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The topographic organization of afferents to the hippocampal CA3 subfield are

well-studied, but their role in influencing the spatiotemporal dynamics of population

activity is not understood. Using a large-scale, computational neuronal network model

of the entorhinal-dentate-CA3 system, the effects of the perforant path, mossy fibers,

and associational system on the propagation and transformation of network spiking

patterns were investigated. A correlation map was constructed to characterize the

spatial structure and temporal evolution of pairwise correlations which underlie the

emergent patterns found in the population activity. The topographic organization of the

associational system gave rise to changes in the spatial correlation structure along the

longitudinal and transverse axes of the CA3. The resulting gradients may provide a basis

for the known functional organization observed in hippocampus.
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INTRODUCTION

The architecture and connectivity of rat hippocampus has been intensely studied, revealing a
prominent topographic organization within the highly complex and tortuous structure of the
hippocampal anatomy. Despite a thorough characterization of the macroscale, mesoscale, and
microscale connectivity of rat hippocampus, the contributions of the architecture of the afferent
and efferent projections to the organization of population dynamics has yet to be fully understood.
This is partly due to the difficulty in interpreting and integrating the results of the key studies,
many of which were performed several decades ago, into a single comprehensive model. The
technical difficulty in recreating these studies with either older or more modern methods limit
further characterizations of the microscale and mesoscale topography. Few computational models
of neural systems have attempted to represent their full geometrical, or at least up to an extent at
which the mesoscale contributions to population activity can be observed (Schneider et al., 2012;
Markram et al., 2015; Hendrickson et al., 2016; Billeh et al., 2020). Yet, these types of anatomical-
scale models are necessary to explore the contributions of topographically organized connectivity
on the spatio-temporal dynamics of their respective neural systems.

At a basic level, connectivity determines the spatial arrangement of postsynaptic activation
given a presynaptic spike resulting in a correlation across neurons, i.e., a spatially organized
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correlation. Pairwise spike correlations between neurons have
been shown to capture much of the statistical properties of a
single neuron and provide a measure for studying the properties
of population activity (Helias et al., 2014; Dettner et al.,
2016). Weak pairwise correlations have been demonstrated to
give rise to emergent spatiotemporal structures in population
activity (Halliday, 2000; Schneidman et al., 2006; Kriener
et al., 2009; Renart et al., 2010; Senk et al., 2018; Yu et al.,
2018).

The relation between connectivity and spatially organized
correlation is due to the spatial distribution of an axon and the
sparsity/density of its connectivity which then determine
the amount of input overlap/input sharing that occurs
among neurons. Theoretical studies have characterized the
role of input sharing in determining the correlation that
a postsynaptic population exhibits and the propagation of
the correlation through multiple layers (Kumar et al., 2010;
Rosenbaum et al., 2011, 2016; Darshan et al., 2018). Such
studies have also revealed how the interactions between
feedforward and recurrent inhibitory circuits nonlinearly
affect the spatial structure of correlation. Beyond spatial
correlation, the temporal correlation can also be considered
in the correlation structure which is determined by the
electrophysiology of the postsynaptic neuron and the synaptic
properties (Tetzlaff et al., 2008; Hong et al., 2012; Chan et al.,
2016; Yu et al., 2018). Given these principles, we investigated
the population dynamics and spatiotemporal correlation
structure that resulted from different types of connectivity in a
hippocampus-specific context.

Using an entorhinal-dentate network, we had previously
revealed a role of anatomically-constrained connectivity in
organizing random inputs into spatially and temporally dense
regions of activity called clusters (Hendrickson et al., 2016; Yu
et al., 2018). The spatial properties of the clusters were found
to be influenced by the anatomy of the axonal projections,
i.e., the spatial extent of the axon terminal field. This previous
work was limited to exploring the effect of a single feedforward
projection on a single neural population. In the present work,
the entorhinal-dentate work was expanded to investigate (1)
how spatio-temporal patterns within the dentate gyrus would be
preserved when propagated to the CA3 subfield, (2) howmultiple
feedforward projections would interact to influence the spatio-
temporal pattern of the CA3, and (3) how a recurrent excitatory
projection, i.e., the associational system, would further transform
the activity.

A large-scale entorhinal-dentate-CA3 neuronal network
model with spatially-dependent and topographically-organized
connectivity was constructed that encompasses the full geometric
extent of a rat hippocampus using compartmental models
of neurons (Figure 1). From the entorhinal-dentate network,
the perforant path projection and dentate mossy fibers were
included to connect the entorhinal cortex and dentate gyrus
to the CA3, and the recurrent associational system was
added. By computing a spatio-temporal correlation map,
a heterogeneous correlation structure was discovered which
varied in amplitude and shape along both the longitudinal
and transverse spatial axes of the CA3 and further evolve
in time.

MATERIALS AND METHODS

Neuron Models
The CA3 pyramidal cell is the principal neuron of the CA3,
and the basis of the CA3 pyramidal cell models used in the
present work originated from a study in which three major
firing types were discovered: bursting, strongly adapting, and
weakly adapting (Hemond et al., 2008). They published three
models with biophysical parameters and spiking behavior that
best represented in vivo recordings of CA3 pyramidal cells that
demonstrated the different firing types. For the three models,
the biophysical parameters had been distributed upon a single,
morphological reconstruction of the apical and basal dendrites
of a CA3 pyramidal cell. The models contained the following
ion channels: sodium, delayed-rectifier K+, A-type K+, D-
type K+, M-type K+, T-type Ca2+, N-type Ca2+, L-type Ca2+,
calcium-dependent K+ (CaGK), calcium-dependent K+ (BK),
HCN, and leak channels (see Supplementary Tables 1–3). In
the present work, the morphology of the models from Hemond
et al. (2008) was simplified using an algorithm that used circuit
theory to combine compartments connected in series and in
parallel to create simplified equivalent circuit representations of
complex morphologies (Marasco et al., 2012). The algorithm
was used in the current work to construct simplified models
while preserving the firing behavior exhibited by the original
models (Figure 2C). The simplified models contained eight
compartments corresponding to a compartment for each layer
upon which input is received and reduced simulation times
by a factor of 20. Model parameters are summarized in the
Supplementary Tables 1–4. The computational models were
simulated using NEURON v7.5 and scripted using Python 2.7.

The entorhinal-dentate network used in the present study was
the same as described in Yu et al. (2018, 2019) and is extensively
described there. Dentate granule cells were represented using
a simplified morphology that was constructed using the same
technique as for the CA3 pyramidal cell models (Marasco et al.,
2012). Entorhinal cortical cells were represented using a renewal
process that consisted of a homogeneous Poisson process with an
exponentially-decaying refractory period with a time constant of
35 ms.

The entorhinal-dentate-CA3 network was comprised of
112,000 entorhinal cortical cells, 120,000 dentate granule cells,
and 25,000 CA3 pyramidal cells which represents one-tenth of
the full number of dentate granule cells and CA3 pyramidal
cells within the rat hippocampus (Mulders et al., 1997). Each
simulation represented 5 s of real-time at a time step of 0.025ms
and was run using 100 cores fromDual Intel Xeon 2.4 GHz CPUs
resulting in a wall-time of approximately 4 h per simulation.
Each core was allocated 2 GB of RAM for a total of 200 GB
of RAM per simulation. The simulations were performed using
the computing resources provided by the Center for Advanced
Research Computing at the University of Southern California.

Topography of Afferent Inputs to CA3
Pyramidal Cells
Hippocampal Anatomy
To describe the CA3 network model, some background
regarding the structure of the hippocampus must be given, and
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FIGURE 1 | Overview of methods in constructing the large-scale hippocampal model. (A) Compartmental models of CA3 pyramidal cells with Hodgkin-Huxley style

dynamics were constructed. A detailed version with realistic morphology was converted into a reduced equivalent compartment model. (B) Anatomical data was used

to define a topographically-organized, spatially-dependent connectivity. (C) The postsynaptic potential for each pre-post synapse type was characterized using their

peak value and their half-height width (HHW). (D) A three-dimensional hippocampal model consisting of the dentate gyrus and CA3 was constructed for this study.

common terminology to describe the hippocampal anatomy
must be established. Briefly, the rat hippocampus is organized
into three areas: the dentate gyrus, CA3 subfield, and CA1
subfield (Figure 3A). The simplified trisynaptic circuit of the
hippocampus is a predominantly feedforward pathway that
begins in the entorhinal cortex and describes the propagation
of activity from entorhinal cortex, to dentate gyrus, to CA3, and
finally to CA1 (Andersen, 1975). There are many more details to
the full description of the circuits within the hippocampus such
as back projections and the CA2, but the simplified trisynaptic
circuit captures the major organization of the hippocampus.

The hippocampus is a three-dimensional structure, and the
curved nature of the layers do not allow positions to easily be
described using three-dimensional cartesian coordinate systems.
Therefore, neuroanatomists developed a technique to unfold
and flatten the structure to describe the anatomy using a two-
dimensional coordinate system (Figure 3A). The longitudinal
axis can generally refer to the dorso-ventral axis, septo-temporal
axis, or y-axis of the hippocampus. The transverse axis can
generally refer to the proximodistal axis or x-axis of the
hippocampus. The proximodistal axis within CA3 refers to
position with respect to the dentate gyrus, and the CA3 has
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FIGURE 2 | Anatomical details and spiking behavior of CA3 pyramidal cell models. (A) The total dendritic length varied based on the transverse position of the model

within the CA3 subfield. These lengths and the synaptic densities in each layer (Table 1) were used to determine the numbers of each input type that a model

received. (B) After the reduced models (dashed colored lines) preserved the different spiking behaviors as the original models (solid black lines). (C) The original

morphology was reduced to eight compartments. On the right, the specific regions that received a particular input type are denoted.

been commonly divided into three subregions along this axis.
The CA3c, CA3b, and CA3a are organized with the CA3c being
most proximal to dentate gyrus and CA3a being most distal to
dentate gyrus.

Anatomically-Constrained Mesoscale and Microscale

Connectivity
The major intrahippocampal afferents to CA3 pyramidal cells
were considered in this study: the lateral perforant path
input, the medial perforant path input, mossy fiber input,
and the associational input. Anatomical data was used to
define and constrain the topography of the various projections.
The topography describes the regional mapping between
layers/subfields of the hippocampal formation. Relevant data
include anterograde and retrograde tracer injection studies
which can reveal the relation between position within a
hippocampal subfield and the region within the postsynaptic
area to which axons are sent (anterograde) or the region
within the presynaptic area from which axons are received
(retrograde). Another crucial aspect of the anatomy is the
spatial distribution of the axon terminal field within the
postsynaptic area. Under the assumption that a greater
axonal density results in a larger number of connections,
the axonal distribution was converted into a probability
distribution with a higher density corresponding to a higher
probability of connection. Thus, connectivity was stochastically
generated by first defining the regional mapping between
the position of a presynaptic neuron and the postsynaptic
region to which axons are sent. Then, the axonal density

was used to define a spatial constraint resulting in a spatially
dependent connectivity. The topographic regional mapping
corresponds to mesoscale connectivity, and the resulting
connections based on the axonal density correspond to the
microscale connectivity.

Axons were not explicitly represented in the models but
were represented as a propagation delay based on the path
length between the presynaptic and postsynaptic neurons and
the conduction velocity. Conduction velocities of 0.32 m/s, 0.27
m/s, and 0.39 m/s were used for the perforant path (Tielen et al.,
1981), mossy fibers (Kress et al., 2008), and associational system
(Andersen et al., 2000), respectively. The anatomical data and
methods for quantifying them that are described below were
initially introduced in earlier work (Yu et al., 2014, 2015).

The perforant path refers to the projection arising from
the entorhinal cortex that are sent to the dentate gyrus and
CA3 and is divided into the lateral and medial perforant path
based on their origin from the lateral and medial areas of
the entorhinal cortex. They initially synapse onto the dentate
gyrus before continuing onwards and making a monosynaptic
connection with the CA3 (Yeckel and Berger, 1990). Within
the dentate gyrus and CA3, the lateral and medial perforant
paths terminate on different strata which, for the CA3, are the
distal and proximal lacunosum-moleculare, respectively. Because
the same axons that synapse in the dentate gyrus continue
to the CA3, the topographical map from entorhinal cortex to
dentate gyrus was used to describe the mapping from entorhinal
cortex to CA3. The data used to describe the entorhinal-dentate
topography came from the series of retrograde tracer studies
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FIGURE 3 | Overview of mossy fiber and associational topography. (A) A conceptual diagram depicts how a flattened representation of the hippocampus can be

made from the original 3D structure. The transverse axis refers to the proximodistal axis. The longitudinal axis refers to the septotemporal/ dorsoventral axes. (B) The

original data that revealed the organization of the associational system was reported using two intensity values. The data was mapped onto a standard space, fit to a

parameterized equation, and then remapped back into subject space. (C) Examples of the original data and resulting fits are shown. (D) The trajectories of the mossy

fibers are shown in the CA3 subfield. The top right subplot indicates the change inter-synapse distance that occurs along the mossy fiber. The bottom right subplot

shows example synapse locations.

(Dolorfo and Amaral, 1998), and the extent of the axon terminal
field along the longitudinal axis was reported to be 1–1.5mm
(Tamamaki, 1997). A Gaussian distribution was used to represent
the connection probability of a perforant path axon terminal
field. The resulting map predicts a longitudinal organization of
the entorhinal projection to dentate gyrus (Figure 1B). A detailed
description of the data and method for extracting the topography
are described previously in Hendrickson et al. (2016) and Yu et al.
(2019). To summarize this method, a workflow was developed to
digitize the data, map the results of the injection onto a standard
space, perform averaging when relevant within the standard

space, and finally remap the averaged data onto a chosen subject
rat space.

The mossy fibers describe the axons that are sent by dentate
granule cells to the CA3. Each mossy fiber can be generally
characterized as a single fiber which initially stays within the
same longitudinal level from which it originates and then
travels through the CA3 predominantly along the transverse axis
for the first two-thirds (i.e., within CA3c and CA3b) before
turning toward the temporal pole of the longitudinal axis within
CA3a (Figure 3D) (Acsády et al., 1998). The fiber trajectories
were estimated using data published in Swanson et al. (1978)
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by measuring the deviation of the fiber with respect to the
longitudinal level of origin as it traversed the proximodistal
extent of the CA3. The deviations as a function of longitudinal
origin were interpolated using a cubic b-splines fit to represent
a smooth change in fiber trajectory. To generate the fibers, noise
was added to the points representing each fiber trajectory create
variable fibers.

The longitudinal and transverse organization of the
associational system was most thoroughly revealed by Ishizuka
et al. (1990) using anterograde tracers. The tracer was injected
into one of nine areas within the CA3 which roughly covered
a 3 × 3 grid with injections within the CA3c, CA3b, and CA3a
as well as the septal, middle, and temporal levels. The resulting
distribution of tracer represents the density and spatial extent
to which axons were sent. Density in the study was represented
using three qualitative levels: a zero level, a low density level,
and a high density level. Similar to the entorhinal-dentate/CA3
topography, the data were digitized and mapped onto a standard
space (Figure 3B). Within the standard space, distribution
of labeling was parameterized using a two-dimensional skew
gaussian equation. The parameters of the equation could then
be interpolated/extrapolated to estimate the distribution of
CA3 associational axons for areas that were not covered by an
injection (Figure 3C).

Numbers of Synapses
The final step to generating connectivity is to define the numbers
of connections that are possible. There are two method by
which the number of connections could be constrained. From
a postsynaptic perspective, the number of inputs that could
be received for a presynaptic population can be estimated by
using spine count information which could be obtained by using
spine density and dendritic length measurements. Due to highly
stratified nature of the CA3 afferents, the number of inputs for
each afferent could be estimated by calculating the total number
of spines for the different layers to which the afferents project.
The second method for constraining the number of inputs is
to use the presynaptic population’s axon measurements. The
bouton density and the axon length can be used to estimate
the number of connections that a presynaptic neuron forms
with a postsynaptic population. The strata to which the various
projections are restricted are summarized in Figure 2.

The total dendritic length of each strata within CA3 change
along the proximodistal axis as revealed by Ishizuka et al. (1995).
In general, the total dendritic length is smallest proximally,
and it is largest distally (Figure 2A). The spine density within
each stratum are not well studied for CA3 pyramidal cells.
Rather, spine densities have been meticulously characterized for
CA1 pyramidal cells and were used to estimate the numbers
of synapses for CA3 pyramidal cells (Megias et al., 2001). The
total synapse numbers are summarized in Table 1. Using these
calculations, the number of inputs for the perforant path and
associational projections were constrained for the model.

Because the synaptic density within the stratum lucidum
was not characterized in CA1, the second method of using the
presynaptic axon properties was used to constrain the number of
inputs for the mossy fibers. The inter-synapse distance had been

measured for mossy fibers which revealed that the inter-synapse
distance changed as the fiber moved fromCA3c to CA3b to CA3a
(Acsády et al., 1998). Using a Poisson process, the locations of
mossy fiber synapses along the fiber were estimated using the
reported mean values of 162± 12.6µm in CA3c, 223± 19.3µm
in CA3b, and 345 ± 27.5µm in CA3a (Figure 3D). Mossy fibers
originating in the suprapyramidal blade of the dentate gyrus were
restricted to the stratum lucidum. Mossy fibers originating in
the infrapyramidal blade were restricted to the proximal stratum
oriens within CA3c before moving into the stratum lucidum for
the CA3b and CA3a.

Having defined the topography, spatially dependent
connection probabilities, and the numbers of connections
the connectivity of the network could be stochastically generated.
For the postsynaptic method, the connection probabilities for
each presynaptic neuron for a given afferent were collected for
each CA3 pyramidal cell. The connection probabilities were
normalized, and a presynaptic neuron was randomly selected
until the total number of connections for that particular afferent
was achieved. For the presynaptic method, a postsynaptic
neuron was randomly selected for each synapse location. A
postsynaptic neuron within 30µm of the synapse was considered
based on measurements performed by Acsády et al. (1998). The
distribution of the number of mossy fiber inputs is found in
Supplementary Figure 1.

Synapse Models
Neuron communication in the model was mediated exclusively
through synapse-like processes. The synapse was modeled as a
deterministic process in which an action potential activates a
change in synaptic conductance. The time-course of the synaptic
conductance was represented using a double exponential
function for AMPA receptors (Kleppe and Robinson, 1999) and
a triple exponential function for NMDA receptors. The NMDA
receptor was additionally modulated by a sigmoidal function
to capture the magnesium-related voltage dependence of the
receptor (Jahr and Stevens, 1990; Zador et al., 1990).

gAMPAR(t)∝e
−t
τ2 −e

−t
τ1 , τ2>τ1

gNMDAR (t,v)∝
w·e

−t
τ3 + (1− w) ·e

−t
τ2 −e

−t
τ1

1+e−0.062v·[Mg2+]/3.57
, τ3>τ2>τ1

The t and v variables correspond to time in milliseconds and
membrane potential in millivolts. The τ variables are time
constants that control the time-course of the waveform. The
w variable for the NMDA receptor is a weighting variable
constrained within (0, 1). The equations are normalized using
the peak value of the exponential functions, i.e., ignoring the
denominator for the NMDA receptor. This can be solved
analytically for the AMPA receptor by setting the derivative
to zero. For the NMDA receptor, the solution was empirically
derived after setting the derivative to zero and finding the
intersection of the left- and right-hand sides of the equation.
The normalized synaptic conductance equations are then
multiplied by a factor corresponding to the synaptic weight.
The synaptic weights are constrained such that the resulting
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TABLE 1 | Number of inputs received by the CA3 pyramidal cells and EPSP properties.

Lacunosum

distal

(LEC)

Lacunosum

proximal

(MEC)

Radiatum

(associational)

Oriens

(associational)

Synaptic Densitya 0.63 0.63 3.61 3.15

Number of Inputs (Proximal) 0 0 11,241 7,147

Max. Number of Inputs (Distal) 1,658 1,105 11,281 17,893

The proximal vs. distal inputs are based on the multiplication of the synaptic density and the total dendritic length within the relevant layer. Between the proximal and distal ends, the

numbers of inputs change linearly.
aMegias et al. (2001).

TABLE 2 | EPSP properties.

Lacunosum

distal

(LEC)

Lacunosum

proximal

(MEC)

Radiatum

(associational)

Lucidum

(mossy fiber)

Oriens

proximal (mossy

fiber)

Oriens

distal

(associational)

Peak (mV) 0.30a 0.30a 0.30a 3.2b 3.2b 0.30a

HHW (ms) 46.1a 46.1a 40.9a 135c 135c 38.0a

aPerez-Rosello et al. (2011).
bLawrence et al. (2003).
cScanziani et al. (1993).

excitatory postsynaptic potential (EPSP) recorded from the soma
match those reported from unitary synaptic release experiments
for the relevant presynaptic-postsynaptic synapse pairings.
The time constants for the AMPA receptor were similarly
separately constrained such that the half-height width of resulting
somatic EPSP matched the experimentally reported values
(Table 2). The parameters for the synapses are summarized in
Supplementary Tables 5–8.

Three-Dimensional Space-Time
Correlation Maps
The spatial and temporal correlation structure of the network
was constructed by computing the pairwise correlation of the
spiking activity for all neuron pairs and averaging the normalized
cross-correlations of neuron pairs that were located at the same
relative distance (Figure 4). The normalized cross-correlation
was computed by binning the spike times of the neurons and
using the following equation:

(

x ⋆ y
)

[n]=
1

σxσy

N−1
∑

m=0

1

Lm
(x [m]−µx)

(

y [m+n]−µy

)

for which the ⋆ operator represents correlation, x and y
correspond to the binary spike trains, σ is the standard deviation
of the spike trains, µ is the mean of the spike trains, N is the total
length of the spike train, and Lm is the size of the overlap between
the signals while they are being shifted.

A three-dimensional matrix was constructed with an axis
corresponding to time, an axis for the longitudinal distance
between the neuron pair, and an axis for the transverse distance
between the neuron pair. The temporal resolution for binning the

spikes was 1ms. The spatial resolution for the longitudinal and
transverse axes was 0.1 mm.

There were two types of space-time correlation maps that
were generated for this study (Figure 4). The first type was the
global map which computed the space-time correlation map for
all possible neuron pairs. The global map then represents the
average correlation structure for all principal neurons within a
hippocampal subfield. The second type of map was the local
map which divided the CA3 into a 3 × 3 grid of longitudinal
and transverse sections based on the CA3a, CA3b, and CA3c
subdivisions along the transverse axis and the septal, middle,
and temporal subdivisions along the longitudinal axis. Local
maps were specific to each of these sections and were computed
using neuron pairs only if at least one of the neurons was
located in the corresponding longitudinal/transverse section.
This constraint caused the resulting space-time correlation
map to be representative of a smaller population of neurons,
as defined by the longitudinal/transverse position. In contrast
to the global map which considered every neuron pair, the
local map provided a more granular characterization of the
correlation map a local map to represent each of the nine
longitudinal/transverse sections.

RESULTS

Input to the entorhinal-dentate-CA3 network was primarily
provided by the entorhinal cortex, and the spiking activity of
each entorhinal neuron was represented with a renewal process
comprised of a Poisson process with an exponentially decaying
refractory period that modified the spiking probability after the
generation of a spike. The mean firing rate of the Poisson process
was 5Hz. The resulting input had a uniform power density in the
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FIGURE 4 | Summary of the construction of the space-time correlation maps. (Top row) The workflow in calculating pairwise spike correlations and placing them in a

matrix that is organized by the longitudinal, transverse, and temporal lags. (Bottom row) Global vs. local space-time correlation map. In the global map, all neuron

pairs were considered to construct an average correlation map to represent all neurons that were included to compute the map. In the local map, only neuron pairs

with at least one neuron within the chosen section were used in the calculation which results in a correlation map that is specific to the section to which the neuron

pairs were constrained. In the local map example highlighted in the figure, the resulting correlation map would be representative for the neurons within the section

located in the second row and third column.

frequency domain and was spatially and temporally uncorrelated.
Though the random input does not contain behavioral or spatial
information, the mean firing rate was determined based on the
mean firing rate of the grid cells modeled in Yu et al. (2019) and
served as a control to eliminate any correlation that may arise due
to a common physiological/behavioral drive.

The simulations described throughout the results can be
organized based on the afferent projections that were present
and the activity of the dentate granule cells. For the different
afferent projections, there was the perforant path (PP-CA3)
model which includes only the entorhinal projection, the mossy
fiber (MF-CA3) model which includes only the mossy fiber
projection, the perforant path-mossy fiber (PP-MF-CA3) model
which includes both perforant path and mossy fiber projections,
and the perforant path-mossy-fiber-assocational (PP-MF-A-
CA3) model which includes the perforant path, mossy fiber,
and associational projections. As described in the previous
paragraph, the entorhinal cortex only generated random input.
However, the dentate granule cell activity was generated using
two methods. The first method uses the entorhinal activity

and the dentate gyrus network model to generate the dentate
granule cell activity and represents the natural dentate response
to entorhinal activity. This method introduces a weak spatial
and temporal correlation to the dentate granule cell activity due
to the topographic connectivity. The second method represents
the dentate granule cell activity using a renewal process with a
mean firing rate of 0.62Hz which was the mean firing rate of
the dentate granule cells due to entorhinal input. Therefore, the
key difference between the first and second methods for dentate
granule cell activity was the presence of an inherent spatial and
temporal correlation in the activity using the first method and
the absence of a correlation in the activity using the second
method. These differences in terms of the model are denoted
using as weakly correlated mossy fiber (wcMF) or randommossy
fiber (rMF).

Simulations were initially performed with synaptic weights
that were constrained to elicit the appropriate EPSP peak values,
and additional simulations were performed that multiplied the
original synaptic weights with scalar factors. The perforant path
and mossy fibers each had their synaptic weights modified by
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factors of 0.5, 1, 2, 3, and 5 with 1 corresponding to the original
synaptic weight.

Spiking Activity and Global Correlation
Maps
The longitudinal axis of the hippocampus is much larger than
the transverse axes of the hippocampal regions. Additionally,
there is a significant longitudinal organization to the topography
between regions. These details have supported the presentation
of hippocampal activity along the longitudinal axis. The
following subsections present the raster plots of spiking
activity and the corresponding space-time correlation maps
as functions of longitudinal position and time with the same
scale to demonstrate the similarities between the spatio-
temporal patterns of activity and the space-time correlation map.
The slice of the space-time correlation map was taken at a
transverse lag of 0mm, and the color maps were thresholded
to 30% of the maximum value to better visualize the weaker
negative correlations.

Entorhinal Perforant Path Projection (PP-CA3 and

PP-DG Models)
There is a monosynaptic projection from entorhinal cortex
to both dentate gyrus and CA3 meaning that the entorhinal
cortex directly projects onto their principal neurons. Though
the monosynaptic perforant path projection onto dentate gyrus
has already been extensively covered (Hendrickson et al., 2016;
Yu et al., 2018, 2019), a brief analysis is presented here for
comparison with CA3. In CA3, the spatially and temporally
uncorrelated entorhinal input (PP-CA3 model) was converted
into network activity that exhibited a weak clustering (Figure 5A,
i). Dentate granule cells (PP-DG model) responded with more
visible clusters (Figure 5A, iv). A global space-time correlation
map was computed with the CA3 pyramidal cells having a peak
correlation of 0.0026 and the dentate granule cells having a peak
correlation of 0.03 which is approximately an order of magnitude
greater (Figure 5B, i,iv). The spatial extent of the correlation for
both granule cells and CA3 pyramidal cells were nearly identical
at approximately 1 mm.

These results indicate that the formation of clusters due to the
perforant path are not unique to the dentate gyrus but can be
generalized for different neural systems. Given a shared axonal
distribution, the spatial extent of the correlation is preserved.
However, the specific electrophysiology of the neuron types
does affect the extent of temporal correlation. Other differences
between the granule cells and CA3 pyramidal cells include the
numbers of inputs that they receive from perforant path. The
CA3 pyramidal cells receive much fewer inputs than granule cells
and therefore share fewer inputs among their neighbors. This
results in a lower peak correlation and noisier clusters.

Dentate Mossy Fiber Projection (rMF-CA3 and

wcMF-CA3 Models)
The role of mossy fibers in organizing spatio-temporal activity
was investigated within two conditions. The random mossy
fiber (rMF) condition represented the dentate granule cell
activity using an independent Poisson process that had the

same mean firing rate as the weakly correlated mossy fiber
(wcMF) condition which was 0.62Hz. The wcMF represented
the disynaptic propagation of entorhinal activity via mossy fibers
to CA3, i.e., the dentate activity in Figure 5A, iv that was
generated by the PP-DG model was used as the input to the
CA3 pyramidal cells. The rMF created an input that was spatially
and temporally uncorrelated. The wcMF created in an input
with weak spatial and temporal correlation based on the dentate
transformation of uncorrelated entorhinal activity. At the default
synaptic parameters, the dentate activity was not sufficient to
generate significant activity in the CA3. Therefore, the following
analysis was performed with the synaptic weight increased by a
factor of five.

The rMF resulted in CA3 activity that remained spatially
uncorrelated and exhibited a weak temporal correlation with a
peak of 0.001 (Figure 5A, ii). The wcMF resulted in the CA3
generating a spatio-temporal pattern that largely matched the
spatio-temporal pattern of the dentate gyrus with a delay of
9ms (Figure 5A, v). Additionally, the CA3 clusters included
a “tail” that extended down toward the temporal pole and
represents the downward turn that the mossy fiber trajectory
follows after reaching the CA3a. The spatial structure of the
CA3 correlation map remains largely similar to the dentate
correlation map (Figure 5B, ii,v). These results indicate that
in contrast to the perforant path projection, which organizes
random activity into clusters, the mossy fibers do not imbue a
spatial correlation to their postsynaptic population. Rather, the
mossy fibers preserve the structure of the activity that is generated
by the presynaptic population.

Combined Entorhinal and Dentate Projections

(PP-rMF-CA3 and PP-wcMF-CA3 Models)
To explore the interactions between both the perforant path and
mossy fiber projections, both rMF and wcMFwere considered. In
the PP-rMF-CA3 model, both the entorhinal cortex and dentate
granule cell activity were randomly generated with an entorhinal
mean firing rate of 5Hz and a dentate mean firing rate of
0.62Hz. These were both projected directly to the CA3. The PP-
rMF-CA3 model eliminated the entorhinal projection to dentate.
In the pPP-wcMF-CA3 model, the entorhinal cortex projected
to both the dentate gyrus and CA3, and the CA3 received
random input from entorhinal cortex and weakly correlated
input from the dentate gyrus, which again represents the dentate
gyrus’ transformation of the random entorhinal input. These
simulations were performed using the original synaptic weights,
i.e., a scalar factor of one.

The PP-rMF-CA3 model resulted in the CA3 pyramidal cells
generating a noisier version of the spatio-temporal pattern that
was caused by the entorhinal projection by itself (Figure 5A, iii).
This was expected as the random dentate input caused the CA3
to respond with spatially and temporally uncorrelated activity.
The combination of these inputs results in the noisy pattern.
The space-time correlation map supports this finding as the
correlation structure is very similar to the correlation structure
caused by the entorhinal projection but with a peak correlation
that was roughly decreased by half (Figure 5B, iii).
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FIGURE 5 | Raster plots and global correlation maps for the effects of the perforant path and mossy fibers on CA3 pyramidal cells. (A) Spiking activities of the CA3

pyramidal cells are indicated with black dots and are organized based on their longitudinal position and time of spike. The circuits above each subplot indicate which

circuit configuration was used. All plots indicate CA3 pyramidal cell activity except for the EC-DG plot which shows dentate granule cell activity. (B) The corresponding

space-time correlation maps are shown. The longitudinal-temporal cross-sections are shown at a transverse lag of 0mm. Red areas represent positive correlation,

and blue areas represent negative correlation. (A,B) (i) PP-CA3 model: CA3 response to random perforant path activity. (ii) rMF-CA3 model: CA3 response to random

dentate granule cell activity. (iii) PP-rMF-CA3 model: CA3 response to both random perforant path and random dentate granule cell activity. (iv) PP-DG model: DG

response to random perforant path activity. (v) wcMF-CA3 model: CA3 response to solely correlated dentate granule cell activity, i.e., CA3 response to disynaptic

perforant activity via dentate granule cells. (vi) PP-wcMF-CA3 model: CA3 response due to random perforant path and correlated dentate granule cell activity.

The PP-wcMF-CA3 model caused the CA3 pyramidal cells to
respond with a pattern that closely matched the dentate granule
cell activity (Figure 5A, vi). Previously, the mossy fiber synaptic
weights were multiplied by a factor of 5 to generate significant
CA3 activity. Otherwise, the original mossy fiber synaptic weight
generated almost no CA3 activity. In combination with the
perforant path, the mossy fibers at their original strength were
able to propagate the dentate clusters and cause similar clusters
within CA3. The CA3 clusters were noisier than the dentate
clusters (Figure 5A, iv), and it is likely that the CA3 pattern
is some combination of the patterns caused by the entorhinal
and dentate activity individually. However, the perforant path
projection was able to nonlinearly interact with the mossy fibers
tomarkedly reinforce the dentate input pattern. The combination
of these two systems may serve to enhance and propagate the
patterns generated by the dentate granule cells.

Associational System (PP-wcMF-A-CA3 Model)
The perforant path and mossy fiber inputs together resulted
in the preservation of the dentate pattern within the CA3, at
least along the longitudinal axis. However, the CA3 contains
an extremely strong associational system which could alter the

pattern due to the excitatory feedback that the associational
system provides. The subsequent studies explored the further
transformation of spatio-temporal pattern that resulted when the
associational system was added (the PP-wcMF-A-CA3 model).
Separate simulations were run with the synaptic weight of the
associational system set to 0.1, 0.2, 0.5, 1, 10, and 100% of the
original value.

The strength of the associational system can be predominantly
attributed to the number of inputs that a CA3 pyramidal
cell receives from other CA3 pyramidal cells rather than
the strength of the individual EPSPs. This number lies
within the tens of thousands which is at least one order of
magnitude larger than the numbers of inputs received from
other afferents including the perforant path and mossy fibers.
The average firing rate of the simulated CA3 pyramidal cells
started at 11Hz with no associational system and increased
nonmonotonically toward 70Hz with increasing synaptic
strength (Supplementary Figure 2A), indicating that the CA3
activity was much less sparse than the DG which exhibited an
average firing rate of 0.62Hz. Furthermore, the spatio-temporal
patterns appear to change little at 1, 10, and 100% of the full
strength (Figure 6A, iv–vi), i.e., the spatio-temporal pattern did
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not change substantially. In spatio-temporal pattern and firing
rate, the CA3 approached a particular state asymptotically, which
indicated that the CA3 was approaching a saturated state, i.e., the
system was behaving nonlinearly. It is only at 0.1–0.5% of the
original synaptic weight (Figure 6A, i–iii) that the associational
system appears to significantly affect the spatio-temporal pattern.
At these synaptic weight levels, the transformation of the clusters
can be observed. The diffuse axonal distributions of the CA3
pyramidal cells appears to expand the spatial size of the clusters.
This is also demonstrated by the correlationmaps which show the
increase in the extent of the spatial correlation with the increase
in synaptic weight (Figure 6B).

Regardless of the strength of the associational system, the
original clusters appear to continue to persist at all synaptic
weights. The associational only serves to modify them and add
inter-cluster noise or oscillation. This is notable because the peak
pairwise correlation of the dentate granule cells is very low at
0.02, and the average firing rate is also very sparse at 0.62Hz.
Despite the low correlation and sparse firing conditions, the
dentate gyrus causes clusters in CA3 pyramidal cells that remain
even when the associational system is at full strength.

Longitudinal-Transverse Cross-Sections of
Global Correlation Maps
Previously, the visualization of activity and correlation was
limited to a single spatial dimension, the lag along the
longitudinal axis. However, the CA3 exhibits a transverse
organization that is hidden when only considering the
longitudinal extent. The longitudinal-temporal view of the
correlation maps demonstrated their ability to capture the basic
structure of the features observed in the raster plots, i.e., the
basic cluster shape. The three-dimensional correlation maps
that were computed also incorporate the transverse relation to
correlated activity. Here, we present the longitudinal-transverse
cross-sections of the correlation maps at different time lags to
reveal the temporal evolution of the two-dimensional spatial
structure of correlation. The color maps were thresholded to
30% of the maximum value to emphasize the contributions of
the weaker negative correlations that were present.

Perforant Path and Mossy Fibers
The longitudinal-transverse views of correlation demonstrate
that the spatial structure is predominantly dependent on
the methods used to represent the axonal anatomy. For the
entorhinal projections which were represented using a gaussian
(the PP-CA3 and PP-DG models), the spatial correlation
maintains an elliptical shape with a longitudinal span that
matches the standard deviation of the gaussian (Figure 7, i,iv).
The differences in the temporal dynamics for the entorhinal effect
on dentate granule cells and CA3 pyramidal cells may be due
to differences in biophysics, electrophysiology, and number of
inputs received by the respective populations. In the CA3, a
positive and negative correlation moves across the transverse axis
which represents the transverse propagation of entorhinal input
from the CA3c to the CA3a.

With only mossy fiber input to the CA3, the random
condition (rMF-CA3 model) resulted in a horizontal stripe

spatial correlation that spanned the transverse axis which
represents the thin nature of the mossy fibers (Figure 7, ii).
The spatial correlation faded with time. The weakly correlated
condition (wcMF-CA3 model) largely preserved the correlation
structure of the dentate granule cells with the addition of a
diagonal element which represented the downward turn of the
mossy fibers in the CA3a (Figure 7, iv,v). As the temporal
lag progressed, the shape of the correlation changed before
moving into a weakly negative phase. With the combination
of both perforant path and mossy fiber afferents, the random
condition (the PP-rMF-CA3model) again exhibited a correlation
structure that was similar to the entorhinal case, but the extent
of the spatial correlation began to shrink in the negative phase
(Figure 7, iii). In the weakly correlated condition (the PP-wcMF-
CA3 model), both the perforant path and mossy fiber related
correlation structures appeared superimposed with the diagonal
stripe appearing and a stronger negative phase (Figure 7, vi).

The main observation is that the spatial correlation was
nonmonotonic and was not static in time, i.e., spatial correlation
was dynamic. The spatial correlation can travel based on the
direction of propagation and does not merely oscillate between
positive and negative in a fixed position. Furthermore, the shape
of the correlation changes over time. The correlation is both
displaced and morphed partly due to direction of propagation
and the interactions between different afferents.

Associational System
The longitudinal-transverse view of the correlation reveals the
role of the associational system (PP-wcMF-A-CA3 model) in
increasing the spatial extent of the correlation (Figure 8). The
spatial extent of correlation increased with synaptic weights
from 0.1–0.5% strength to encompass almost the entire CA3
extent (Figure 8, i–iii), though the strongest correlation was still
localized to the same area that was caused by the entorhinal
projection. As the strength of the synaptic weight was increased
to 1–100%, the extent of spatial correlation became reduced to
an area that was smaller than the correlation caused by the
entorhinal cortex (Figure 8, iv–vi). At 1% strength, a spatial
correlation pattern consisting of a positive region surrounded
by negative correlation emerged. The polarity of this pattern
switched between positive-negative and negative-positive over
time. At 10 and 100% strength, the spatial correlation and
its temporal evolution appeared almost identical. A repeating
pattern of positive and negative correlation moves along the
transverse axis over time. These results verify that the extensive
axon distribution of the CA3 pyramidal cells does increase the
area of spatial correlation during the low synaptic strengths.
At higher synaptic strengths, the correlation oscillated between
positive and negative which is consistent with the highly
oscillatory nature of the spiking activity. At 1% strength, a
unique pattern of positive and negative correlation emerged
(Figure 8, iv).

Local Correlation Maps
One issue with the global correlation maps computed previously
is that the anatomy of the various projection changes depending
on the location within the CA3. In particular, the trajectory
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FIGURE 6 | Raster plots and global correlation maps for the results using the PP-wcMF-A-CA3 model, which includes the perforant path, mossy fiber, and

associational projections to CA3. In the subplots, the strength of the associational synapses was modulated as indicated by the subplot titles. All other synapses

remained at their experimentally constrained strength. (A) Raster plots of the CA3 pyramidal cells. (B) Longitudinal-temporal cross-sections of the correlation map at a

transverse lag of 0mm. Red areas represent positive correlation, and blue areas represent negative correlation.

of the mossy fiber changes along the transverse axis, and the
CA3 pyramidal cell axons change substantially depending on
their origin on both the longitudinal and transverse axes. While
the global maps used every neuron pair in its computation of
correlation, local maps were created by only consider neuron
pairs in which at least one neuron of the pair was located in a
particular area within the CA3. The CA3 was divided into nine
sections. Along the longitudinal axis, three overlapping windows
were defined which were centered at 7.5, 5.0, and 2.5mm that
extended 2.5mm above and below the midpoint. Along the
transverse axis, the windows were restricted to the CA3c, CA3b,
and CA3a. This restriction allowed the correlation maps for a
local region in space within the CA3 to be computed, in contrast
to the global map which averages across every neuron (Figure 4).

Considering the local correlation maps when the associational
system was included (PP-wcMF-A-CA3 model), the influence
of the mossy fiber trajectory on the correlation structure along
the transverse axis can be seen when then associational synaptic
weight was reduced to 0.1% (Figure 9, i). Within the CA3c and
CA3b, the correlation is predominantly horizontal while the
correlation becomes diagonal within CA3a. This again highlights
the influence of axonal anatomy on the correlation structure.
It also reveals that the diagonally-organized positive/negative
correlations seen in the global maps were due to the averaging
of the CA3a correlation structure with the correlations from

CA3b and CA3c. The local correlation maps were able to identify
and separate the contributions of the different CA3 divisions
(Figure 9, i) toward the global correlation map (Figure 7, vi).

At 0.02 and 0.05% (Figure 9, ii,iii), the differences in
correlation structure among the different CA3 sections due to
the CA3 axonal anatomy become more apparent. The magnitude
and spatial extent of correlation is largest within the septal
CA3c which becomes smaller toward the temporal CA3a. As
the synaptic weights approach 100% strength, the correlations
become confined to a smaller area.

Influence of Projections on Peak
Correlation
The peak correlations were plotted as a function of synaptic
strength based on the global maps to investigate how the
synaptic strength of the different projections affected maximum
correlation (Figure 10A). For the perforant path and mossy
fibers, the synaptic strength was varied to be 50, 200, 300, 400,
and 500% of the original value. The synaptic weight of the
perforant path (PP-CA3 model) had a nonlinear relation to
the peak correlation which initially decreased until twice the
original strength and then continued to increase (Figure 10A, i).
In general, however, the peak correlation due to the entorhinal
projection to CA3 was very weak and stayed below 0.01.
Under the weakly correlated condition (wcMF-CA3 model),
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FIGURE 7 | Longitudinal-transverse cross-sections of global correlation maps at different temporal lags for simulations involving the perforant path and mossy fibers.

The evolution of spatial correlation across positive time lags are shown. Red areas represent positive correlation, and blue areas represent negative correlation. (i)

PP-CA3 model: CA3 response to random perforant path activity. (ii) rMF-CA3 model: CA3 response to random dentate granule cell activity. (iii) PP-rMF-CA3 model:

CA3 response to both random perforant path and random dentate granule cell activity. (iv) PP-DG model: DG response to random perforant path activity. (v)

wcMF-CA3 model: CA3 response to solely correlated dentate granule cell activity, i.e., CA3 response to disynaptic perforant activity via dentate granule cells. (vi)

PP-wcMF-CA3 model: CA3 response due to random perforant path and correlated dentate granule cell activity.

the mossy fibers generated a monotonic relation between CA3
peak correlation and synaptic strength that decreased toward an
asymptotic value of 0.1 (Figure 10A, ii). However, the random
condition (rMF-CA3model) had an opposite and nonmonotonic
effect, and its peak correlation was three orders of magnitude
lower than for the weakly correlated condition (Figure 10A,
ii). The associational system (PP-wcMF-A-CA3 model) caused
the peak correlation to nonmonotonically decrease toward an
asymptotic value of 0.003 as the synaptic strength increased
(Figure 10A, iii). Though generally decreasing, the correlation
unexpectedly increased at an associational strength of 0.05%
before continuing to decrease.

Using the local correlation maps, the distribution of
correlation along the transverse extent was evaluated for the
feedforward projections (Figure 10B). The correlation caused
by the perforant path (PP-CA3 model) increased from CA3c
to CA3a which is explained by the increase in synaptic density
along the transverse axis (Figure 10B, i). For the wcMF-CA3
model, correlations decreased from CA3c to CA3a (Figure 10B,
ii). This is due to the decrease in density of synapses along the
transverse axis. When both the perforant path and mossy fibers

were connected (PP-wcMF-CA3 model), the correlation due to
the mossy fibers dominated resulting in a decrease in correlation
from CA3c to CA3a (Figure 10B, iii). However, the correlation
was not simply an average between the correlations from the
individual projections. The combined effect was lower than what
an average would predict (Figure 10B, iii).

Including the associational system (PP-wcMF-A-CA3 model),
the trend in peak correlation along both the longitudinal
and transverse axes were measured (Figure 10C). In general,
peak correlation decreased from the dorsal/septal pole to the
ventral/temporal pole and decreased from CA3c to CA3a.

DISCUSSION

In this study, anatomical data was used to constrain a spatially-
dependent connectivity for the excitatory projections to and
within the CA3 subfield of hippocampus including the perforant
path, mossy fibers, and associational system. The present work
represents an extensively detailed connectivity for the entorhinal-
dentate-CA3 network concerning the major excitatory afferents
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FIGURE 8 | Longitudinal-transverse cross-sections of global correlation maps at different temporal lags for simulations using the PP-wcMF-A-CA3 model, which

includes the perforant path, mossy fiber, and associational projections to CA3. In the subplots, the strength of the associational synapses was modulated as indicated

by the subplot titles. All other synapses remained at their experimentally constrained strength. The evolution of spatial correlation across positive time lags are shown.

Red areas represent positive correlation, and blue areas represent negative correlation.

to the dentate gyrus and CA3 and represents connectivity
at the microscale and mesoscale levels. A major outcome in
constraining the connectivity was to include the variations in
the spatial distribution of axons along both the longitudinal
and transverse axes. These axes are sufficient to represent the
full three-dimensional structure of the hippocampus. Theoretical
studies that incorporated two spatial dimensions had constructed
radially symmetric connectivity structures that could easily be
analyzed along a single radial dimension (Rosenbaum et al.,
2016; Senk et al., 2018; Huang et al., 2019). These studies
with symmetric connectivity are able to generate rich sets of
dynamics and lay the foundation for studying two-dimensional
networks. However, the axonal distributions in hippocampus
are far from symmetric. Furthermore, the variations in CA3
properties, e.g., connectivity and dendritic morphology, within
its transverse axis are well-documented and represent important
features that cannot be ignored. Incorporating the details relevant
to both spatial axes resulted in the emergence of a heterogeneous
spatial correlation structure, which has implications toward a
topographic organization of information encoding along both the
longitudinal and transverse axes. Additionally, the correlations
were nonmonotonic in that they would not strictly decrease,
and the correlations were dynamic with changes in their spatial
structure at different time lags.

Perforant Path Generates Lower
Correlation in CA3 Than Dentate Gyrus
Also using the entorhinal-dentate network, a relation between
the size of the axon terminal field and the resulting correlation
was revealed in Hendrickson et al. (2016) and Yu et al.
(2018). The size of the axon terminal field and the size of
the clusters in the population activity were linearly related.
However, the entorhinal-dentate projection is relatively dense
compared to the entorhinal-CA3 projection as dentate granule
cells receive approximately 3,000 entorhinal inputs compared
to CA3 pyramidal cells which can receive between 0 and 1,658
entorhinal inputs (Table 1). The present study revealed that the
perforant path still generates clusters within CA3, though the
correlation is much lower which resulted in noisier clusters
(Figure 5A).

Mossy Fibers Propagate Correlation
Structure From Dentate Gyrus to CA3
A larger unknown was the role of mossy fibers in the
propagation of correlation. The mossy fibers of dentate granule
cells represented the smallest extreme in size as they are
fibers rather than fields. Though the number of mossy fiber
inputs that CA3 pyramidal cells receive is extremely low
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FIGURE 9 | Local correlation maps for simulations using the PP-wcMF-A-CA3 model, which includes the perforant path, mossy fiber, and associational projections to

CA3. In the subplots, the strength of the associational synapses was modulated as indicated by the subplot titles. All other synapses remained at their experimentally

constrained strength. Longitudinal-transverse cross-sections at a temporal lag of 0ms are shown. Nine local correlation maps were computed for each synaptic

strength which represents the local spatio-temporal correlation based on the longitudinal-transverse region as divided into CA3c, CA3b, and CA3a along the

transverse axis (left to right) and roughly into the septal, middle, and temporal sections (top to bottom) along the longitudinal axis. The longitudinal boundaries were

defined with a window size of 5mm and centered at 7.5 (septal), 5.0, and 2.5 (temporal) mm along the longitudinal axis. Red areas represent positive correlation, and

blue areas represent negative correlation.

with a mode of 38 (Supplementary Figure 1), the size of
the EPSP is 3.2mV which is over ten times greater than
the EPSPs caused by the perforant path at 0.2mV. The
analysis of the longitudinal correlation indicated that the
mossy fibers contribute little to the spatial correlation structure
beyond that is already present within dentate granule cells.
In other words, mossy fibers well-preserve and propagate the
correlation structure that its presynaptic population, i.e., dentate
granule cells, already expresses. However, the longitudinal-
transverse analysis of the random condition shows that
mossy fibers do contribute to a spatial correlation along

the transverse axis, albeit a practically negligible correlation
at <0.0001.

The combination of the perforant path and mossy fibers was
shown to enhance the pattern carried in the mossy fibers. The
mossy fibers alone did not generate significant activity within
CA3. Experimental studies support that mossy fibers do not
reliably cause action potentials at low frequencies, which is the
case in these simulations (Urban et al., 2001). However, when
the perforant path was added, the dentate patterns of activity
were reinforced and perpetuated in the CA3 activity (Figure 5A).
The enhancement of the mossy fiber pattern supports the view
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FIGURE 10 | Relations between peak correlation and synaptic strength and location. (A) The effect of synaptic strength on peak correlation from the global maps.

The middle row plot shows the relation under the clustered (solid purple line) and random (dashed black line) conditions of dentate input. (A, i) PP-CA3 model: CA3

response to random perforant path activity. (A, ii) wcMF-CA3 model: CA3 response to solely correlated dentate granule cell activity, i.e., CA3 response to disynaptic

perforant activity via dentate granule cells. (A, iii) PP-wcMF-A-CA3 model: CA3 response due to random perforant path and correlated dentate granule cell activity in

the presence of the associational system. (B) The differences in peak correlation based on transverse position from the global maps. In the bottom plot, the effect of

the combined perforant path and mossy fiber input (solid red line) and the average of the individual effects of the two pathways (dashed black line) are shown. (B, i)

PP-CA3 model: CA3 response to random perforant path activity. (B, ii) wcMF-CA3 model: CA3 response to solely correlated dentate granule cell activity, i.e., CA3

response to disynaptic perforant activity via dentate granule cells. (B, iii) PP-wcMF-CA3 model: CA3 response due to random perforant path and correlated dentate

granule cell activity without the associational system. (C) The variation in peak correlation from the local maps as a function of longitudinal and transverse position are

shown from simulations using the PP-wcMF-A-CA3 model, which includes the perforant path, mossy fiber, and associational projections to CA3. The strength of the

associational system is modulated as indicated by the subplot titles.

of mossy fibers as conditional detonators which may need
concurrent activation of multiple synapses in order to elicit a
spike in the pyramidal cells, e.g., mossy fiber, perforant path,
associational (Henze et al., 2002).

Associational System Preserves and
Modulates Mossy Fiber Induced Patterns
However, it was not known how much of the dentate
pattern would persist within CA3 after the associational system
was included. The effect of a recurrent excitatory circuit in
neural systems has commonly been shown to generate highly
synchronized and oscillatory behavior (Le Duigou et al., 2014;
Hendrickson et al., 2015). This was observed in the CA3
associational system due to the highly dense nature of the
projection in which a CA3 pyramidal cell can receive between
18,000 and 29,000 inputs from other CA3 pyramidal cells.
With synaptic weights at 0.1–0.5% of the original strength, the
CA3 did not enter a synchronous, oscillatory state (Figure 6A),

and an increase in the size of spatial correlation was observed
(Figures 8, 9). This indicates that weak excitatory recurrent
circuits can expand the extent of spatial correlation. One of
the interesting findings in the associational results was that the
dentate-based clusters persisted within all synaptic weight values,
i.e., even within the synchronized, oscillatory state. This finding
further supports that the dentate activity acts as a major driver of
the spatio-temporal patterns generated by the CA3.

Correlation and Functional Gradients
Along Both Longitudinal and Transverse
Axes Within CA3
The topographic organization of connectivity resulted in
heterogeneous correlation structures that varied along the
longitudinal and transverse axes within the CA3. First, there
was a clear trend toward higher correlations in the dorsal/septal
region of the CA3 vs. ventral/temporal region. Second,
correlations were higher in the proximal/CA3c region vs. the
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distal/CA3a region. These ultimately combine to indicate that
peak correlation decreases from dorsal-proximal CA3 to the
ventral-distal CA3. Additionally, the spatial extent of correlation
followed the same gradient with a larger size of spatial
correlation dorsally/proximally and a smaller size of spatial
correlation ventrally/distally.

These correlation gradients may functionally indicate the
extent to which information is integrated by a CA3 pyramidal
cell. With larger sizes in correlation, a CA3 pyramidal
cell is integrating information across more neurons, which
may result in a CA3 organization with more “general”
neurons dorsally/proximally and more specialized neurons
ventrally/distally. Another interpretation is that neuronal activity
may bemore similar to one another in the dorsal/proximal region
vs. ventral/distal region. Experimental work had discovered that
a positive relation between pairwise spike correlation and overlap
of place fields within CA3 and CA1 (Hampson et al., 1996).
Under the theory of pattern separation and pattern completion
(Yassa and Stark, 2011), this suggests that pattern completion as a
population may be stronger where correlation between neurons
is higher.

A longitudinal gradient in function has been reported
experimentally (Small, 2002; Strange et al., 2014;
Papaleonidopoulos et al., 2017), and such a relation between
axonal anatomy and the encoding of spatial information had
been previously explored with the same entorhinal-dentate
network used in the present study (Yu et al., 2019). A transverse
gradient has also been reported within CA3 with respect to
pattern completion (Lee et al., 2015).

Validation
As a platform for investigating the system properties of
hippocampus, it is important to validate the model at higher
levels, e.g., population and network levels. Lower level validation
is already performed in constraining the parameters for neuron
electrophysiology and synaptic conductance waveforms. Some
higher-level validation has been performed using place fields and
spatial information (Yu et al., 2019), and local field potential
generation (Bingham et al., 2018). The present CA3 network
lacks inhibition and is comparable to a CA3 for which a
GABAA blocker has been applied. One experimental study
observed that the power of CA3 population oscillations at
210Hz increased with the application of the GABAA blocker
bicuculline. This increase is also observed with the simulations
(Supplementary Figure 2C). Pairwise spike correlation values
that have been reported in experimental studies are vary between
0.005 and 0.025 (Hampson et al., 1996; Dombeck et al., 2010).
The peak correlation values from the simulations are well within
these ranges. Furthermore, other studies have reported a general
decay in pairwise correlation as a function of distance between
neuron pairs (Hirase et al., 2001; Dombeck et al., 2010). This
relation is present in other cortical areas as well (Rosenbaum
et al., 2016; Safavi et al., 2018) which supports the notion that
such correlations may be present in other brain areas.

Future Work
The CA3 network in the study excluded any forms of extrinsic
inhibition due to interneurons as the role of the afferent
excitatory projections were not yet known. However, the present
results establish the groundwork upon which the contributions of
the various interneuron types in further transforming the spatio-
temporal patterns of spiking and correlation can be investigated.

Additionally, the simulations used an input paradigm
designed to contain zero spatial or temporal correlations to
reveal how the anatomically-constrained connectivity of the
network may imbue the population activity with correlation.
Though the input firing rates may represent a resting state
type of network, the input was not physiologically. Later work
will aim to behaviorally-driven input such as the grid cells in
the medial entorhinal cortex to investigate how physiologically-
relevant correlation in the input may be processed by CA3,
and grid cell input had previously been used to investigate the
entorhinal-dentate network version of themodel (Yu et al., 2019).
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