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As one common disease causing young people to die suddenly due to cardiac arrest,
arrhythmogenic right ventricular cardiomyopathy (ARVC) is a disorder of heart muscle
whose progression covers one complicated gene interaction network that influence the
diagnosis and prognosis of it. In our research, differentially expressed genes (DEGs)
were screened, and we established a weighted gene coexpression network analysis
(WGCNA) and gene set net correlations analysis (GSNCA) for identifying crucial genes
as well as pathways related to ARVC pathogenic mechanism (n = 12). In the research,
the results demonstrated that there were 619 DEGs in total between non-failing donor
myocardial samples and ARVC tissues (FDR < 0.05). WGCNA analysis identified the two
gene modules (brown and turquoise) as being most significantly associated with ARVC
state. Then the ARVC-related four key biological pathways (cytokine–cytokine receptor
interaction, chemokine signaling pathway, neuroactive ligand receptor interaction, and
JAK-STAT signaling pathway) and four hub genes (CXCL2, TNFRSF11B, LIFR, and
C5AR1) in ARVC samples were further identified by GSNCA method. Finally, we used
t-test and receiver operating characteristic (ROC) curves for validating hub genes, results
showed significant differences in t-test and their AUC areas all greater than 0.8. Together,
these results revealed that the new four hub genes as well as key pathways that might be
involved into ARVC diagnosis. Even though further experimental validation is required for
the implication by association, our findings demonstrate that the computational methods
based on systems biology might complement the traditional gene-wide approaches, as
such, might offer a new insight in therapeutic intervention within rare diseases of people
like ARVC.

Keywords: arrhythmogenic right ventricular cardiomyopathy, weighted gene coexpression network analysis,
biomarker, differentially expressed genes, gene set net correlations analysis

INTRODUCTION

As one inherited cardiomyopathy involved into the right ventricle primarily, arrhythmogenic right
ventricular cardiomyopathy (ARVC) is characterized by cardiomyocytes’ fibrofatty replacement
(Calkins et al., 2017; Corrado et al., 2017). The prevalence of the general population is estimated to
be 1:5000 to 1:1000 (Rampazzo et al., 1994; Peters et al., 2004). ARVC is a common cause resulting in
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young people’s sudden cardiac death (SCD) (Bagnall et al., 2016;
Finocchiaro et al., 2016), and SCD may be the first manifestation
of the disease (Dalal et al., 2005; Gupta et al., 2017). The detailed
clinical features of ARVC were first described in 1982 (Marcus
et al., 1982), followed by reports showing that pathogenic genetic
mutations occurred in more than 60% of patients (Bhonsale et al.,
2015), and high genetic heterogeneity and dominant inheritance
most commonly causes the genetic etiology to patients with
ARVC. Currently, the most effective treatment of ARVC is
implantable cardioverter defibrillator (ICD), and early diagnosis
and detection is needed. Hundred of genes were estimated to be
involved into ARVC molecular mechanism, leading to a more
complex ARVC diagnosis and prognosis. However, molecular
genetic diagnostic yield is known to be highly variable, ARVC-
related targeted genes is still unclear (Bhonsale et al., 2015).
For obtaining a better understanding of complicated mechanism
and exploring potential ARVC eigengenes, we used the weighted
gene coexpression network analysis (WGCNA) approach for the
research analysis.

At present, gene expression profiles have been utilized for
identifying genes related to diagnosis or progression in the
cardiovascular field (Boileau et al., 2018; Molina et al., 2018;
Theriault et al., 2018). However, while genes that have similar
patterns of expression might be related in a functional way,
most studies are only interested in screening for differentially
expressed genes (DEGs) and ignoring highly interconnected
genes (Tavazoie et al., 1999). WGCNA is one system biology
approach used to describe pattern of correlation between genes
in RNA sequencing data or microarray. It is one algorithm to
discover highly related gene clusters (modules) and identifying
phenotypically related modules or gene clusters (Langfelder and
Horvath, 2008). At present, many studies in the cardiovascular
field have revealed genes related to the phenotype and
differentiation stages by the method of WGCNA (Liu et al., 2017;
Wang T. et al., 2017; Tang Y. et al., 2018). For instance, ZEB1
was found to be essential for early cardiomyocyte differentiation
(?). FKBP11 could act as one critical regulator within acute aortic
dissection (Wang T. et al., 2017). In the research, we try to screen
the DEGs, and establish the coexpression network to find the
key biological pathways and hub genes that are involved within
ARVC state.

MATERIALS AND APPROACHES

Data Gathering
We downloaded the gene expression profile in the database,
Gene Expression Omnibus (GEO)1. The dataset GSE29819 from
an Affymetrix Human Genome U133 Plus 2.0 Array [transcript
(gene) version] (Affymetrix, Santa Clara, CA, United States) was
utilized in this study. This dataset contains 6 ARVC specimens
derived from heart transplantation candidates were compared
with six non-failing donor hearts (NF) which could not be
transplanted due to technical reason. From the hearts, both right

1http://www.ncbi.nlm.nih.gov/geo/

ventricle (RV) and left ventricle (LV) myocardial samples were
analyzed using Affymetrix HG-U133 Plus 2.0 arrays.

Research Design and Data
Preprocessing
One flow diagram (Figure 1) shows the research design. We
calculated the raw expression data using the preprocessing steps
as follows: robust multichip average background correction, log2
transformation, quantile normalization as well as median polish
algorithm summarization utilizing “affy” R package (Gautier
et al., 2004). The Affymetrix annotation files annotated the
probes. Sample clustering was used to assess the quality of
microarray in accordance with distance between various samples
within Pearson’s correlation matrices. All samples from the data
set were not removed in the subsequent analysis (Figure 2A).

DEGs Screening and Principal
Component Analysis
We use the “limma” R package (Ritchie et al., 2015) for
screening DEGs between ARVC samples and non-failing donor
myocardial samples. The false discovery rate (FDR) < 0.05 and
|log2fold change (log2

FC)|>1 were selected to be cutoff criteria
(Figure 2B). A heatmap was plotted using the pheatmap package
(Figure 3A). Two features were extracted from the genes of
each group using an unsupervised principal component analysis
(PCA) method (Figure 3B).

Construction of Coexpression Network
First of all, DEGs expression data profile was tested for
confirming that they meet the subsequent analysis requirements.
Secondly, package of “WGCNA” within R was used for
constructing DEGs coexpression network (Horvath and Dong,
2008; Mason et al., 2009). WGCNA is one statistical method

FIGURE 1 | Study flow diagram. Data preparation, processing, and analysis
are shown in the flow diagram.

Frontiers in Physiology | www.frontiersin.org 2 December 2018 | Volume 9 | Article 1778

http://www.ncbi.nlm.nih.gov/geo/
https://www.frontiersin.org/journals/Physiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/Physiology#articles


fphys-09-01778 December 4, 2018 Time: 8:44 # 3

Chen et al. ARVC by Coexpression Analysis

FIGURE 2 | Clustering dendrogram and the clinical traits, as well as
identification of differentially expressed genes (DEGs) in ARVC tissues.
(A) Clustering dendrogram and clinical traits of GSE29819. The clustering was
on the basis of the expression data of DEGs between ARVC samples and
non-failing donor myocardial samples. The red color represents the right
ventricle and men. The color intensity was in proportion to the older age.
(B) The volcano plot of all DEGs.

which sets up gene sets (modules) from gene expression data
that are observed using unsupervised clustering, briefly, it assigns
a connection weight between pairs of genes in network on
the basis of one scale-free topology (SFT) criterion as well as
tries to recognize related modules using one soft threshold to
correlations between pairs of genes in one network, and thus
does not rely on a priori defined gene sets. Within one biological
network that has an SFT, gene relationship distribution adheres
to the law of power decay, for example, the genes that have
the maximum number of connections appears at the minimum
frequency (van Noort et al., 2004; Barabasi, 2009). Function
firstly calculates one pairwise correlation matrix for all gene
sets, then, it computes a nearby matrix by elevating matrix to
one soft threshold power (β). Pearson’s correlation matrix was
conducted for each pairwise gene and used the power function
amn = |cmn| β (cmn = Pearson’s correlation between gene n and
gene m; amn = adjacency between gene n and gene m) was
used. The β utilized for transforming similarity matrix is chosen
when resultant network approximates one scale-free topology
the best. The transformation process of correlation matrix to

approximate architecture of scale-free network starts by elevating
matrix to one range of β (such as β = 1–20 in Figure 4A) for
producing one series of adjacency matrices. The connectivity
of genes could be defined as significance of one specific gene
in one network of coexpression and is computed only by
summing all rows within one adjacency matrix. For selecting
the most suitable β value, linear model fit (R2) between log(k)
and log(p(k)) is computed from all adjacency matrices, where
k = connectivity, p(k) proportion of genes with connectivity k
(Figures 4A,D). Perfect agreement with SFT could generated
an R2 = 1, nevertheless, if the SFT fit index for reference
data set reached above-0.8 values for the lower power (<30)
(Langfelder and Horvath, 2017), as power of threshold defined in.
For example, within WGCNA signed, β values which generated
one R2 > 0.8 is regarded to be one fit acceptable for SFT, and
usually chose the one which first approached the highest value.
Fitting to a power-law has been a frequent strategy of WGCNA
in previous researches (Sikri et al., 2018; Tang J. et al., 2018;
Yuan et al., 2018; Zhou et al., 2018), and is also the strategy
followed in this study. The value of R2 was 0.89 in this study
(Figure 4D). Therefore, in this study, we chose the beta value
(β = 7, Figure 4A) when we first approached the highest value
to construct a gene network. WGCNA is shown to be very
robust to β choice in terms of previously elucidated biological
information. Then, adjacency was transformed to the topological
overlap matrix (TOM) for measuring connectivity of network of
the genes, which was defined to be sum of the adjacency of it
and any other gene used for generation of networks (Yip and
Horvath, 2007). In accordance with dissimilarity measure based
on TOM within one 30 of smallest size (gene group) for genes
dendrograms, a mean linkage hierarchical clustering was carried
out to identify any gene that had the similar expression profile in
gene modules.

Identification of Important Clinical
Modules
Two methods were utilized for identifying ARVC state-
related modules. Firstly, we defined gene significance (GS) to
be log10 transformation of P-value within linear regression
between ARVC state and gene expression. Additionally, module
significance (MS) was defined to be mean GS for each gene within
one module (Figure 5C). Generally, module that had absolute MS
and ranked the first or second in the whole modules selected was
regarded to be associated with clinical trait. Module eigengenes
(MEs) were generally supposed to be the primary component
within analysis of principal components for all gene modules, and
each gene’s patterns of expression could be summarized in one
singe characteristic expression profile in one given module. In the
present study, we computed correlation between clinical trait and
MEs for identifying related modules (Figure 5B).

Differential Coexpression Analysis
The gene set net correlations analysis (GSNCA) (Rahmatallah
et al., 2014) upon resultant modules was conducted for
identifying the module which is differentially coexpressed
between two ARVC sample and non-failing donor myocardial
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FIGURE 3 | (A) Heatmap showing significantly differentially expressed protein-coding genes of ARVC and non-failing donor myocardial tissues. In the heatmap,
samples are sorted by columns, and genes by rows. Cyan square represented Control group, and red square represented ARVC group. (B) PCA scores trajectory
plots showing obvious differences resulting from the ARVC and Control groups. Cyan point, control group; red point, ARVC group.

samples. The questions in this analysis test were gene sets’
identification expressed with various distributions, variances,
means, or structure of correlation between two conditions. On
the significance level of 0.05, pathways shows one statistical
evidence that they are differentially coexpressed. GSNCA assigns
one normalized eigenvector version of correlation matrix
corresponding to biggest eigenvalue as one weight vector for
genes within gene set under the two conditions. For ensuring
appropriate indexing within modules by gene name within
all significant pathways in this study, genes’ lists within each
pathway are supposed to consist of only the available genes within
the most relevant modules (brown and turquoise modules in
WGCNA results). Any gene with not special mapping to the
identifiers of gene symbol or does not exist within data set
of the modules was abandoned from pathways. This ensures
appropriate gene indexing within modules by gene name within
all significant pathways. At last, we kept pathways only with
10 ≤ n ≤ 500 where n denotes the number of genes that
remain within pathways after filtering procedures. Additionally,
the GSNCA approach is part of Bioconductor GSAR package
(Rahmatallah et al., 2017b).

The most highly correlated pathways in both ARVC and
control samples, recognized utilizing structure of minimum
spanning tree-2 (MST-2) carried out within package GSAR’s
plotMST2.pathway function. One correlation network’s MST2 is
formed through combination of the first and second MSTs as well
as highlights minimum essential link set (i.e., highest correlation)
between genes within coexpression network (Rahmatallah et al.,
2014). The MST is defined to be acyclic tree that has shortest
link which connects each gene within coexpression network.
Within structure of MST2, genes with degree of highly associated
are put into central position. The colors of nodes suggest

weight factor (w)’s value assigned to all genes for reflecting
the mean correlation with any other gene within gene set
coexpression.

Diagnostic Effectiveness Evaluation
Receiver operating characteristic (ROC) curves were set up for
assessing areas under the curves (AUCs) that had 95% of CI.
Results of AUC are regarded excellent for the values of AUC
ranging between 0.9 and 1, good for the values of AUC ranging
between 0.8 and 0.9 (El Khouli et al., 2009). Thus, when hub
gene’s AUC value > 0.8, it was considered to have good specificity
and sensitivity to distinguish between ARVC and healthy control
group. We used this as one of the indicator for diagnostic
effectiveness evaluation by maximizing Youden’s index, plotted
ROC curve, and calculated the AUC with “ROCR” package (Sing
et al., 2005). Then, comparative analysis on hub genes within
two groups was analyzed by independent sample t-test at the
significance level of 0.05.

RESULTS

Identification of DEGs in ARVC Tissues
Figure 1 shows the research workflow. We obtained gene
expression matrices from the training set GSE29819, including 6
ARVC specimens derived from heart transplantation candidates
and 6 non-failing myocardial donor hearts myocardial samples
after preprocessing of data and assessment of quality. Genes that
have one stable expression across both groups were abandoned,
as they provide little or no distinction. From ∼21,755 genes
within dataset, a total of 619 DEGs (263 upregulated and 356
down-regulated) were selected for network construction under
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FIGURE 4 | Determination of soft-threshold power in WGCNA. The scale-free topology index and the mean connectivity for each power value between 1 and 20 are
shown in (A,B) panels, respectively. The histogram of connectivity distribution and the scale-free topology are shown in (C,D) panels, respectively.

threshold of FDR < 0.05 and |log2FC|>1 (Supplementary
Table S1). Figure 2B shows each gene’s volcano plot. A heatmap
showing significantly DEGs can be found in Figure 3A. The score
plots of PCA disclosed one tendency of intragroup aggregation
and separation after unit variance scaling, normalization, and
alignment of data (Figure 3B). The PCA score trajectory plots
of ARVC did not substantially overlap with the profiles of
the control group, indicating that the heatmap visualization
and parallel PCA score trajectory plots both showed apparent
differences resulting from the ARVC and control group.

Weighted Coexpression Network
Construction
Twelve ARVC samples that had clinical data were incorporated
into coexpression analyses (Figure 2A). We used the “WGCNA”
R package for putting DEGs that had similar patterns of
expression to modules by the average linking clustering. In the
present research, power of β = 7 (scale-free R2 = 0.89) was chosen
to be soft-threshold (Figure 4).

Then, the hierarchical clustering tree for 619 DEGs was
determined by conducting hierarchical clustering for dissTOM
(Figure 5A), and we determined the most significant correlation

modules with clinical features. Finally, a total of three modules
related to the ARVC status were identified (Figure 5A and
Supplementary Table S2), with the size of modules between
87 genes (brown modules) to 365 genes (turquoise modules).
Additionally, 2 genes (L3MBTL4 and EPN2) were assigned into
the gray module (insignificant module), so they were omitted in
subsequent analyses.

Two Coexpression Modules Are Highly
Correlated With ARVC State
Correlation between ARVC state and level of expression of
the module eigengenes was calculated for identifying the most
remarkable correlations. The highest positive correlation within
module-feature relation was discovered between ARVC state and
brown module (r = 0.87, p = 5e−08; Figure 5B), and the highest
negative correlation between turquoise modules and ARVC state
(r = −0.94, p2 = 7e−12; Figure 5B). Brown module includes 87
genes and the turquoise module includes 365 genes. MS between
modules was also compared (Figure 5C), the result demonstrated
that genes in brown or turquoise modules had highest positive or
negative correlation with to ARVC status.

Frontiers in Physiology | www.frontiersin.org 5 December 2018 | Volume 9 | Article 1778

https://www.frontiersin.org/journals/Physiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/Physiology#articles


fphys-09-01778 December 4, 2018 Time: 8:44 # 6

Chen et al. ARVC by Coexpression Analysis

FIGURE 5 | Identification of modules related to the clinical traits of the ARVC. (A) Dendrogram of all differentially expressed genes clustered on the basis of one
dissimilarity measure (1-TOM). (B) Heatmap of the correlation between module eigengenes and ARVC clinical traits. (C) Distribution of the mean gene significance
and errors in the modules related to ARVC state. Barplot of module significance (MS) defined as the average gene significance across all genes in modules.

It was found that genes in modules were related to
representative eigengene of it with various levels of module
membership (MM), quantified by the module eigengene-based
connectivity. For identifying the genes related to ARVC state,
we defined measure of gene significance (GS) to be one
Pearson gene expression correlation with ARVC state. The results
showed one marked Pearson correlation between GS and MM
values within brown module (correlation = 0.88, FDR corrected
p-value = 3.2e−29, Figure 6A) as well as within turquoise
module (correlation = 0.9, FDR corrected p-value = 5.8e−133,
Figure 6B). The genes that were markedly related to ARVC state
were usually the most important module members related to
ARVC state. The input data of the WGCNA method in this study
have been filtered for gene expression difference analysis using
package Limma (Ritchie et al., 2015). The cut-off criteria are
FDR < 0.05 and | log2

FC| > 1. Therefore, the genes contained
in the brown and turquoise modules satisfy the above conditions.

Differential Coexpression Analysis
Reveals Key Pathways and Hub Genes
To find out the vital pathways and hub genes contained in
the coexpression modules, we used the function GSNCA test
(Rahmatallah et al., 2014) of GSAR package (Rahmatallah et al.,
2017b). We found that GSNCA identified four key pathways

and their hub genes (p < 0.05, Supplementary Table S3).
The cytokine-cytokine receptor interaction, chemokine signaling
pathway, JAK-STAT signaling pathway, and neuroactive ligand–
receptor interaction were identified in the ARVC samples as
key pathways (Figure 7). The MST2 plot for ARVC samples
demonstrates that CXCL2 is comparatively highly associated
between with lots of other genes within the chemokine
signaling pathway (Figure 7A). The same are true for the
TNFRSF11B, LIFR, and C5AR1 gene in the cytokine–cytokine
receptor interaction pathway (Figure 7B), JAK-STAT signaling
pathway (Figure 7C), as well as the neuroactive ligand–receptor
interaction (Figure 7D), respectively. The w-values of them are
decreased within control samples. The pattern may indicate
regulatory roles of these genes in ARVC samples that are lost
in the control samples. Even though the four genes lost the
high w-values within control samples, these genes were still close
to each other within structure of MST2 in control group, this
indicates that correlation of them with other genes was not
entirely lost, instead, it was reduced.

Key Pathways and Hub Genes
Identification and Validation
As we described earlier, after combined WGCNA and GSNCA
test analysis filtering, the four key pathways and four genes
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FIGURE 6 | Scatterplots showing gene significance versus module membership for the brown (A) and turquoise (B) modules.

(CXCL2, TNFRSF11B, LIFR, and C5AR1) in ARVC samples were
identified, and they were entered t-tests subsequently, and their
results showed significant differences (all p < 0.05, Figure 8A)
between two groups. The AUC areas of the above genes were
all greater than 0.8 (Figure 8B), and the four genes with a high
correlation (|r| > 0.6, Table 1), suggesting that they might be good
diagnostic biomarkers of ARVC.

DISCUSSION

Sudden cardiac arrest might be ARVC’s first manifestation. It
has a variable clinical course and is biologically heterogeneous.
Therefore, understanding the molecular mechanisms of ARVC is
crucial for early diagnosis, which helps make effective therapy of
ICD. Endomyocardial biopsy is invasive, so obtaining myocardial
tissue from ARVC patients is very difficult in clinical practice.
In the research, we explored GSE29819 gene expression profile
with 12 ARVC specimens (including all heart right and left
ventricular myocardial samples) and 12 non-failing donor
myocardial samples for exploring ARVC molecular mechanism
and discover four hub genes and key pathways, which may be
meaningful candidate therapeutic targets based on bioinformatic
analysis.

As far as we know, this is the first attempt to combine
WGCNA with GSNCA methods for identifying hub genes to
be biomarkers able to distinguish ARVC from the non-failing
control group. In this study, the results showed that there were a
total of 619 DEGs (263 upregulated genes and 356 downregulated
genes) between non-failing donor myocardial samples and ARVC
tissues (FDR < 0.05). The PCA score trajectory plots showed
apparent differences resulting from ARVC and the control
group. WGCNA analysis used coexpression patterns to identify

the two gene modules (brown and turquoise) as being most
significantly associated with ARVC state. The sample traits
obtained from our raw data were ARVC status, gender and
ventricle, follow by the gene modules (brown and turquoise)
related to ARVC status were further analyzed according to
the prompts in Figure 5. Then the ARVC-related four key
biological pathways (cytokine–cytokine receptor interaction,
chemokine signaling pathway, JAK-STAT signaling pathway, and
neuroactive ligand–receptor interaction) and four hub genes
(CXCL2, TNFRSF11B, LIFR, and C5AR1) in ARVC samples were
identified by GSNCA method. Together, the results suggest that
the new candidate genes from modules might be added on
biomarker list of ARVC state that is known at present, and
hence suggest that the genes and their pathways require further
analysis.

This study used two bioinformatics analysis methods,
WGCNA and GSNCA. WGCNA is a system biology method
that constructs a coexpression network on the basis of
expression profiles’ similarity within a sample, providing global
interpretation of gene expression information (Langfelder and
Horvath, 2008). The WGCNA algorithm was utilized for
identifying the involved biological pathways, disease-related
genes, and therapeutic targets, like a familial combination of
hyperlipidemia (Plaisier et al., 2009), pemphigus and systemic
lupus erythematosus (Sezin et al., 2017), and rheumatoid arthritis
(Sumitomo et al., 2018). Briefly, WGCNA is designed to uncover
highly correlated gene modules and to relate gene clusters to
one another and to sample traits. In recent studies, it has been
verified in previous sample characteristics such as disease status
(Yan et al., 2018), gender (Fatima et al., 2018), age (Maffei
et al., 2017), and BMI (Wang W. et al., 2017). It was also
proved that it was a reliable and promising instrument for
cardiovascular diseases’ clinical diagnosis (Chen et al., 2016)
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FIGURE 7 | MST2s plot of the four key pathways correlation network. This plot was produced by package GSAR to illustrate the most highly correlated pathways
and their hub genes of the two modules in both control samples and ARVC samples. Four ARVC state related biological pathways were identified by GSNCA (A–D).

and cardiomyocyte differentiation (Liu et al., 2017). The second
method is GSNCA. Currently, although GSA methods have
been published in some literature, their test hypotheses have
not been fully studied. For instance, Gene Set Coexpression
Analysis (GSCA) aggregates differences of pairwise correlations
between the two conditions coexpression (Choi and Kendziorski,
2009), while other approaches, like differentially coexpressed
gene sets (dCoxS), aggregate differences within relative entropy
(Cho et al., 2009). In this study, package GSAR (Rahmatallah
et al., 2017b) offers one set of approaches to testing multivariate
null hypothesis against particular alternatives, which including
the net correlation structure (function GSNCA test). GSNCA
test is a method for analysis on differentially coexpressed
pathways, and evaluates significance of genes within pathways
as well. It examines the concordance and regulatory relations
between expressions of genes vary between the phenotypes based
on unchanged net correlation structure (Rahmatallah et al.,
2014). Other approaches, like Coexpression Graph Analysis

(CoGA) identify co-expressed gene sets through testing spectral
distribution equality, it compares two networks’ structural
property by using Jensen-Shannon divergence to be one measure
of distance between the distribution of graphs, and establishes
one full network from the pairwise correlation coexpression
(Santos Sde et al., 2015; de Assis et al., 2018). However, in
GSNCA, differences do not exist within vectors of gene weight
between the two conditions, and MSTs of correlation network
are used for examining changes of correlation structure of one
gene set between the two conditions, and the most influential
(hub) genes are highlighted (Rahmatallah et al., 2014). This
is the methodological basis used in this study (Figure 7) and
previous researches (Mousavian et al., 2017; Rahmatallah et al.,
2017a).

The balance between apoptotic and protective mechanism
of cardiomyocytes can be decided by some signaling pathway
networks. According to the GSNCA analysis on the genes
within two modules (Figure 7), we found that the ARVC state

Frontiers in Physiology | www.frontiersin.org 8 December 2018 | Volume 9 | Article 1778

https://www.frontiersin.org/journals/Physiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/Physiology#articles


fphys-09-01778 December 4, 2018 Time: 8:44 # 9

Chen et al. ARVC by Coexpression Analysis

FIGURE 8 | Hub genes validation. (A) Violin plot of the four correlated hub genes (C5AR1, CXCL2, LIFR, and TNFRSF11B) expression between ARVC group and
control group. The violin plot showed the mean value, median value (while circle and black horizontal band, respectively), and range (black thin vertical line). The
curve on the sides provided the approximate frequency distribution at each expression level. The p-values of the t-test were marked on the black lines. (B) ROC
curves and AUC areas were used for evaluating the efficiency of diagnosis of these four hub genes (C5AR1, CXCL2, LIFR, and TNFRSF11B). They all be with high
AUC areas (AUC > 0.8).

TABLE 1 | Potential hub genes related to the ARVC state.

Genes Aliases DEG analysis Coexpression analysis

FC FDR p. weighted cor. weighted

1 CXCL2 Macrophage Inflammatory Protein 2-Alpha −2.84 2.24e−04 9.91e−05 −0.71

2 TNFRSF11B Tumor Necrosis Factor Receptor Superfamily, Member 11b −4.23 7.47e−04 6.14e−04 −0.65

3 LIFR Leukemia Inhibitory Factor Receptor Alpha 2.80 4.00e−07 9.05e−09 0.89

4 C5AR1 Complement Component 5a Receptor 1 −2.79 8.63e−05 2.56e−05 −0.75

The cor. weighted is the Pearson’s correlation of the Module Membership association. The highest correlations should be with the ARVC state (|r|= 0.6 to 0.8) based on
previous study (Juniper et al., 2000).

related biological pathways were significantly enriched in the
cytokine–cytokine receptor interaction, chemokine signaling
pathway, JAK-STAT signaling pathway, and neuroactive
ligand–receptor interaction pathway. An amount of research
mentioned the close relation between the above processes and
cardiomyopathy or cardiovascular disease. At present, the
first three pathways have been confirmed in other non-ARVC
cardiomyopathy. Chemokine receptors and chemokines control
leukocyte migration in process of inflammation and they
are involved into heart inflammation and dysfunction, and
cardiac myocytes themselves also can produce inflammatory
mediators (Nian et al., 2004; Rohini et al., 2010). Some studies
reported that the genetic variants of chemokine receptors and
chemokines are weakly but importantly related to chagasic
cardiomyopathy development (Cunha-Neto et al., 2009; Florez
et al., 2012), an inflammatory dilated cardiomyopathy that
is. Additionally, Pilichou et al. (2009) demonstrated that the
necrosis of myocytes is principal initiator of the myocardial
damage within ARVC, which includes one inflammatory

response as well as massive calcification in myocardium,
followed by repair of injury that has replacement of fibrous
tissue, and the myocardial atrophy. Asimaki et al. (2011) also
reported that some cytokines from the myocardium might
be involved in the destruction of desmosomal proteins and
arrhythmias in ARVC. These studies demonstrate the relevance
of chemokines and cytokine receptors in cardiomyopathy,
and increase the reliability of this study with regard to
the frequent manifestations of differential enrichment in
chemokine and inflammatory factor pathways. In addition,
previous study has shown that alteration within Janus kinase
(JAK)-signal transducer and activator of transcription (STAT)
signaling within patients suffering from end stage dilated
cardiomyopathy (Podewski et al., 2003). JAK/STAT pathway can
effect cardioprotective or proapoptotic gene expression (Gross
et al., 2006). Recent studies have shown that cardiac fibrosis
and heart failure can be attenuated by JAK/STAT signaling
pathway (Al-Rasheed et al., 2016; Liu et al., 2018). The above
studies link the JAK/STAT pathway to the cardiomyopathy.
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Therefore, early attention to the balance of relevant pathways
can improve long-run prognosis of people suffering from
cardiomyopathy, including those with ARVC. Although the
correlation between the last neuroactive ligand receptor
interaction pathway and cardiovascular disease has not been
reported, this pathway may be a new idea for further study of
the ARVC mechanism.

In addition, the four hub genes (CXCL2, TNFRSF11B, LIFR,
and C5AR1) with a high correlations (|r| > 0.6, Table 1) were
associated with these above four vital signaling pathways in
ARVC samples (Figure 7). CXCL2 (also known as macrophage
inflammatory protein, MIP-2) is part of one chemokine
superfamily encoding secreted proteins that are involved into
inflammatory and immunoregulatory process, and released by
various cells to respond toward injury or infection, and was
detected originally within the macrophages to one part of
the responses toward the inflammatory stimuli (Charo and
Ransohoff, 2006). Recent genome-wide association studies have
recognized CXCL2-related loci related to coronary artery disease
risk (McPherson and Davies, 2012). Its role in the cardiovascular
field is mostly related to inflammation, it suggested an
abnormality in the inflammatory state of ARVC patients, which
was also consistently with the reported that patchy inflammatory
infiltrates in the right ventricular using autopsy and myocardial
biopsy (Campuzano et al., 2012). TNFRSF11B is member 11B,
tumor necrosis factor receptor superfamily, expressed within
lymphoid cells as well as up-regulated by the stimulation of
CD40, involved within the osteoclastogenesis, it is recognized
as one candidate cardiovascular disease gene by human protein
atlas, and it might also work in arterial calcification prevention
(Harper et al., 2016). C5AR1 (Complement C5a Receptor 1)
is an important member of the complement system. Studies
reported that modulation of complement system could serve
as one target for arrhythmogenic cardiomyopathy treatment
(Mavroidis et al., 2015), and its signaling pathway upon blood
macrophages/monocytes plays one role of pathology in Ang II-
induced cardiac remodeling and inflammation (Zhang et al.,
2014). LIFR gene encodes one protein belonging to the family
of type I cytokine receptors. Previous studies have reported
that LIFR gene is one of the important differential genes in
the JAK-STAT signaling pathway in people suffering from end
stage dilated cardiomyopathy (Podewski et al., 2003). LIF and
its receptor also involved in modulating endoderm of embryoid
bodies to promote cardiomyogenesis (Bader et al., 2001).
Therefore, we suspect that the performance of myocardial cell
electrophysiological disorders and cardiac remodeling deficiency
in ARVC patients may be related to the above genes. Although
the role in ARVC studies of the above hub genes had not yet been
demonstrated, their necessary functions and related pathways
in the cardiovascular field was emphasized in the results of
this study and provided further insights into exploration in the
ARVC field. However, further experimental work is required
for establishing which candidate discussed above predominantly
contributes to ARVC state.

Similarly, our study also has some limitations. Firstly, our
conclusions are capable of being applied into one restricted
population in ARVC patients as well as non-failing heart

donors, but it is not proper to apply our findings to other
non-ARVC patients with similar symptoms, including dilated
cardiomyopathy patients. Secondly, histopathological changes
in ARVC are progressive procedure. The participant samples
with ARVC in this research were prepared from the hearts
explanted in orthotopic heart transplantation representing the
myocardium from patients with end stage heart failure. Our
research lacked early-stage of ARVC patients; thus, the results
may not be representative with they are applied into ARVC
differential diagnosis at early stages. At last, only one genetic
dataset from human ARVC heart tissues, the GSE29818 dataset,
was searched from the web databases and analyzed in our study,
we lacked rigorous testing data. Despite this, the hub gene
analysis also gave further research directions for the diagnosis of
ARVC.

CONCLUSION

In conclusion, our research described hub genes as well as
key pathways which might be involved into ARVC diagnosis,
utilizing bioinformatics-based WGCNA combine with GSNCA
for constructing gene coexpression networks. Even though
further experimental validation is required for the implication
by association, our findings demonstrate that the computational
methods based on systems biology might complement traditional
gene-wise approaches, and as such, might offer a new insight
in therapeutic intervention within rare diseases of people like
ARVC.
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