignment. Engineered heart tissues allowed for measurement of force�tension relationships and maximum force generation.
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cardiomyopathy or DCM. The 2 children of the index
patient were examined, and they carried the E848G
mutation and had preserved left ventricular ejection
fractions. Both had decreased systolic wall thickening
of the interventricular septum, a marker of regional
systolic dysfunction (11). MYH7 E848G falls within
the S2 region of b-MHC in the domain that binds
cMyBP-C, and E848G impaired binding to cMyBP-C.
The binding partner, cMyBP-C, was previously
described with a E258K change that also impairs this
same interaction between b-MHC and cMyBP-C. This
mutation frequently results in reduced systolic
function (12).

To enhance the usefulness of IPSC-CMs as a model,
the investigators applied 2 different bioengineering
techniques (Figure 1). When grown in normal condi-
tions, IPSC-CMs often display a circular, rather than
elongated, myofibril alignment. By growing IPSC-CMs
on nanopatterned surfaces with 800-nm parallel
grooves, the investigators observed elongated
myofibril alignment that permitted measuring of
fractional cell shortening. After 30 days in culture,
E848G IPSC-CMs were indistinguishable from healthy
control cardiomyocytes. The patient-derived iPSC-
CMs were allowed to mature for 50 days, and then
demonstrated a time-dependent reduction in frac-
tional shortening similar to the age-dependent
penetrance seen in human hearts. In EHTs, E848G
IPSC-CMs were co-cultured with human marrow
stromal cells in 3-dimensional molds (13–15). After 2
to 3 weeks, during which cells were exposed to con-
stant external stress, E848G EHTs showed significant
contractile dysfunction with a 4-fold reduction in the
Starling curve slope and a >75% reduction in maximal
active twitch force per area. Mutant EHTs displayed
no defects in passive stiffness or relaxation, as would
be seen with hypertrophic cardiomyopathy, recapit-
ulating the E848G clinical phenotype of systolic
dysfunction.

The age-dependent penetrance seen in iPSC-CM
models reflects what occurs in human hearts,
whereas cardiac phenotypes may not be expressed
until relatively late in life. Intriguingly, iPSC-CMs
derived from the oldest and most severely affected
E848G gene carrier had the most clear cut defects in
culture compared with the cells in the 2 younger
E848G gene carriers. The more severe cellular
phenotype in the index case may reflect additional
genetic variants and/or epigenetic changes. The in-
vestigators generated iPSC lines from multiple car-
riers and used gene mutation�negative controls from
unrelated subjects. This approach, rather than using
isogenic lines, which was generated through gene
editing, may provide a more representative view of
human disease. Many investigators choose gene-
edited isogenic controls for iPSC studies; however,
this approach introduced variability due to gene
editing off-target events, as well as the stress of
additional rounds of culture selection. Deriving cell
lines from unique patients each carrying the same
primary mutations more accurately mirrors what oc-
curs in human patients.
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