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Abstract Selective internal radiation therapy represents an

endovascular treatment option for patients with primary

liver malignancies, in different clinical stages. Potential

applications of this treatment are in early-stage hepato-

cellular carcinoma, as a curative option, or in combination

with systemic treatments in intermediate and advanced-

stages. This review, based on existing literature and

ongoing trials, will focus on the future of this treatment in

patients with hepatocellular carcinoma, in combination

with systemic treatments, or with the use of new devices

and technological developments; it will also describe new

potential future indications and structural and organiza-

tional perspectives.
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Introduction

Selective internal radiation therapy (SIRT) is a locore-

gional treatment for primary and secondary liver neo-

plasms which applies high radiation energy selectively

targeting tumor tissue, sparing the surrounding par-

enchyma. SIRT is mostly performed using glass or resin

microparticles loaded with Yttrium-90 (90Y), and its role is

well known in intermediate and advanced HCC, particu-

larly in patients with portal vein thrombosis [1]; however,

according to the recent update of Barcelona Clinic Liver

Cancer Criteria, SIRT may be administrated also in BCLC

stage 0 patients as an alternative to percutaneous ablation,

with a curative intent, especially in elderly patients with

contraindications for surgery or in patients with nodules

difficult to treat with other techniques [2]; moreover in

BCLC stage A patients in case of a solitary tumor or as a

second choice if ablation or resection could not be per-

formed or as a bridge treatment before surgery [3]. In the

last few years SIRT has demonstrated a safety and efficacy

profile comparable with transarterial chemoembolization or

even superior in terms of time to progression of the disease

in advanced tumors [2, 4]. In addition, radiation lobectomy

can be considered to induce liver tissue hypertrophy before

surgery, and also to control tumor progression as a bridge

to liver transplantation [4]. In advanced HCC, SIRT will be

combined with systemic treatment such as tyrosine kinase

inhibitors, immunotherapies, or both [2].

This review will focus on available data and ongoing

trials on the future applications as well as structural and

organizational perspectives of SIRT, exploring new

potential combined treatment options as well as new

devices, technological developments, that will allow

potential new indications.

Francesca Romana Ponziani, Francesco Santopaolo, Antonio

Gasbarrini, and Roberto Iezzi contributed equally to this work.

& Roberto Iezzi

roberto.iezzi@unicatt.it; roberto.iezzi.md@gmail.com

1 Dipartimento di Scienze Mediche e Chirurgiche, U.O.C.

Medicina Interna e Gastroenterologia, Fondazione Policlinico

Universitario, A. Gemelli IRCCS, L.go A. Gemelli 8, 00168

Rome, Italy

2 Dipartimento di Diagnostica per Immagini, Radioterapia

Oncologica ed Ematologia–U.O.C. Radiologia Diagnostica e

Interventistica Generale, Fondazione Policlinico

Universitario A. Gemelli IRCCS, L.go A. F.Vito 1 Gemelli 8,

00168 Rome, Italy

3 Università Cattolica del Sacro Cuore, L.go A. Gemelli 8,

00168 Rome, Italy

123

Cardiovasc Intervent Radiol

https://doi.org/10.1007/s00270-022-03228-6

http://orcid.org/0000-0002-5924-6238
http://orcid.org/0000-0002-1773-1171
http://orcid.org/0000-0001-9617-3413
http://orcid.org/0000-0001-6699-7980
http://orcid.org/0000-0002-3331-2831
http://orcid.org/0000-0002-4972-9500
http://orcid.org/0000-0003-4863-6924
http://orcid.org/0000-0002-2791-481X
http://crossmark.crossref.org/dialog/?doi=10.1007/s00270-022-03228-6&amp;domain=pdf
https://doi.org/10.1007/s00270-022-03228-6


Combination of TARE with TKI Medication

Radiation therapy (RT) is efficient in an oxygenated

environment, as the production of reactive oxygen species

causes cell death; conversely, hypoxic conditions deter-

mine radiation-resistance. RT (particularly fractionated

RT) enhances the production of Hypoxia Inducible Factor

(HIF), Vascular Endothelial Growth Factor (VEGF), Pla-

telet-derived Growth Factor (PDGF), Fibroblast Growth

Factor (FGF), and other proinflammatory cytokines,

inducing vessels proliferation. Tumor cells escape from

hypoxia producing VEGF and other cytokines, activating

neoangiogenesis; however, these vessels are aberrant,

leading to the maintenance of the hypoxic environment.

Antiangiogenic drugs restore the radiosensitivity of tumors

by remodeling vessels and causing a transient vascular

normalization that provides oxygen delivery to tumor cells,

whereas in the long-term the reduction of blood vessels

leads to hypo-oxygenation. High radiation doses damage

tumor vessels and induce endothelial cells apoptosis;

antiangiogenic drugs counteracting VEGF corroborate RT

efficacy [33–36]. As HCC is highly vascularized, antian-

giogenic drugs such as the tyrosine kinase inhibitors (TKIs)

Sorafenib and Lenvatinib are used for the first-line treat-

ment of advanced, unresectable HCC. Regorafenib and

Cabozantinib are TKIs used as second line options after

progression to Sorafenib, similarly to the anti-VEGF

receptor-2 monoclonal antibody Ramucirumab [37–41].

SIRT has been compared with Sorafenib in patients with

advanced HCC or with locally advanced HCC after

transarterial chemoembolization (TACE) failure

[2, 37, 42]. The SARAH study was the first multicenter

prospective phase-III trial comparing the efficacy of SIRT

with Sorafenib. Patients treated with SIRT showed a better

safety profile and quality of life, and higher tumor response

rates (19% versus 12%, p = 0.0421), even in patients with

portal vein invasion [43]. Analyzing the tumor recurrence

rate, the SIRT group showed fewer events than the Sor-

afenib group and better tolerability profile, suggesting the

choice of SIRT in patients with intrahepatic disease, tumor

burden B 25% and compensated liver function [44].

Despite these relevant results, the study did not meet the

primary endpoint criteria, as OS was not different between

the SIRT and Sorafenib groups. An ancillary study

demonstrated a significant difference in OS in patients who

received a TD C 100 Gy (14.1 months) than those who

received\ 100 Gy (6.7 months) (p = 0.001), with 74% of

disease control in the first ones; no differences in adverse

events were described [45]. A prospective multicenter trial

in the Asian population obtained the same results of the

SARAH trial, demonstrating better local tumor control,

safety and tolerability profile versus systemic therapy and

tumor response rate of 16.5% in the RE group versus 1.7%

in the TKI group (p\ 0.001) in patients with BCLC B/C

HCC, but without significant benefits on OS and progres-

sion-free survival (PFS) [46].

Considering the SIRT local tumor control and the

modulation on inflammation and neoangiogenesis of anti-

VEGF therapies that may overcome radiation resistance,

several studies evaluated the combination of SIRT and

TKIs in patients with advanced HCC [33–36].

The SORAMIC study was prospectively designed to

evaluate if the combination of SIRT plus Sorafenib would

improve OS versus Sorafenib monotherapy in patients with

advanced HCC [47]. The results were similar to previous

studies: OS was 14 months for SIRT versus 11 months for

Sorafenib; the subgroups evaluation showed better OS in

patients B 65 years, in non-cirrhotic or compensated non-

alcoholic cirrhotic patients, and in patients with more than

seven nodules. Previous TACE was associated with better

survival in the Sorafenib arm [47, 48]. The SORAMIC trial

also evaluated the alteration of liver enhancement after

gadoxetic acid administration during hepatobiliary phase of

magnetic resonance imaging (MRI) compared to the spleen

enhancement; the Liver-to-Spleen ratio (LSR) directly

correlates with reduced liver function: a low LSR was

described in the presence of higher levels of AST, biliru-

bin, ascites and varices [49]. Extrahepatic disease spread

did not significantly impact on survival between the two

groups (p = 0.6483), nor the progression during the study

(19% of cases); conversely, lung metastases reduced

patients’ survival in both groups (p = 0.0060). Therefore,

except for lung metastases, presence of extrahepatic

metastases in patients with a high HCC liver burden should

not affect the possibility to perform locoregional treatments

to control the intrahepatic disease, as the main cause of

death in these patients is intrahepatic progression and liver

failure [50, 51]. A meta-analysis of three studies revealed

the non-inferiority of SIRT compared to Sorafenib for the

treatment of advanced HCC [43, 46, 47]. SIRT led to a

better OS in patients with chronic hepatitis B or in non-

cirrhotic HCC patients. Furthermore, a higher percentage

of partial responses (PR) was observed in the SIRT arm,

while patients in the Sorafenib group frequently showed

disease stability (DS) [52]. However, these studies did not

address the delivered TD, which could have affected the

final results [53, 54].

A phase-II study determined safety and efficacy of

Sorafenib followed by SIRT in patients with advanced or

metastatic HCC and Child–Pugh A, naive to locoregional

treatments or who were unsuccessfully treated: 35.7% of

patients presented PR, 47% DS, whereas none achieved

complete response (CR). Median PFS was 10.3 months;

OS was 13.2 months [55].
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Combination of TARE with Immunotherapy

Immune checkpoint inhibitors (ICIs) represent the new

frontier in cancer therapy [56–61]. They are antibodies

targeting proteins called ‘‘immune checkpoints’’, such as

programmed death-1 (PD-1), programmed death-ligand 1

(PD-L1) and cytotoxic T-lymphocyte associated protein-4

(CTLA-4), which are present on T-cells, B-cells and anti-

gen presenting cells (APCs), involved in maintenance of

self-tolerance. Cancer cells implement evasion mecha-

nisms of immune checkpoints hyperexpression to escape

immune response. Blocking immune checkpoints enhances

immune response and promotes anticancer defense. ICIs

are used as first- or second-line therapy, often in combi-

nation with TKIs or other antiangiogenic drugs [62].

RT boosts inflammation, leading to a systemic response

that may result in anti-tumor effects in sites distant from

the irradiated area, the so-called ‘‘abscopal effect’’, linked

to ‘‘immune cell death’’ [63]. Stress derived by RT

enhances damage-associated molecular patterns (DAMPs)

expression and recruiting of immune cells. RT damage on

endoplasmic reticulum and cellular or nuclear membranes,

causes the activation of calreticulin and its exposition on

the cell membrane, leading to dendritic cells (DCs) acti-

vation, phagocytosis of tumor cells and antigen presenta-

tion to cytotoxic lymphocytes [64, 65]. Dying tumor cells

also release antigens, as DNA, that stimulate immunolog-

ical response [64].

Therefore, combination of RT and ICIs is expected to

obtain promising results. ICIs need appropriate antigen

presentation to be effective, a process enhanced by RT. On

the other hand, RT also causes upregulation of immune

checkpoints, generating radiation-resistance; thus, ICIs can

restore the cytotoxic T-cell and APCs activities, and may

implement the abscopal effect, overcoming the radiation-

resistance [66–68]. SIRT determines a significant shift in

the characteristics of tumor infiltrating lymphocytes (TIL),

increasing CD56 ? natural killer (NK), CD4 ? and

CD8 ? T cells [69]. Conversely, before SIRT, TIL were

mostly regulatory T-cells that downregulated the immune

response against tumors. Tumor necrosis factor (TNF)-al-

pha was elevated in SIRT responders, and a sustained

response was found when TIL expressed higher levels of

PD-1 before and after SIRT [70].

Indeed, as described by previous studies, following

radioembolization it is reported an increased production of

inflammatory cytokines, such as interleukin (IL) 1, IL-6

and IL-8, TNFa, and the release of several inducible factor

as hypoxia inducible factor 1a, VEGF, matrix metallo-

proteinases (MMPs), and mammalian target of rapamycin

(mTOR). The combination of SIRT with immune check-

point inhibitors has demonstrated to enhance the systemic

inflammatory response by reverting the suppressive phe-

notype derived by the upregulation of tumor induced

immune checkpoints on peripheral and intratumoral

immune cells and stimulating them to produce TNF a and

granzyme B that lead to a sustained systemic inflammation

and an increased anti-tumor response [13, 71, 72].

Given their synergistic immunomodulatory effects,

association of SIRT and immunotherapy has been tested in

several clinical trials [69].

In a retrospective study, patients with advanced or

intermediate-stage HCC and good liver function (Child–

Pugh A-B7) were treated with Nivolumab or Nivolumab

plus Ipilimumab after SIRT: two patients experienced

delayed grade 3/4 hepatobiliary toxicity [71]. Another

retrospective study evaluated patients with BCLC B/C

HCC, prevalently Child–Pugh A, who underwent SIRT or

TACE after Nivolumab: two patients discontinued treat-

ment due to immune-related adverse events (irAEs)

(pneumonitis and transaminitis), five grade 3/4 hepatobil-

iary toxicity occurred within 3 months after locoregional

therapy, with no grade 3/4 adverse events attributable to

Nivolumab. 1-month overall objective response rate (ORR)

was 45% [72].

A prospective phase-I clinical trial evaluated the com-

bination of Nivolumab plus SIRT in patients with advanced

HCC not eligible for surgical treatments. Nivolumab was

started after SIRT at the dose of 80 mg (group 1) or

240 mg (group 2); primary endpoint was defining the

maximum tolerated dose of Nivolumab when combined

with SIRT. Group 2 dose was well-tolerated; the most

relevant irAE in both groups was grade 1–2 transaminases

elevation. Overall disease control (ODC) rate was 82%; 9

out of 11 patients showed stable disease [73]. A phase-II

clinical trial enrolled patients with advanced HCC and

Child–Pugh A cirrhosis not eligible for surgery, who

underwent SIRT followed by Nivolumab administration,

obtaining 30.6% ORR (1 CR, 10 PR); five patients pre-

sented serious treatment-related adverse events (Steven–

Johnson syndrome, hepatitis E infection, fever, liver

abscesses, ascites) [74].

Several ongoing studies are evaluating the safety and

efficacy of SIRT plus ICIs. A phase-I study

[NCT03812562] is evaluating the combination of Nivolu-

mab plus SIRT after surgical resection; primary endpoint is

recurrence rate. NCT03099564 is evaluating the combi-

nation of Pembrolizumab plus SIRT in patients with HCC

not eligible for surgical resection or liver transplantation;

primary endpoint is 6-months PFS.

Combination of Durvalumab, an anti PD-L1 antibody,

and Tremelimumab, an anti CTLA-4 antibody, was supe-

rior to Sorafenib in terms of OS either in combination or as

Durvalumab monotherapy [61, 75]. A phase-Ib trial

[/NCT04605731] will evaluate the safety of Durvalumab
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plus Tremelimumab or Durvalumab alone after SIRT in

patients with unresectable locally advanced BCLC B/C

HCC with Child–Pugh A and tumor burden\ 50% in

terms of ORR according to RECIST, mRECIST and

immune mRECIST criteria. A multicenter randomized

phase-II trial [NCT05063565] will evaluate the efficacy of

SIRT plus combination of Durvalumab and Tremelimumab

versus SIRT alone in terms of ORR and response duration

in naive HCC patients not eligible for (or who refused)

curative treatments. A phase-II randomized trial

[NCT04522544] will investigate safety and efficacy of

Durvalumab plus Tremelimumab after TACE or SIRT in

patients with multifocal HCC or with a single nodule not

eligible for curative treatments, or with hepatic veins or

portal vein involvement. Another phase-I/II trial

[NCT0412499] will investigate if combination of Durval-

umab plus SIRT can improve time to progression (TTP) in

locally advanced unresectable HCC. A multicenter ran-

domized phase-II trial [NCT04541173] is evaluating

patients with Child–Pugh A and BCLC B HCC not eligible

for surgical treatments that will receive SIRT alone or

followed by Atezolizumab plus Bevacizumab; primary

endpoint is 1-year PFS.

Potential New Isotopes

Currently, the most used radiopharmaceutical product for

transarterial radioembolization (TARE) consists of 90Y

microspheres available in two formulations: the glass-

based TheraSphere (BTG, Ontario, Canada) and resin-

based SIR-Spheres� (SIRTex, North Sydney, Australia)

microspheres [76]. Unfortunately, there are some limits

concerning 90Y utilization: microspheres production is a

high-cost multi-step process, since 90Y derives from

strontium-90 (90Sr), which is a fission product of uranium

in nuclear reactors; this process needs high specialized

personnel and brings a heavy radioactive environmental

burden [77]. In addition, 90Y is a pure therapeutic beta-

energy emitter, which makes the evaluation of radiation

dosimetry and post-TARE microspheres distribution in

tissues difficult to be detected, because of intrinsic prop-

erties of beta rays, not suitable for diagnostic imaging. For

these reasons, in the last few decades new microspheres

labeled with 166Ho have been developed [26]. 166Ho

TARE seems to be a feasible option for HCC treatment,

with a good safety and toxicity profile, as well as for

patients with unresectable and chemo-resistant liver

metastases [78, 79]. Compared with 90Y, 166Ho has the

advantage of possessing a c emission (81 keV) suitable for

SPECT imaging. Moreover, holmium is highly paramag-

netic, thus enabling MRI imaging and quantification. Van

Roekel et al. found that patient survival was significantly

longer in case of a mean-tumor absorbed dose greater than

90 Gy in case of 166Ho TARE [80].

Another interesting isotope which is gaining interest

among interventional radiologists is Samarium-153

(153Sm) [81]. 153Sm is a radionuclide derived from

purification and neutron activation of 152Sm. It has a half-

life of 46.3 h and emits beta rays of 0.81 MeV (20%),

0.71 MeV (30%), and 0.64 MeV (50%), with maximum

penetration in soft tissue up to 4.0 mm; moreover, 153Sm

releases gamma particles of 103 keV that may be utilized

for scintigraphy imaging and single-photon emission

computed tomography (SPECT) and it has a thermal neu-

tron activation cross section of 210 barns [82]. Neutron

activation has a lower cost of production compared to

nuclear fission and may be more available worldwide.

During neutron activation, the 152Sm atoms absorb one

neutron from the thermal neutron flux to become 153Sm,

with consequent release of energy in the form of gamma

radiation. Neutron irradiation may last at maximum of 6 h;

longer processes cause radionuclide impurities production.

In one study, the radioactive microspheres with size of

20–40 lm were produced and bound to Amberlite cation

exchange resin but they resulted inappropriate and irregular

for shape and presented a high rate of fragmentation during

the neutron activation process [83]. In another study,

152Sm chloride hexahydrate and 152-Sm carbonate have

been used to obtain 35 lm diameter resin microspheres;

they resulted able to preserve their shape and integrity

during the neutron activation process showing a better

efficiency (97–99%) than 153Sm-labeled microspheres

(85–97%) [84]. The same research group in recent years

formulated a new type of poly-l-lactic acid microspheres

(PLLA) incorporated with 152Sm acetylacetonate [85]. In

another study, 153Sm oxide-loaded polystyrene micro-

spheres were developed, and they had a remarkable

retention efficiency in both saline solution and blood

plasma with a medium duration of 550 h [86]. Since no

ionizing radiation is needed for the production, these

microspheres may be synthetized in a standard chemistry

laboratory and then they may be sent in a specialized center

to be activated and obtain radioactive 153Sm oxide-loaded

polystyrene microspheres. Previously to 153Sm, others

neutron activated radionuclides such as Holmium and

Rhenium were tested as possible alternatives to 90Y, but

they were excluded because of their short half-lives and the

need of elevated neutron flux reactors compared to 153Sm

[86, 87]. 153Sm is a promising ‘‘theranostic’’ (therapeutic

and diagnostic) agent, suitable for a combinatory diag-

nostic and therapeutical approach, but further studies are

needed to better delineate its cytotoxicity and its efficiency

in comparison to 90Y microspheres.

123

F. R. Ponziani et al.: SIRT in 2025…



Potential New Indications: Outside the Liver

Interest in applications of TARE outside of the liver is

emerging and small initial studies have been performed

primarily in animal models to assess the effects of TARE

on other organs, such as brain.

The standard of care for Glioblastoma multiforme

(GBM), a malignant brain tumor, is surgical resection

followed by adjuvant chemotherapy [88]. GBM local

recurrence, even with treatment, is common due to tumoral

cell infiltration [89]. Radiation therapy is an important tool

for newly diagnosed GBM and is commonly performed

using external beam radiation therapy (EBRT), which

provides little neurotoxicity [90, 91]. Other options are

brachytherapy and stereotactic radiosurgery. TARE, which

is commonly used for the treatment of liver cancer, delivers

much more radiation dose in hypervascular tumors com-

pared to EBRT, and reduces nontarget radiation dose [92].

Using TARE for intra-axial brain tumors could be prob-

lematic due to the potential ischemic changes induced by

microspheres in the normal brain tissue. The potential

effectiveness of TARE for the treatment of GBM could be

based on the balance of ischemic effects, delivered radia-

tion dose within the tumor, and delivered radiation dose to

healthy brain tissue. A recent paper evaluated the safety,

feasibility, and efficacy of 90Y TARE for the treatment of

spontaneous brain cancers in a canine model [93]. In this

study, three healthy research dogs and five patient dogs

affected by spontaneous intra-axial brain masses underwent

cerebral 90Y TARE using glass microspheres (Thera-

Sphere). Post-treatment PET-CT and neurological exami-

nations by veterinary neurologists were performed.

Research dogs were euthanized after 1 month and the

brains were extracted and analyzed (micro-dosimetry and

histopathologic analyses); on the other hand, patient dogs

underwent post-treatment MRI at 1-, 3-, and 6-months with

a long-term follow-up. 1 month after treatment, research

dog pathologic analysis revealed no evidence of atrophy

and rare foci of chronic infarcts. Absorbed doses to masses

in patient dogs ranged from 45.4, to 64.1 Gy and the dose

to healthy brain tissue was from 15.4 to 33.3 Gy. Among

both groups (patient and research dogs), six developed

acute transient neurologic deficits after the treatment. At

1 month follow-up, patient dogs showed a 24–94%

reduction in tumor volume, achieving a partial response in

3 of them at 6 months follow-up. This preliminary study in

dogs underlines the feasibility and safety of 90Y TARE as

a potential treatment for brain cancer.

In 2001 van Es et al. published a study in which 22

rabbits with VX2 squamous cell carcinomas implanted into

the auricles were treated with TARE using radioactive or

inactive holmium-labeled poly-(L-lactic acid) (HoPLA)

microspheres, achieving a complete response in 79% and

86% following embolization with radioactive and inactive

microspheres, respectively [94]. More than 95% of the

microspheres were retained within the tumor. TARE with

166HoPLA microspheres could be a promising treatment

for unresectable head-and-neck cancer but further studies

on humans are needed.

Another potential new indication would be related to

prostate diseases, in case of malignancy or also benign

hyperplasia. In detail, as reported in the paper of Mouli

et al. performed in a canine model, prostate 90Y TARE

seems to be safe and feasible, leading to focal dose-de-

pendent changes in the gland, such as atrophy and focal

necrosis, without inducing unwanted extra-prostatic effects

[95].

Structural and Organizational Perspectives

Office-based interventional oncology (IO) offers great

benefits compared with hospital-based IO, as a more

comfortable environment and greater convenience for

patients. The outpatient setting allows for patient-focused

services, faster check-in, less paperwork, and efficient

postprocedural management/discharge, with greater patient

satisfaction [96]. Physician benefits include better work-

life balance, more manageable hours, no call or weekend

obligations.

The increasing burden of IO procedures, pressure to

reduce costs, and patients’ wishes – particularly due to

pandemic conditions – has stimulated the development of

ambulatory care for many procedures historically per-

formed in the hospital, such as liver-directed therapies.

SIRT is characterized by potential adverse events

ranging from acute (post-embolization syndrome, pain,

vomiting, nausea, fever, leucocytosis, cholecystitis, pan-

creatitis) to delayed ones (gastro-duodenal inflammation,

ulceration, bleeding, pneumonia); however, the most fre-

quent ones are represented by constitutional symptoms,

usually lasting for 1 week, not requiring hospitalization,

treated with medications [97–106].

RE procedures can be safely and effectively performed

on an outpatient basis; Aberle et al. retrospectively evalu-

ated 212 patients treated with SIRT for primary and sec-

ondary malignancies, with only a 3.3% of adverse events

requiring hospitalization and a very low radiation exposure

[107, 108]. These advantages could be improved with the

use of transradial approach, characterized by a less post-

procedural discomfort at the access site, and reduced lim-

itations in patient’s basic activities, leading to faster

discharge [109, 110].

Careful selection of patients is mandatory, based on

medical (comorbidities and risk factors) and sociological
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(compliance, social and family situation, access to medical

care, available home aid) criteria.

The possibility to perform a single-day SIRT reduced

the disadvantages of RE (typically requiring at least two

visits) compared to other locoregional therapies: RE can be

safely performed with pre-treatment diagnostic angiogra-

phy, dosimetry evaluation, and therapeutic SIRT in the

same day [111–116].

Dosimetry measurements can deliver personalized and

optimized dose to the tumor in TARE treatments, with both

increase in treatment safety and efficacy. 99mTc-MAA

SPECT represents the current standard for ‘‘scout’’

dosimetry; however, research in this field is constantly

evolving and refining, with alternative particles tested in

clinical studies: in particular, the use of the same particle in

both scout and treatment procedure could grant better

accuracy in dose delivery than MAA [117, 118]. Safety and

effectiveness of 166Ho use as a ‘‘scout’’ dose, have been

evaluated by various studies, concluding that 166Ho can be

used as an alternative to 99mTc-MAA, with a greater

predictive value in evaluating lung shunt presence, more

reliable pre-treatment imaging and better agreement

between scout and treatment volumes [119, 120].

Bakker et al. demonstrated how Holmium-166 (166Ho)

microspheres used for RE can be accurately detected at

postprocedural CT scan, being an alternative to SPECT

evaluation, leading to faster patient discharge [121, 122].

Performing an outpatient single-day procedure, SIRT

could become even more competitive with other locore-

gional therapies, beneficial for patients with travel hard-

ships, difficult vascular access, contrast medium allergies,

resulting in cost savings and fewer complications,

becoming an attractive care model and an opportunity to

mitigate infection risk and logistical challenges associated

with COVID-19 pandemic [115].

Conclusions

Radioembolization is a minimally invasive procedure with

an established role in the management of primary and

secondary hepatic tumors, providing personalized treat-

ment approaches with palliative and curative indications.

Recent advancements and new techniques led to its appli-

cation across the Barcelona Clinic Liver Cancer staging

paradigm, as a curative treatment or as a bridge or down-

stage to liver transplantation. Great improvement in liver

cancer treatment will also be granted by combined appli-

cation of radioembolization and systemic or immunother-

apy, with the possibility to be performed in an outpatient

single-day setting. Appropriate patient selection, compre-

hensive work-up and multidisciplinary tumor board eval-

uation remain the main preprocedural criteria to offer an

effective and safe treatment, improving clinical outcome

and patient survival. Innovative devices, new techniques as

well as technological developments will also allow to

expand its clinical indications beyond the liver.
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rent-Puig P, Ma B, Maughan T, Muro K, Normanno N,
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Bolondi L, Klümpen HJ, Chan SL, Zagonel V, Pressiani T, Ryu

MH, Venook AP, Hessel C, Borgman-Hagey AE, Schwab G,

Kelley RK. Cabozantinib in patients with advanced and pro-

gressing hepatocellular carcinoma. N Engl J Med.

2018;379(1):54–63. https://doi.org/10.1056/NEJMoa1717002.

41. Zhu AX, Kang YK, Yen CJ, Finn RS, Galle PR, Llovet JM,

Assenat E, Brandi G, Pracht M, Lim HY, Rau KM. Ramu-

cirumab after sorafenib in patients with advanced hepatocellular

carcinoma and increased a-fetoprotein concentrations (REACH-

2): a randomised, double-blind, placebo-controlled, phase 3 trial.

Lancet Oncol. 2019;20(2):282–96.

42. Galle PR, Forner A, Llovet JM, Mazzaferro V, Piscaglia F,

Raoul Jean-L, Schirmacher P, Vilgrain V. EASL clinical prac-

tice guidelines: management of hepatocellular carcinoma.

J Hepatol. 2018;69(1):182–236. https://doi.org/10.1016/j.jhep.

2018.03.019.

43. Vilgrain V, Pereira H, Assenat E, Guiu B, Ilonca AD, Pageaux

G-P, Sibert A, Bouattour M, Lebtahi R, Allaham W, Barraud H,

Laurent V, Mathias E, Bronowicki J-P, Tasu J-P, Perdrisot R,

Silvain C, Gerolami R, Mundler O, Seitz J-F, Vidal V, Aubé C,
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50. Schütte K, Schinner R, Fabritius MP, Möller M, Kuhl C, Iezzi R,
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