
Quantification of Local Morphodynamics and Local
GTPase Activity by Edge Evolution Tracking
Yuki Tsukada1,2, Kazuhiro Aoki3, Takeshi Nakamura3, Yuichi Sakumura1,2, Michiyuki Matsuda3, Shin

Ishii1,2,4*

1 Laboratory for Systems Biology, Graduate School of Information Science, Nara Institute of Science and Technology, Nara, Japan, 2 Institute for Bioinformatics Research

and Development, Japan Science and Technology Agency, Tokyo, Japan, 3 Laboratory of Bioimaging and Cell Signaling, Graduate School of Biostudies, Kyoto University,

Kyoto, Japan, 4 Integrated Systems Biology Laboratory, Department of Systems Science, Graduate School of Informatics, Kyoto University, Kyoto, Japan

Abstract

Advances in time-lapse fluorescence microscopy have enabled us to directly observe dynamic cellular phenomena.
Although the techniques themselves have promoted the understanding of dynamic cellular functions, the vast number of
images acquired has generated a need for automated processing tools to extract statistical information. A problem
underlying the analysis of time-lapse cell images is the lack of rigorous methods to extract morphodynamic properties.
Here, we propose an algorithm called edge evolution tracking (EET) to quantify the relationship between local
morphological changes and local fluorescence intensities around a cell edge using time-lapse microscopy images. This
algorithm enables us to trace the local edge extension and contraction by defining subdivided edges and their
corresponding positions in successive frames. Thus, this algorithm enables the investigation of cross-correlations between
local morphological changes and local intensity of fluorescent signals by considering the time shifts. By applying EET to
fluorescence resonance energy transfer images of the Rho-family GTPases Rac1, Cdc42, and RhoA, we examined the cross-
correlation between the local area difference and GTPase activity. The calculated correlations changed with time-shifts as
expected, but surprisingly, the peak of the correlation coefficients appeared with a 6–8 min time shift of morphological
changes and preceded the Rac1 or Cdc42 activities. Our method enables the quantification of the dynamics of local
morphological change and local protein activity and statistical investigation of the relationship between them by
considering time shifts in the relationship. Thus, this algorithm extends the value of time-lapse imaging data to better
understand dynamics of cellular function.
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Introduction

Cell morphological change is a key process in the development

and homeostasis of multicellular organisms [1,2]. Various types of

morphological change appear during migration and differentia-

tion; essential events occurring as part of these processes usually

accompany morphologically different phenotypes. Therefore, cell

morphology has been used as a key indicator of cell state [3].

High-throughput analyses of cell morphodynamic properties have

been used recently to discover new functions of specific proteins

[4]. Moreover, the outcomes of morphological change such as the

intricate shape of neuronal dendrites, remind us that morphogen-

esis itself plays a role in the emergence of cellular function [5].

Quantitative approaches are helping to unveil cellular morpho-

dynamic systems, and they are generating new technical

requirements. Because cellular morphological change is highly

dynamic, time-lapse imaging is necessary to understand the

mechanism of cell morphology regulation. Progress in the

development of fluorescent probes has enabled the direct

observation of cell morphological changes and/or the localization

and activity of specific proteins [6–8], but time-lapse imaging has

highlighted the difficulty of extracting characteristic information

from an immense number of images. Nevertheless, several

approaches in the context of quantitative analysis have appeared

recently. A series of studies using quantitative fluorescent speckle

microscopy, for instance, revealed the power of computer-assisted

high-throughput analysis for time-lapse microscopy images:

analysis of the number of moving and blinking speckles suggested

distinct regulation of actin reorganization dynamics in different

intracellular regions [9,10].

Indeed, computational methods have been used to determine

the properties of morphological dynamics, protein activity and

gene expression [11–14]. There are two major approaches for the

detailed analysis of local morphological changes of cells. One is the

kymograph, which is a widely used method to describe motion

with a time-position map of the morphology time course. The time

course of change in intensity could also be monitored by arranging

sequential images of a specific region of interest (ROI) [15].

Although there are drawbacks to this approach, such as restriction

of the analyzed area to a narrow ROI and the need to manually
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define the ROI, recent studies have avoided these limitations by

using polar coordinates to explore the motility dynamics of the

entire peripheral region of round cells. Indeed, the polar

coordinate-based approach showed isotropic and anisotropic cell

expansion, and examined stochastic, transient extension periods

(named STEP) or periodic contractions [12,16]. The second

approach is to track cellular edge boundaries by tracing virtually

defined markers. Kass and Terzopoulos introduced an active

contour model known as SNAKES [17], which is widely used to

analyze moving video images in applications including biomedi-

cine. For example, Dormann et al. used SNAKES to quantify cell

motility and analyze the specific translocation of PH domain-

containing proteins into the leading edge [14]. Marker-based

tracking has advantages in quantifying highly motile cell

morphology, because it does not require a fixed axis, which is

necessary in the kymograph approach. Recently, Machacek and

Danuser developed an elegant framework to trace a moving edge,

using marker tracking modified by the level set method to

elucidate morphodynamic modes of various motile cells such as

fibroblasts, epithelial cells, and keratocytes [18].

Although previous methodologies have successfully described

the specific aspects of cellular morphodynamics, there remain

challenges to quantify the relationship between morphodynamics

and signaling events. One representative problem is the association

between regions in different frames. To scrutinize the dynamic

relationship between morphological change and molecular

signaling, we need to cross-correlate them in a time-dependent

manner (Figure 1A). A polar coordinate system does not ensure

the association of time-shifted local domains (Figure 1B), and is

unsuitable for non-circular cell shapes. The virtual marker

tracking method satisfies this requirement for cells with broadly

consistent shapes, but its fixed number of markers causes unequal

distribution when a dramatic shape change such as the persistent

growth of neurites in neurons, occurs (Figure 1C). Taking these

problems into account, we perceive the need for a novel

quantification method to better understand the mechanisms of

morphodynamic regulation by molecular signaling.

We focused on the Rho-family small GTPases, or Rho

GTPases, as signaling molecules associated with cell morphody-

namics. Rho GTPases, which act as binary switches by cycling

between inactive and active states (Figure 2), play key roles in

linking biochemical signaling with biophysical cellular behaviors

[19,20] mainly through reorganization of the actin and microtu-

bule cytoskeleton [21]. It is well known that RhoA, Rac1, and

Cdc42 have unique abilities to induce specific filamentous actin

structures, i.e., stress fibers, lamellipodia, and filopodia, respec-

tively [19]. Considerable evidence, mainly obtained using

constitutively-active or dominant-negative mutants, supports a

promotional role of Rac1 and Cdc42 and an inhibitory role of

RhoA in cell protrusion [19,21]. Although some researchers have

challenged this widely-accepted notion in a variety of cell contexts

[22–24], our current study has been motivated by this predom-

inant view.

The objective of this study was to uncover the relationship

between spatio-temporal activities of Rho GTPases and

morphological changes of the cells. To achieve this, we needed

a data analysis tool to assess the link between biochemical

signaling and biophysical phenomena. However, we do not

focus on unveiling the orchestration of the complete signaling

pathways that regulate cell morphology. In addition, we

elucidated how Rho GTPases regulate ‘‘two-dimensional’’

morphological changes of cells, rather than ‘‘three-dimensional’’

changes. These findings will however be meaningful because the

results can be compared with earlier findings [25–28].

Therefore, we first present an algorithm called edge evolution

tracking (EET) to quantify local morphological change. The

main features of our method are that (1) identification of a local

morphological change is based on an area difference between

two consecutive frames; (2) cell edge is not characterized by

point markers, but by line segments, which are defined by the

area difference; and (3) past history and future evolution of each

segment can be evaluated by connecting segments between

consecutive frames. Therefore, this method enables us to trace

complex cell edge extension and contraction while maintaining

the consistency of the ROI during the analysis. Second,

applying EET to fluorescence resonance energy transfer (FRET)

time-lapse images of three Rho GTPases (Rac1/Cdc42/RhoA),

we found a significant time-shifted cross-correlation between

morphological change and GTPase activity. Our study reveals

the utility of detailed cellular morphodynamic profiling and

spatio-temporal signal profiling to measure the time-shifted

relationship between morphodynamics and protein activity.

Author Summary

Morphological change is a key indicator of various cellular
functions such as migration and construction of specific
structures. Time-lapse image microscopy permits the
visualization of changes in morphology and spatio-
temporal protein activity related to dynamic cellular
functions. However, an unsolved problem is the develop-
ment of an automated analytical method to handle the
vast amount of associated image data. This article
describes a novel approach for analysis of time-lapse
microscopy data. We automated the quantification of
morphological change and cell edge protein activity and
then performed statistical analysis to explore the relation-
ship between local morphological change and spatio-
temporal protein activity. Our results reveal that morpho-
logical change precedes specific protein activity by 6–
8 min, which prompts a new hypothesis for cellular
morphodynamics regulated by molecular signaling. Use
of our method thus allows for detailed analysis of time-
lapse images emphasizing the value of computer-assisted
high-throughput analysis for time-lapse microscopy imag-
es and statistical analysis of morphological properties.

Figure 1. Obstacles to quantifying cell morphological changes.
(A) General scheme of cellular morphological changes. The diagram
shows part of a cell’s edge expanding continuously over time (frame
number) T21 to T+3. We focus on the correlation timing between
morphological change and a regulation signal (red region). (B) The
kymograph approaches, including polar coordinate-based analysis,
encounters problem caused by the fixed direction of the axis. Although
it describes morphodynamics along the proper direction of the axis
(solid arrow), lateral movements against this assigned direction (dotted
arrow) cannot be quantified. (C) Marker-based analysis rearranges the
marker positions depending on the rate and direction of morphological
changes, so that the marker density cannot be conserved. Therefore, it
is not suitable for persistently changing cell morphology such as neurite
outgrowth.
doi:10.1371/journal.pcbi.1000223.g001

EET Analysis for Rho GTPase Time-Lapse Images
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Materials and Methods

Edge Evolution Tracking
The EET algorithm describes the time course of local cell

morphological changes based on area differences of sequential

images. We focused on the local area change, rather than the local

structural change as a morphological property; therefore, EET

analysis did not make clear distinctions between filopodia and

lamellipodia. Subdivided regions along the cell edge boundaries

are connected to the corresponding subdivided regions in the next

frame, and movements of the subdivided regions are then defined

by these connected subregions. Thus, the subdivided regions called

‘‘segments’’ are basic units in EET for quantification of

morphological changes. EET describes the time course of local

protrusion and retraction as follows:

(1) Sequential cell edge boundaries and area differences are

obtained by applying an appropriate binary filter to time-lapse

microscopy images as a preprocess (see Preprocessing section).

Each area difference is typically represented as a positive or

negative number of pixels.

(2) The traced cell boundary is divided into segments according

to the area differences between two consecutive frames (see

Figure 3A).

(3) The boundary points of each segment are identified as

‘‘anchor points’’ (lowercase letters in Figure 3A).

(4) The identified segments and the anchor points are projected

into time and position along the cell perimeter coordinates

(Figure 3B) and the segments are then colored according to

the edge transitions. Simultaneously, we obtain a labeled area

difference vector d according to the segments.

(5) The corresponding anchor points, described in Figure 3B as

pairs of open and closed circles with the same letters, are

connected. Thus, the corresponding segments between

neighboring time frames are identified. These connections

yield a graph structure that resembles an evolutionary lineage.

Figure 3C illustrates the graph structure corresponding to

Figure 3A and 3B.

These connected anchor points indicate the spatial associations

between neighboring time frames, and allow us to trace the

corresponding regions along the time course by means of the

graph structure, which represents the lineage of the segments

along the time course. A flow chart of the EET procedure above is

shown in Figure 3D.

It should be noted that EET defines how the ancestral segments

of a certain segment at a certain time behave along the time course

(Figure 3E). Because the definition of segments depends on area

differences, if a cell becomes transiently immobile the subdivided

regions fuse into a single, and hence integrated, edge. In such a

case, integration can be avoided by an exceptional operation that

maintains the anchor points during the period of immobility. This

procedure keeps the spatial resolution (number of segments) of

EET without artificial bias as far as used for immobile anchor

points, because the average activity of a single segment and that of

its divided segments are the same, and the area differences are

always 0. Generally, however, continuous fluctuation is observed

along the whole edge, and it is therefore possible to extract a

sufficient number of subdivided regions to be analyzed. Actually,

this exceptional operation is not used when analyzing the data in

this manuscript. Although threshold parameters for the binariza-

tion in preprocessing affect the extraction of cell boundaries and

area differences, the results of EET are consistent once the

threshold parameters have been determined, even if cells show

highly fluctuating behavior.

Activity Profile
Local activity along a cell boundary is defined as the mean

FRET ratio inside a circle, which has its center on the cell

Figure 2. GTPase cascades involved in morphological regulation and cytoskeleton organization. Various upstream signals trigger the
activation of Cdc42, Rac, and Rho GTPases and induce morphological and cytoskeletal changes such as formation of filopodia, lamellipodia, and stress
fibers, respectively. The ratio of the inactive GDP-bound state to active GTP-bound state is regulated by guanine nucleotide exchange factors (GEFs)
and the GTPase-activating proteins (GAPs). Many studies have shown crosstalk between these GTPases; however, direct links between these GTPases
are still to be clarified.
doi:10.1371/journal.pcbi.1000223.g002

EET Analysis for Rho GTPase Time-Lapse Images
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boundary and radius r. This is equivalent to using a smoothing

filter with a kernel size of r. In EET, the representative activity of a

segment is defined as the mean of local activities in the segment.

We thus obtain a vector of activity a, composed of the

representative activities within each segment in time-lapse images.

In polar coordinate-based and marker-tracking based analyses, on

the other hand, local activity denotes the mean activity inside a

circle, whose center is located at the intersection of a cell boundary

and a radial axis or a marker position, and whose radius is r.

Therefore, local activity is defined in EET in a manner that is

conceptually similar to that in the polar coordinate-based and the

marker-tracking-based methods; however, the EET analysis is

performed segment-by-segment, which is statistically more stable

than the polar coordinate-based and marker-tracking-based

methods. The activity profile at time N, obtained from N images

of time-lapse activity data, is denoted by aN.

Cross-Correlation Coefficients
We calculated cross-correlation coefficients between local area

changes and activities based on the defined segments. Vector data

Figure 3. Schematic view of edge evolution tracking. (A) Identification of morphodynamic properties. Solid lines denote cellular edge at each
frame and the shaded regions A, B, and C indicate area differences between consecutive frames. We define two properties for a local morphological
status transition: segments and anchor points. The segments are subdivided along the cellular edges, which are determined by the area differences
between neighboring frames. The anchor points are segment terminals (closed circles) and are projected into the previous frame (open circles). Open
squares l and r represent the edge terminals. (B) All of the segments identified and anchor points are mapped two-dimensionally. Horizontal and
vertical axes denote the time and position along the cell edge, respectively. Connections between anchor points (dashed lines) illustrate the
corresponding points between neighboring frames. (C) We can then construct a graph to represent segment evolution. A node and link denote each
segment and the connection between temporally consecutive segments. (D) Flow chart of the EET algorithm. (E) All colored nodes show the ancestry
of the colored node at ‘TRT+1.’ The ancestry nodes in the different frames are identified by referring to the graph shown in (C); therefore, the time
course of area differences stemming from a specific segment can be identified by applying simple algebra to the ancestry node map at each time
point (see Materials and Methods). The plot shows the time course of area differences corresponding to the colored ancestry. Each node includes a
time course of area difference that we have defined.
doi:10.1371/journal.pcbi.1000223.g003

EET Analysis for Rho GTPase Time-Lapse Images
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{a(t)|t = 1, …, N21} and {d(t)|t = 1, …, N} denote the activities

and area differences of the segments extracted from the first to

N21 and the first to N frames of the same image sequence,

respectively. a(t) and d(t) represent local activities at time t and local

area differences between times t and t+1, respectively. According

to Pearson’s product-moment correlation coefficient, the correla-

tion function R({a(t)},{d(t)},N) is defined as

R a tð Þ
n o

, d tð Þ
n o

, N
� �

~

PN{1

t~1
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i~1

a
tð Þ
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where i and t are indices for segments denoting positions along a

cell boundary and time (frames), respectively, and Mt denotes the

number of segments at frame t. Note that our EET defines the

activity in a segment-wise manner, and therefore a(t) and d(t+1)

have the same dimensionality Mt. Because the histogram of the

activities in the segments was found to be approximated as a

normal (Gaussian) distribution but with a heavy tail in some

samples, samples whose activity exceeded 3s (where s is the

standard deviation) were removed to avoid disproportionate

influences of outliers on the correlation coefficients. When the

data distributions diverged from the Gaussian, we also calculated

Spearman’s rank correlation coefficient, which is independent of

the shape of the sample distributions, to verify the results of the

Pearson’s correlation coefficient. Spearman’s rank correlation

function Rs({a(t)}, {d(t)}, N) is defined as

Rs a tð Þ
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, pj is the number of rank j

samples of {d(t)|t = 1, …, N}, nd the number of ranks in {d(t)|t = 1,

…, N}, pa the number of rank k samples of {a(t)|t = 1, …, N21}, and

na the number of ranks in {a(t)|t = 1, …, N21}. Because the EET

calculates the cross-correlations based on segments, it is insensitive

to the physical size of segments; that is, the cross-correlation

coefficients indicate event-wise correlations between molecular

activities and morphological changes over the whole cell edge.

Time-Shifted Cross-Correlation Coefficients
We investigated t time-shifted cross-correlation between

activities and area differences to incorporate the time lag between

molecular events and morphodynamics. Because the ancestry

relationship between a single segment in a focused frame and

segments in another frame is not one-to-one (Figure 3C), we

defined the transition matrix At,t+t so that the t-shifted area

difference d(t,t+t) could be defined. Because the graph structure was

obtained under the basic assumption that each local event is

defined in terms of ‘segment’, a morphological property, we

calculate the t-shifted values only for the area differences. A series

of the corresponding area differences by sequential t, for example,

d(t,t+1), d(t,t+2), d(t,t+3),…, denotes the time course of edge evolution;

d(t,t+t) is defined below. The transition between Mt segments at

time t and Mt+1 segments at time t+1 is represented by an Mt6Mt+1

matrix At,t+1, which consists of 0 and 1 denoting unconnected and

connected segments, respectively, in the ancestry graph

(Figure 3C). Because the column dimensionality of the transition

matrix at time t and the row dimensionality of the transition

matrix at time t+1 are the same as the number of segments

between time t and time t21, the transition matrix between time t

and t+u can be calculated algebraically as

At,tzu~At,tz1Atz1,tz2 � � �Atzu{1,tzu

if Ai,j
t,tzu

w0, then Ai,j
t,tzu~1:

This means that each component is substituted by one if the

matrix calculation results in a positive value. Corresponding area

changes from time t to time t+t are then expressed as:

d t,tztð Þ~
At,tzt d(tzt)

� �’� �’
if tv0

d tztð ÞAt,tzt
� �’

if tw0

8><
>: :

The i-th element of d(t,t+t) denotes the summation of area

differences among the segments at t+t, which are ancestral to

the i-th segment at t, according to the ancestry graph. In Figure 3C,

for example, d(T) = {la, ab, br} and d(T+1) = {lc, cd, de, ef, fr},

where each element in the sets denotes an area difference

(typically, a number of pixels). The transition matrix is given by:

AT ,Tz1~

lc cd de ef fr

la

ab

br

1 1 1 0 0

0 0 1 1 1

0 0 0 0 1

2
64

3
75 :

Then, d(T+1,T) = (AT,T+1 (d(T+1))’)’ = {lc+cd+de, de+ef+fr, fr},

where the addition is applied to the area difference values. Based

on these time-shifted corresponding area differences, a one-to-one

relationship between the segments in different frames is construct-

ed. The cross-correlation coefficient with a time-shift of t is thus

obtained by calculating R ({a(t)}, {d(t, t+t)}, N2t).

Preprocessing
In this study, cell boundaries and area differences were all

extracted from fluorescence time-lapse images. To emphasize the

cell edges, the images were filtered with an unsharp mask

(implemented by the image-processing software MetaMorph

[Universal Imaging, Sunnyvale, CA]), which subtracts a low-pass

filtered and scaled image from its original image. The Gradient

Anisotropic Diffusion filter [29,30] was then applied to smooth

edge boundaries for complex cell shapes. After the filtering step,

the intracellular and extracellular regions were segmented using

the global threshold determined for the first frame. The cell

boundary was extracted directly from the outline of the

thresholded images. Typically, the extracted cell boundaries were

distorted when edge extraction was applied to threshold regions

with one-pixel width, such as thin spikes. To avoid this, each pixel

in a thresholded image was divided into sub-pixels before

extraction of boundaries. Boundary extraction was then executed

for each binary image at a sub-pixel resolution. We did not apply

spline fitting in EET or polar coordinate-based analysis to avoid

spoiling steep edge structures with filopodium-like thin shapes.

EET Analysis for Rho GTPase Time-Lapse Images
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Area differences were also extracted from the thresholded

images. Increased areas were determined by subtracting the

current frame from its next frame, while decreased areas were

determined by subtracting the next frame from the current one.

Most of these procedures, including EET and cross-correlation

analysis, were implemented by Matlab (The MathWorks, Natick,

MA).

Time-Lapse FRET Imaging
For this study, we used neurite outgrowth of rat pheochromo-

cytoma PC12 cells as an example of cells displaying complex

morphological dynamics, while random migration of human

fibrosarcoma HT1080 cells was used for analysis of the cross-

correlation between morphological changes and Rho GTPase

activity. PC12 cells were plated on polyethyleneimine- and

laminin-coated 35-mm glass-base dishes (Asahi Techno Glass,

Chiba, Japan), and then transfected with pRaichu-1011x encoding

Rac1 FRET probe. One day after transfection, the cells were

stimulated with 50 ng/ml NGF in phenol red-free Dulbecco’s

modified Eagle’s medium/F12 containing 0.1% bovine serum

albumin for 48 h to induce neurite outgrowth. HT1080 cells were

transfected with pRaichu-1011x, pRaichu-1054x encoding a

Cdc42 FRET probe, or pRaichu-1294x encoding RhoA FRET

probe and, after 24 h, cells were plated on collagen-coated 35-mm

glass-base dishes. The medium was then changed to phenol red-

free Dulbecco’s modified Eagle’s medium/F12 containing 10%

fetal bovine serum, overlaid with mineral oil to prevent

evaporation, and image acquisition was started. The cells were

imaged with an inverted microscope (IX81 or IX71; Olympus,

Tokyo, Japan) equipped with a cooled charge-coupled device

camera (Cool SNAP-K4 or Cool SNAP-HQ; Roper Scientific,

Duluth, GA), and a laser-based auto-focusing system at 37uC. The

filters used for the dual-emission imaging were purchased from

Omega Optical (Brattleboro, VT): an XF1071 (440AF21)

excitation filter, an XF2034 (455DRLP) dichroic mirror, and

two emission filters (XF3075 [480AF30] for CFP and XF3079

[535AF26] for FRET). The cells were illuminated with a 75-W

xenon lamp through a 6%, 10% or 12% ND filter and viewed

through a 606 oil-immersion objective lens (PlanApo 606/1.4).

The exposure times for 262 or 363 binning were 400 or 500 ms

for CFP and FRET images. After background subtraction, FRET/

CFP ratio images were created with MetaMorph software, and the

images were used to represent FRET efficiency. Further details of

microscopy and sample preparation can be found in previous

reports [26,27].

Permutation Test
We executed a permutation test between positive (6 min),

negative (26 min) and non time-shifted correlations according to

the following procedure. Letters/numbers in bold fonts represent

vectors.

1. Correlations are obtained at positive (CP), negative (CN) and

non- (C0) time-shifts by analyzing cells with EET, polar

coordinate-based and marker-based analyses. There are three

kinds of labels: positive, negative and zero, for each correlation

vector.

2. For each pair of the three labels:

A) Calculate the difference between the two correlation vectors,

for example, the difference between positive and negative

labels is given as D_P_N = CP2CN.

B) Resample permutated differences of correlations (for exam-

ple D_P_Nper) by randomly (but systematically and

exhaustively in this case, see the example below) changing

the plus/minus sign of each element in the original difference

vector.

C) Calculate the rates (i.e., permutation p-value) of permuted

difference vectors with a lager mean value than that of the

original difference vector among all the permutated

difference vectors.

p~
N of significant vectors½ �
N of permuted vectors½ �

N_of_significant_vectors denotes the number of permuted

difference vectors, whose mean is larger than the mean

of the original difference vector.

N_of_permutated_vectors denotes the number of all the

permuted difference vectors obtained in step 2(A).

3. Calculate the permutation p-values above for all pairs of CP,

CN and C0.

For example, if we have CP = [0.6 0.4 0.6] and CN = [0.3 0.5

0.4], then D_P_N = [0.3 20.1 0.2]. Each permutated difference

vector is an element of the set of possible ones: D_P_NperM{[0.3

0.1 0.2], [0.3 0.1 0.2], [0.3 0.1 20.2], [20.3 0.1 0.2], [20.3 20.1

0.2], [20.3 0.1 20.2], [0.3 20.1 20.2], [20.3 20.1 20.2]}.

Owing to the independence assumption of a sign-change between

elements, the permutation (null) distribution is simply obtained by

arranging all the possible sequences, whose number is 23 = 8 in the

above example, with uniform probability. The permuted differ-

ence vectors whose mean is larger than that of the original

difference vector are thus {[0.3 0.1 0.2], [0.3 20.1 0.2]} and

number 2. In this particular example, the permutation p-value is

then given as p = 2/8 = 0.25. If this p-value is smaller than a

specified significance level (usually 5%), the difference between CP
and CN is said to be significant. In the case of two-sided

permutation test, the significance level is simply divided by 2.

Results

EET Profiling for Branching Neurites of PC12 Cells
We applied EET to branching PC12 cells to validate its

usefulness for quantifying complex cell morphological changes. As

shown in Figure 4A, the PC12 cells extended their neurites with

branches after treatment with NGF. A time-lapse series (1-min

intervals) of the images was trimmed to help maintain visual

correspondence with EET profiles because large image sizes may

make the visual inspection difficult. We chose the branching

region to verify the utility of EET for the complex cell shape. Next,

following the EET procedure, we determined the profiles of edge

boundary states, as depicted in Figure 4C, in which red, blue and

green colors denote protrusive, retractile and pausing states of the

cell edge boundary, respectively. Black lines connect the anchor

points (see Materials and Methods), and represent the correspond-

ing segments and subdivided regions. Small fragments of the

segments show spatially independent and transient behaviors of

the edge evolution and contraction, while long segments represent

simultaneous occurrence of edge evolution and contraction in

neighboring regions during the time lapse. We also monitored

global changes in cell morphology using total area and complexity

(bottom of Figure 4C), together with the state profiles, because the

state profile by itself does not illustrate the global characteristics of

EET Analysis for Rho GTPase Time-Lapse Images
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cellular morphodynamics. The monitored total areas and

complexity represent the balance between the length of the cell

edge boundary and the total area. These values will help to

identify rough images of morphological changes. To visualize the

dynamics of local area differences by EET, an area difference map

was constructed as shown in Figure 4D. Despite the complex

morphological changes, EET was successful in quantifying

detailed local area changes and preserving the positional

Figure 4. The EET profile of a branching PC12 cell. (A) Time-lapse fluorescence images of a PC12 cell. (B) Expanding, retracting, and stationary
regions of the cell edge boundary in the subsection of (A) (white square) are colored red, blue and green, respectively. Each colored region along the
cell edge corresponds to a single segment in panel (C). Red arrows show the correspondence between colored regions in (B) and segments in (C). (C)
The cell boundary state profile of (A), in which each segment is colored red, blue and green according to the status of expansion, retraction and
stasis, respectively. Black lines connect the corresponding anchor points to represent the correspondence between subdivided regions in successive
frames. The plot shows the total cell area and complexity {(total cell boundary length)2 /(total cell area)} of the cell. Note that the total cell area and
the total length of the cell boundary are highly independent. (D) Local area difference map of (C), in which the magnitude of area difference for each
segment is depicted by a color gradation from protrusion (red) to retraction (blue).
doi:10.1371/journal.pcbi.1000223.g004
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correspondence among the subdivided edges. For example, the

white squared area in Figure 4A showed a slight extension until

20 min and then retraction between 30–50 min; this corresponds

to the region in the state profile starting from 60–80 mm (ordinate)

at 0 min (abscissa) (Figure 4C). This quantification and visualiza-

tion method reduces the difficulty in dealing with time-lapse image

data by summarizing the morphodynamic characteristics into two-

dimensional state profiles.

EET Profiling for Rho GTPase FRET Images of Motile
HT1080 Cells

Because previous studies have shown the localization of GTPase

activities at peripheral regions [26], we applied EET to motile

HT1080 cells to further quantify the relationship between local

morphological changes and local GTPase activity. First, we

imaged motile HT1080 cells with a 1-min time-lapse. Figure 5A

shows a series of FRET/CFP ratio images of a single motile

HT1080 cell expressing Raichu-1011x (Rac1 probe), and the

FRET efficiency is shown in pseudo colors. Based on a previous

study indicating a correlation between FRET efficiency and Rac1

activity [26], we assumed that the Rac1 activity should be well

represented by the FRET efficiency. The time-lapse images reveal

the wandering behavior of the HT1080 cell and a spatio-temporal

activity pattern of Rac1 within the cell. To emphasize the

protruded and retracted areas in consecutive frames, each image

was first transformed into a binary image by extraction of the cell

and background regions. The consecutive subtracted images were

then obtained frame by frame, and the protrusion and retraction

areas were colored in red and blue, respectively (Figure 5B). As

reported previously, the coincidence of morphological changes

with increases in Rac1 activity was seen by comparing the FRET

and subtracted binary images (Figure 5A and 5B).

Next, we applied EET to precisely examine the spatio-temporal

relationships between morphological changes and GTPase

activities in motile HT1080 cells. As with PC12 cells (Figure 4C

and 4D), the state profile and local area difference map were

acquired (Figure 5C and 5D). Simultaneously, we acquired the

local activity map (Figure 5F) based on segment-wise local activity

(Figure 5E, Materials and Methods). This time-position map of the

local GTPase activity corresponds to both the state profile and the

local area difference map (Figure 5C, 5D, and 5F). There

appeared to be similar patterns between the local area difference

map and the local activity map. The area difference map revealed

chunks of persistently protruding or retracting regions at the cell

periphery, while the activity profile revealed spatially and

temporally associated activity patches at the cell boundary,

suggesting that their dynamics correlated with each other.

Visual inspection of the local area difference map (Figure 5D)

and local activity map (Figure 5F) helped us to detect patterns of

cell morphology and GTPase activity. The upper left area of

Figure 5D shows that formation of large lamellipodia (between 6–

20 min) was preceded by the local retraction of the cell edge, and

this retraction-extension pattern was also identified in other cell

types (data not shown). Cell edge retraction has the potential to

induce tension-dependent development of molecular activities

involving Rho GTPase signaling [31]. Our data are consistent

with this mechanosensory function and provides a possible

mechanism for interactions between morphological changes and

molecular signaling. On the other hand, the large retraction

between 12 and 18 min (Figure 5D) was preceded by a local

decrease in Rac1 activity (blue zone in Figure 5F at 10–12 min)

and similar patterns were also observed in other cells (data not

shown). Potentially, the local decline in Rac1 activity may

contribute to the subsequent cell-edge retraction. In addition, in

contrast with the morphological changes, the local activity map

revealed that the GTPase activity changed moderately at the same

position. This moderate change may help maintain the stability of

the polarity.

Distributions and Time-Shifted Profiles of Morphological
Changes and GTPase Activities

We further investigated this spatio-temporal cross-correlation

between morphological changes and Rho-family GTPase activity.

First, we summarized their statistical characteristics to examine the

cross-correlation. Figure 6A shows a scatter plot of the local

activity and the local area difference for all identified segments.

Because there were no non-linear relationships in this plot, we

considered that common statistical analyses could be applied to

these data. Next, we examined the histograms of the activity and

area difference and found that the activities had a Gaussian

distribution (Figure 6B); heavy tails were observed in some

samples, but not in the area differences (Figure 6C). Although the

activity histograms of a few samples exhibited one or two minor

peaks in addition to the major peaks (data not shown), we assumed

that they could still be approximated by Gaussian distribution for

simplicity; in subsequent analyses, we used both Pearson’s

product-moment correlation coefficient and Spearman’s rank

correlation to confirm the cross-correlation data.

We next examined the effects of time-shifts on cross-correlation

between the activity and the area difference. The graphical

structures of EET profiles display local area differences in the

corresponding time-shifted segments. The middle panels of

Figure 6D show time-shifted local area difference maps with

various time-shift values. Different patterns appeared on the area

difference map depending on the time-shifts, showing that the

correlation changes depend on the time-shift values. The scatter

plots of activity without time-shift against time-shifted area

differences show a linear relationship for negative values of the

time-shift (Figure 6D upper).

Cross-Correlation between Local Morphological
Dynamics and Local GTPase Activities

We calculated time-shifted cross-correlations between the local

activities of Cdc42/Rac1/RhoA and local morphological changes,

as shown in Figure 7. As expected, there were strong correlations

between Cdc42/Rac1 activities and morphological changes, but

the peaks of the correlation coefficients were slightly time-shifted.

Moreover, and surprisingly, the peaks indicated that the local

morphological changes preceded changes in local activity, which

can be seen in Figure 6D. We confirmed statistical significance of

the difference between negative (26 min), zero and positive

(+6 min) time-shifts by performing permutation tests (see Table

S1). The number of samples used to calculate the cross-

correlations was sufficiently large (see Figure S2 and Figure S3).

Although there are some conspicuous morphological events seen

in the EET profile (Figure 5C), such as the protrusion around 6–

16 min and the retraction around 12–18 min, the cross-correla-

tion based on the EET analysis was designed to be robust against

such local events arising in limited sites in the cell. In this specific

case of Rac1 activity in HT1080 cell, our finding that the cross-

correlation profile is highly correlated with minus time-shift values

is unchangeable, even when these conspicuous morphological

events are replaced by normal morphological events (see Figure

S4). Note that the Spearman’s rank correlation also reduces the

bias effect of large values (events) on statistical values.

The results do not appear to be intuitive with regard to the

causal relationship between morphological changes and molecular

EET Analysis for Rho GTPase Time-Lapse Images
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Figure 5. FRET and area difference images, and EET profiles, of a motile HT1080 cell. (A) Time-lapse FRET images of an HT1080 cell. The
colored bar illustrates the FRET/CFP ratio, which is assumed to indicate Rac1 activity. (B) Area difference images are acquired by subtracting
neighboring frames (see Materials and Methods). Red and blue denote expansion and retraction, respectively. This cell moves by approximately
60 mm in 60 min and many of other active cells are free to move to a similar extent. (C) Edge state profile for the same motile HT1080 cell, and
(below) global characteristics (total area and cell complexity). (D) Area difference map for (C). (E, F) We define the local activity as the mean of the
intensities inside a circle of radius r. (E) A schematic view is shown with the circle (red circle) and direction of the position axis (red arrow) in (F).
Although the length of r was chosen arbitrarily, this does not substantially affect the result (see Figure S1). The extracellular region is excluded for the
mean calculation. In (F), the local activities along the cellular edge are mapped into a time-position representation as in (D) (see Materials and
Methods). The colored bar shows the FRET/CFP ratio. Spatio-temporal activity patterns resemble those in the local area difference map.
doi:10.1371/journal.pcbi.1000223.g005
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signaling; upstream molecular signaling should control down-

stream morphological changes, for example via actin reorganiza-

tion, adhesion and/or retrograde flow. In the cases of both Rac1

and Cdc42, the time-shifted correlations showed that morpholog-

ical change preceded local GTPase activity. Cdc42 activity, in

particular, showed large deviations when the preceding time-shifts

were short, and the correlation decayed steeply when the time-

shifts were longer. Rac1 activity, on the other hand, elicited small

deviations and the decay of the correlation was less steep when the

preceding time-shifts were longer. It should be noted that the time-

Figure 6. Local activity and local morphological change distribution properties. (A) A scatter plot of the local activity and area difference of
each segment. Each point represents the local activity and area difference of a single segment identified by EET. The overall property of all the
segments in the dataset is portrayed, excluding temporal and positional information. (B) Histogram of GTPase activities (YFP/CFP ratio) approximated
by Gaussian distribution. Vertical and horizontal axes denote the number of segments and local activity within each segment, respectively. (C)
Histogram of area differences in each segment. Zero values occur frequently because the majority of edge segments do not move. (D) Time-shifted
relationship between local area differences and GTPase activity. The top panels show the time-shifted scatter plots of the local area difference and the
GTPase activity. Each point represents the mean local activity and summation of the area difference of the ancestry segments (see Materials and
Methods). The same data are exhibited in different scales in (A) and (D) depending on the context; that is, (A) shows the detailed distribution of the
activities and the area differences to provide clear comparisons with (B) and (C), while the upper panels in (D) show the differences between various
time-shifts. The middle panels show the time-shifted area difference maps of the corresponding scatter plot in the top panel. The colored areas
denote summation of the corresponding area differences at each shifted time. The numbers of columns are reduced with time-shifts because time-
shift produces non-corresponding frames. GTPase activity maps without time-shifts are displayed in the bottom panels to illustrate their relation with
the corresponding time-shifted area difference maps. Note that all activity maps in the bottom row are identical. A linear correlation appears with
negative time-shifts (time-shift: 25 and 23 in the top scatter plots), whereas no correlation is observed with positive time-shifts (time-shift: 3 and 5 in
the top scatter plots).
doi:10.1371/journal.pcbi.1000223.g006
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shifted correlation generally approaches zero over long time-shifts

owing to an increase in the number of connections between the

original segment and time-shifted segments (see Figure 3E). This

reflects a weakened relationship, i.e., not one-to-one but one-to-

multi relationship between the original region (segment) and its

time-shifted regions (connected segments). However, this weak-

ened relationship does not imply a decrease in the reliability of

calculations of time-shifted coefficients by making vague relation-

ships between time-shifted segments, but instead represents the

natural dilution of the correspondence between an original region

and its time-shifted regions.

We further examined the spatial property of the relationship

between GTPase activity and morphology change by comparing

the original EET profile with rotated (see Figure S5A) and

permutated (see Figure S5B) segments of EET profiles. EET

profiles of rotated segments showed a decreased correlation with

increased rotation (see Figure S5C). Because the segments have a

range of lengths along the cell edge, EET did not directly show an

exact proximity. However, it showed the significance of the locality

of morphodynamic regulation signal. The signal locality depen-

dency was also shown by a lack of correlation of the permutated

segments profile with EET.

Comparison of EET with Polar Coordinate-Based Analysis
We compared EET analysis to polar coordinate-based analysis

to further prove the utility of EET. We first performed polar

coordinate-based analysis to the cell in Figure 5 for direct

comparison with EET (Figure 8A). The polar coordinate-based

analysis produced time-position maps of local activities and local

morphological changes that were similar to the activity map and

area difference map of EET (see Figure S6). As for EET, local

activity was determined as a mean value within an ROI, which

was a circle of radius r. We used the same r value for EET and the

polar coordinate-based method. Both analyses produced similar

maps (see Figure S6), and time-shifted cross-correlations were then

calculated (Figure 8B). Both of the time-shifted cross-correlations

showed similar patterns for the timing between local morpholog-

ical changes and GTPase activities (Rac1), i.e., a high correlation

with negative time-shifts and a low correlation with positive time-

shifts. However, the EET analysis showed a higher correlation

than that with the polar coordinate-based analysis at the time-

shifts of 23 to 220 min.

A similar tendency was observed when a population of the cells

in Figure 7 was analyzed by the polar coordinate-based method

(Figure 8C). The averaged peaks of cross-correlations obtained by

the polar coordinate-based analysis were substantially lower than

those obtained with EET, particularly for Cdc42 and Rac1

(Figures 7 and 8C). Permutation tests revealed significant

differences between the time-shifted cross-correlations by the

polar coordinate-based analysis (see Table S1). This might be due

to the relatively large correlation values at the time-shift of zero.

However, the variances were small, and the correlations

prominently decreased when the time-shift value was far from

zero. Statistical tests generally showed significant differences

between two groups when the variance of each group was small.

Here, the small variances in the correlations are likely to be

obtained by averaging a large number of samples with small

values, and the small values may be due to inconsistency in

position alignment between different frames. Note that the polar

coordinate-based analysis acquired a large number of samples at

1-degree intervals (i.e., 360 samples in each image) from a single

cellular edge and that adjacent samples were likely to have similar

values because of physical edge continuity. Our EET implemented

the sensitivity to detect correlations between activities and

morphological changes by maintaining a consistent position

between consecutive frames in terms of segments. Thus, we

believe that the correlation peak at the time-shift of zero, obtained

by the polar coordinate-based analysis, could be an artifact

stemming from position misalignment.

Comparison of EET with Marker-Tracking-Based Analysis
We also compared EET analysis with simple implementation of

marker-tracking-based analysis. In this marker-tracking-based

analysis, virtually defined markers were aligned uniformly along

the spline-fitted cellular edge in the first frame of time-lapse FRET

images. Then, the movements of markers in the direction

perpendicular to the cellular edge during a single time-frame

were measured according to the current marker position and the

intersection of the perpendicular axes of the current cellular edge

and the next cellular edge (Figure 9A and 9B). Figure 9A and 9B

show time-lapse cellular edges of the same cell as in Figure 5,

colored from blue (6 min) to red (11 min), with virtually defined

markers (black dots) and movements of the markers (black lines).

Topological violations of the markers (crossing the black lines) are

indicated in Figure 9B, which is probably due to the highly

complex morphological changes in the edges. Such complex

changes could affect the marker movement maps (although the

map obtained by the marker-tracking-based method was compa-

Figure 7. Time-shifted cross-correlation between GTPase activities and area differences. Rho family small GTPases Cdc42, Rac1 and RhoA
were analyzed in terms of the time-shifted cross-correlation. We examined several cells for each GTPase. Each boxplot shows the first quartile (bottom
of the box), third quartile (top of the box), median (red line) and outliers (red plus marks) for several cells (N = 9 for Cdc42, N = 6 for Rac1 and N = 6 for
RhoA). Where there were no outliers, a red dot is shown at the bottom of the whisker. For Cdc42 and Rac1, the time-shifted correlation is significantly
increased with negative time-shifts (results of the permutation test are shown in Table S1).
doi:10.1371/journal.pcbi.1000223.g007
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rable to that obtained by EET and by polar coordinate-based

analysis; see Figure S6), but our statistical analysis was not affected.

Instead, the changes in marker distribution from a uniform (black

dots on the blue line in Figure 9B) to a non-uniform alignment

(black dots on the red line in Figure 9B) would have non-negligible

influences on the time-shifted statistical analysis (e.g., Figure 1C).

As with EET and the polar coordinate-based method, the local

activity was determined as a mean value within an ROI, which

was a circle of radius r. We used the same r value in EET, the polar

coordinate-based and the marker-tracking-based methods. All

analyses produced similar maps (see Figure S6), and time-shifted

cross-correlations were then calculated (Figure 9C).

The time-shifted cross-correlations in Figure 9C show lower

correlations at the negative time-shifts compared with EET. The

marker-tracking-based analysis produced similar patterns of time-

shifted cross-correlations for Cdc42 and Rac1 (Figure 9D) and the

permutation tests revealed significant differences between the

correlations at zero, and the negative and positive time-shifts (see

Table S1). Similar to the polar coordinate-based method, the

marker-tracking-based analysis revealed weaker characteristics in

the time-shifted cross-correlations. This seems to result from

biased sampling by the non-uniform marker distribution caused by

morphological changes, which can be seen in Figure 9B. Thus, we

suggest that the marker-tracking-based analysis has undesired

affects on the statistical analysis, particularly when the cellular

edge has a persistent deforming property.

Discussion

We have developed an algorithm called EET, which describes

changes in cell morphology using time-lapse live cell imaging.

Spatio-temporal area difference maps revealed morphodynamic

properties as patterns of extension and retraction, and the

correspondence between time-shifted segments, achieved using

anchor points, ensured that the related subdivided edges were

connected between time-shifted frames. Therefore, EET effective-

ly accounts for complex morphodynamics that include persistent

extension or retraction, and arborization. This property is realized

Figure 8. Comparison of morphodynamic analysis by EET with polar coordinate-based analysis. (A) Polar coordinate-based analysis was
performed by setting the origin of coordinates at the mean mass center of the binary images. (B) Time-shifted cross-correlation analysis by polar
coordinates and EET for the cell depicted in Figure 5. Both of the correlation profiles show positive correlations with negative time-shifts and low
correlations with positive time-shifts. However, EET yields a higher correlation than the polar coordinate-based method for the negative time-shifts.
(C) The same cells in Figure 7 were also analyzed by polar coordinate-based analysis. All panels show similar shapes to that in Figure 7; however,
peaks in Cdc42 and Rac were lower with polar coordinate-based analysis than with EET.
doi:10.1371/journal.pcbi.1000223.g008
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by the graphical representation of edge evolution, and ensures

EET is suitable for depicting changes in cell shape, such as the

branching that occurs during neural development. Application of

EET to the extending neurites of PC12 cells provided a clear

evidence of its utility by precisely revealing the persistent

protrusion and retraction patterns. Besides, a second application

to motile HT1080 cells illuminated distributions of local area

differences and corresponding local activity of GTPases.

Although the graph structure itself potentially generates biases

when correlating the one-to-multi segments between temporally

distant frames, we confirmed that our results were consistent

even when we obtained our result differently by associating the

area change in each segment with the average molecular

activities over the corresponding segments (see Figure S7).

Because cellular morphological changes have probabilistic

characteristics [32], the statistical analysis approach used here

is a powerful tool for exploring the nature of dynamic processes

in cellular behaviors.

It has been established that Rho-family GTPases (Rac1, Cdc42

and RhoA) play key roles in morphological changes through

cytoskeletal reorganization [19,33–35]. Furthermore, previous

FRET imaging studies have shown that these GTPases are

exquisitely regulated spatio-temporally [25,26,28,36]. In this

study, we obtained additional results with EET analysis. In

particular, the activities of Rac1 and Cdc42 were localized around

the peripheral regions and strongly correlated with the preceding

changes in the local area, while the local activity of RhoA was only

weakly correlated with changes in the local area. The activity of

Cdc42 immediately preceding to the activity of Rac1 is consistent

with earlier finding, suggesting that Rac1 is activated by active

Cdc42 [37], while the difference in time-shifted cross-correlations

between RhoA and Cdc42/Rac1 (Figure 7) would supports the

existence of feedback loops common to Rac1 and Cdc42.

However, the relationship between RhoA activity and morphology

remains controversial [25,38]. Quantitative analyses in different

experimental conditions will clarify this issue. Our results,

Figure 9. Comparison of morphodynamic analysis by EET with marker-tracking-based analysis. Marker-tracking-based analysis was
performed using virtually-defined markers, and their movements perpendicular to the cellular edge were measured. (A) Cellular edges changing with
time (blue: 6 min; indigo: 7 min; light blue: 8 min; green: 9 min; yellow: 10 min; red: 11 min). The cell analyzed was the same as that used in Figure 5.
Black lines show traces of virtually defined markers. (B) Closed subsection of the lower right area in (A). Black dots show the positions of the markers.
The uniform distribution of the markers (dots on the blue line) changed into a non-uniform distribution accompanied by persistent protrusion (dots
on the red line). (C) Time-shifted cross-correlation analysis by the marker-tracking-based method and EET on the cell in Figure 5. Both of the
correlation profiles show strong positive correlations in negative time-shifts and weak correlations in positive time-shifts. However, EET yielded higher
correlations than the marker-tracking-based method in the negative time-shifts. (D) The same cells as in Figures 7 and 8 were also analyzed by the
marker-tracking-based analysis. All three panels show similar shapes to those in Figures 7 and 8, but the peaks in Cdc42 and Rac were lower with
marker-tracking-based analysis than with EET.
doi:10.1371/journal.pcbi.1000223.g009
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however, should prompt further investigation of the role of

GTPase in regulation of morphodynamics, because this challenges

the hypothesis that Rac1 and Cdc42 promote extension of

lamellipodia or filopodia, respectively.

The precise mechanism by which local area changes precede

local activity around the cell boundary remains unclear from our

current analysis. However, we speculate four possible mechanisms

based on our results. The first explanation is the existence of

upstream signaling molecules that regulate extension in parallel

with GTPase activity. If the reactions of the signaling cascades

involved with extension are faster than those linked to GTPase

activation, extension could precede GTPase activity. In this

respect, it would be interesting to conduct a study similar to the

current one for PI3K, which activates many signaling molecules

including Rac1 activators [39].

The second explanation is that protrusion site-specific stimulation

activates the GTPases. There are several mechanisms by which

physical force can be converted into biochemical responses [40], and

a theoretical study has suggested that signaling activity might be

affected by cell shape [41]. In addition, we have shown that there is a

positive feedback loop from actin polymerization to Rac1/Cdc42

activation via PI3K [39]. Therefore, it is possible that the detected

increase in Rac1/Cdc42 activation was, in fact, secondary to actin

polymerization at the protruding regions.

The third possibility is that signaling crosstalk regulates the timing

of extension and retraction [42]. If the GTPase activity induces

extension and also activates factors that promote edge retraction, the

peak GTPase activity appears to be delayed with morphological

changes by balancing with activated retraction promoter.

The fourth possibility is the existence of different mechanisms for

cell edge extension. EGF-stimulated initial protrusion in MTLn3 rat

adenocarcinoma cells is caused by cofilin activation and severing of

F-actin, which is coincident with actin polymerization and formation

of lamellipodia [43]. On the other hand, Rac1-dependent edge

expansion is followed by stabilization of the protrusions [44]. Further

investigations will enable us to determine which hypothesis

(including coexistence) is most likely with the observed phenomena.

In addition, the effects of the dynamics in the perpendicular axis such

as changes in cell thickness and volume should be determines,

because our results are restricted to the horizontal dynamics. Probe-

related mechanisms should also be considered carefully; for example,

the difference in the expression levels between the FRET probes and

the endogenous Rho GTPases might affect the timing and dynamics

of activation of GTPases.

Quantitative analysis of live cell microscopy images is invaluable

for better understanding of the dynamic properties of processes

such as chemotaxis and development. Such quantitative data can

go beyond descriptions of the dynamic features of cellular behavior

to serve as a scaffold for theoretical study and to enhance system-

level understanding. Based on quantitative data acquired by polar

coordinate-based analysis of neurons, for example, Betz et al.

discussed a bistable stochastic process derived from velocity

histograms and calculated potential distribution [32]. Therefore,

connecting modeling studies with quantitative experimental

studies has the potential to yield breakthroughs in system-level

understanding of cellular functions [45–47]. The EET method

allows us to quantify details of morphological dynamics of cells.

Moreover, it also enables to investigate the spatio-temporal

relationship between morphological dynamics and local molecular

signaling dynamics. Further application of EET to other signals,

e.g., different species of GTPases such as Ras and upstream signals

of Rho GTPases such as PI3K, and also to localization of actin

should shed light on some of the dynamic and complex properties

of regulation of the morphological/migratory systems in cells.

Supporting Information

Figure S1 Effect of radius. (A) Activity maps with several radius

lengths are shown in the upper panels. Maps become increasingly

blurred with increasing radius due to the averaging effect within

each circle. Histograms of activity for each segment (lower panels)

become sharper with increasing radius because an increase in the

circle size leads to both a decrease in the population of outliers and

an increase in the population of mean segments. A few zero-

activity segments occur as a result of failure of cell edge tracing in

preprocessing. (B) Time-shifted correlations for several radii.

Qualitatively similar profiles are shown for four radii. To precisely

determine the length of the radius, however, there is a trade-off

between noise reduction and retention of map clarity. For

subsequent analysis, we set the length at r = 7.5 mm.

Found at: doi:10.1371/journal.pcbi.1000223.s001 (1.80 MB EPS)

Figure S2 Sample numbers with time-shifts. Cross-correlation

between local activity and area difference (black line) and sample

number (red line) was plotted against time-shift. Because we

executed statistical analysis segment-wise, the sample number for

calculating the cross-correlation is the same as the number of all

segments gN21
t = 1Mt. Although the sample number decreases as

the time-shift increases, a statistically sufficient number of samples

(more than 2000) were obtained with EET.

Found at: doi:10.1371/journal.pcbi.1000223.s002 (0.93 MB EPS)

Figure S3 Effect of time-lapse length. (A) We examined how the

time-shifted correlation behaves when the time-lapse length (i.e.,

number of images) changes. The time-shifted correlation was

calculated for different time-lapse values with the same cell. We

made a series of different time-lapse images by extracting selected

images. For example, from seven frames of 1-min time-lapse images

{1 2 3 4 5 6 7}, we extracted 2-min {1 3 5 7} and 3-min time-lapse

images {1 4 7}. All profiles show quantitatively the same behavior;

that is, a high correlation for around 27 to 213 min time-shifts and

no correlation for positive time-shifts. (B) The relationship between

various time-lapse values (1 to 3 min) and sample numbers (segment

numbers) decreases with increasing time lapse. Longer time lapses

tend to show higher correlation owing to the tight relationship

between persistently extending cell peripheries and GTPase

activities. On the other hand, we should choose a time-lapse length

considering the decrease in the sample number, which may reduce

the statistical significance of cross-correlation values.

Found at: doi:10.1371/journal.pcbi.1000223.s003 (1.17 MB EPS)

Figure S4 Figure S4. Time-shifted cross-correlations for the

original and modified data obtained from the same cell as in

Figure 5. The blue line represents the time-shifted correlations of

the original EET profile and the red line represents the EET

profile for the modified data, in which the large area differences

for the segments in the wide protruding region between 6 and

16 min (Figure 5) are replaced with the mean area difference value

of all the segments in each time frame. Similar to the red line, the

green and magenta lines represent the time-shifted correlations

when the retraction area (12–18 min) and both of the protrusion

and the retraction areas are replaced by averaged areas,

respectively. The abscissa denotes the time-shift value (plus:

Rac1 activity precedes to the area differences, minus: the area

difference precedes to Rac1 activity).

Found at: doi:10.1371/journal.pcbi.1000223.s004 (0.96 MB EPS)

Figure S5 Validation of EET by permutation and rotation. The

time-shifted correlation was calculated when the locations of the

identified segments were rotated about the cell boundary (A) and

randomly permutated (B). Each circle schematically denotes the

segments we identified, and the cell edge boundary is represented

EET Analysis for Rho GTPase Time-Lapse Images
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by the entire linked circle. (C) The time-shifted correlations reveal

that the correlation coefficients decrease with increasing rotation

(blue to green lines). Red and pink lines indicate absence of

correlation for permutated segments and an inverse correlation for

halfway-rotated segments, respectively.

Found at: doi:10.1371/journal.pcbi.1000223.s005 (1.10 MB EPS)

Figure S6 Comparison of morphodynamic maps and activity

maps. (A) Local area difference map of a motile HT1080 cell,

acquired by EET (same figure as Figure 5D). (B) Local Rac1

activity map acquired by EET on the same cell (same figure as

Figure 5F). (C) Local edge movement map of the same cell by

polar coordinate-based analysis. The changing color denotes

temporal displacement of the cellular edge in the radial direction

from the center of the cell. In contrast with the area difference

map obtained by EET, the element number in each column (i.e.,

at each time) is consistent. The vertical and horizontal axes denote

the number of degrees along the polar coordinate and the time

(frame number), respectively. (D) Local Rac1 activity map by polar

coordinate-based analysis on the same cell. (E) Local edge

movement map of the same cell by marker-tracking-based

analysis. The changing color denotes temporal perpendicular

displacement of the cellular edge indicated by virtually defined

markers. The vertical and horizontal axes denote the number of

markers along the cellular edge and the time (frame number),

respectively. (F) Local Rac1 activity map by marker-tracking-based

analysis on the same cell. The maps obtained by the polar

coordinate-based and the marker-tracking-based methods resem-

ble that generated by EET.

Found at: doi:10.1371/journal.pcbi.1000223.s006 (2.94 MB EPS)

Figure S7 Original time-shifted correlations of EET and

reversely calculated time-shifted correlations. To examine the

effects of the graph structure on time-shifted correlations, we

obtained differently calculated time-shifted cross-correlations for

the cell depicted in Figures 5, 8B, and 9C. The red line shows

reversely calculated cross-correlations between each area differ-

ence and the average activities of the ancestors, while the blue line

shows the original cross-correlations between each activity and the

summation of the area differences of the ancestors. Note that the

graph structure is the same between the two procedures. This

result suggests that possible biases in the cross-correlation analysis

are symmetric between positive and negative time-shifts on the

graph structure obtained by EET. Although the reverse calcula-

tion with EET shows lower correlations compared to the original

one, this is due to the averaging process for the activities. The

averaged activities dilute the causality between segments in

different time-frames because the segments are obtained based

on the morphological property.

Found at: doi:10.1371/journal.pcbi.1000223.s007 (0.96 MB EPS)

Table S1 P-values of permutation tests for two-sided test.

Found at: doi:10.1371/journal.pcbi.1000223.s008 (0.03 MB

DOC)
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