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Molecular epidemiology 
and genotype/subtype distribution 
of Blastocystis sp., Enterocytozoon 
bieneusi, and Encephalitozoon spp. 
in livestock: concern for emerging 
zoonotic infections
Hanieh Mohammad Rahimi1, Hamed Mirjalali 1* & Mohammad Reza Zali2

Intestinal parasitic infections have high prevalence rate in many regions especially in developing 
countries. The aim of this study was to determine the presence and genotype/subtype of some 
intestinal protozoa in livestock in Iran. Stool samples were collected from cattle, sheep, chickens, and 
horses. The presence of targeted parasites was evaluated using real-time PCR. Genotyping/subtyping 
of positive samples was characterized using sequencing of the ITS and barcoding region, respectively. 
Blastocystis sp., 27.7% (48/173) and Enterocytozoon bieneusi 26.0% (45/173) were the most frequent 
protozoa followed by Encephalitozoon spp., 0.57% (1/173). Cryptosporidium spp. were not detected 
among samples. Encephalitozoon spp., was detected only in chickens 2.2% (1/45). A statistically 
correlation was seen between animals and the prevalence of targeted protozoa. E. bieneusi genotypes 
I (9/38; 23.68%), BEB6 (22/38; 57.89%), D (6/38; 15.79%), and horse1 (1/38; 2.63%) were detected 
among samples. A statistically significant correlation was seen between the genotypes and animals 
(P ≤ 0.05). Blastocystis sp., ST1 (1/45; 2.22%), ST5 3/45; 6.66%), ST7 (1/45; 2.22%), ST10 (24/45; 
53.33%), and ST14 (16/45; 35.55%) were characterized among samples. There was no significant 
correlation between certain subtypes and animals (P = 0.173). The presence of zoonotic potential 
genotypes of E. bieneusi in animals and zoonotic potential subtypes ST1 and ST7 among our samples 
provide a clue about the transmission dynamic of E. bieneusi and Blastocystis sp. between animals–
animals and humans–animals.

Infections caused by intestinal parasites are still one of the important public health problems in the world. A 
wide range of helminths and protozoa can infect or colonize the gastrointestinal tract of humans and animals. 
The enteric protozoa such as Cryptosporidium spp., Enterocytozoon bieneusi, and Encephalitozoon spp., are of 
the most important zoonotic parasites causing diarrhea in  humans1, which infect a wide range of domesticated 
and wild animals, as  well2. In addition, Blastocystis sp. is the a prevalent protist, which its pathogenic role is still 
under  question3.

These microorganisms are typically transmitted through several routes, such as direct contact with infected 
persons (anthroponotic transmission) or animals (zoonotic transmission), and ingestion of infective cyst/ oocyst/
spore through contaminated water or  food4,5. Asymptomatic infections due to aforementioned parasites are 
mostly reported from immunocompetent subjects; however, a broad range of clinical manifestations like chronic 
diarrhea, nausea, weight loss, vomiting, dysentery, and fever have been recorded from children, travelers, and the 
elderly individuals. In general, the clinical symptoms in immunocompromised individuals, especially in  HIV+/
AIDS patients are more  severe6,7.
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As for Cryptosporidium, 1.3 million deaths worldwide with increasing reports of diarrheal diseases has placed 
this protozoan as the fourth leading cause of death in children under the age of 5-years8. Blastocystis sp., is an 
intestinal protist, living in the digestive system of humans and a large variety of non-human hosts including 
non-human primates, birds, and other mammals. Several studies have shown that people with close contact to 
animals are more at higher risk for Blastocystis sp.  infection9–11.

Microsporidia are a large and diverse group of obligatory intracellular pathogens, which can infect a broad 
spectrum of vertebrates and invertebrates including mammalian, birds, fishes, and insects, over the  world12–15. 
Regarding the phylogenetic analysis of conserved genes, microsporidia are now reclassified as  fungi16,17. E. 
bieneusi and Encephalitozoon species including (E. cuniculi, E. intestinalis and E. hellem) are the major species of 
microsporidia, infecting a wide range of mammalian hosts including humans and animals, and are responsible 
for almost all of the intestinal  infections18,19. However, clinical symptoms of microsporidiosis range from self-
limited diarrhea in immunocompetent subjects to disseminated infection in immunocompromised patients.

Therefore, concerning the importance of zoonotic transmission of Cryptosporidium, Blastocystis sp., E. bie-
neusi, and Encephalitozoon spp., the current study aimed to investigate the prevalence of these protozoa using a 
sensitive rapid molecular method. In addition, the genotypes and subtypes of positive cases were characterized 
to provide data on their host-adaptation and potentially zoonotic transmission.

Results
Real-time PCR showed that from 173 stool samples, targeted protozoa were identified in 80 (46.2%) samples. 
Accordingly, Blastocystis sp., E. bieneusi, and Encephalitozoon spp. were detected from 27.7% (48/173), 26.0% 
(45/173), 0.57% (1/173) of samples, respectively (Supplementary Fig. 1). Blastocystis sp. and E. bieneusi were the 
most common species detected in samples. Cryptosporidium spp. were not detected in samples. According to 
results, the prevalence of the parasites in cattle was 23/32 (71.87%), followed by sheep 40/70 (57.14%), chickens 
14/45 (31.11%), and horses 3/26 (11.53%). A statistically correlation was seen between types of animal and the 
prevalence of targeted protozoa (P < 0.05).

The mean ± SD of Ct values of positive samples of Blastocystis sp. in cattle, sheep, and chickens were shown 
as fallow: 28.08 ± 2.74, 27.55 ± 2.12 and 28.39 ± 2.07, respectively (Supplementary Fig. 2a). Also, real-time PCR 
indicated mean ± SD of  Tm values of positive samples of Blastocystis sp. in these animals as fallow: 79.48 ± 0.41, 
79.11 ± 0.19, and 79.60 ± 0.84 (Supplementary Fig. 3a). The prevalence rate of positive samples of Blastocystis sp. 
in cattle, sheep, and chickens was shown as fallow: 50% (16/32), 42.9% (30/70), 4.4% (2/45), respectively (Table 1). 
The results of statistical analysis showed that there was a statistical significant association between the presence 
of Blastocystis and the types of animal (P < 0.05).

Concerning the results, mean ± SD of Ct values for positive samples of E. bieneusi in cattle, sheep, chickens, 
and horses were shown as fallow: 28.64 ± 4.26, 30.2 ± 1.84, 31.37 ± 1.15, and 29.02 ± 0.01, respectively (Supplemen-
tary Fig. 2b). Also, real-time PCR indicated mean ± SD of  Tm values for positive samples of E. bieneusi in these 
animals as fallow: 82.30 ± 0.77, 81.71 ± 0.74, 82.63 ± 0.19, and 82.40 ± 0.17, respectively (Supplementary Fig. 3b). 
Furthermore, the prevalence rate of E. bieneusi in cattle, sheep, chickens, and horses were shown as fallow: 34.4% 

Table 1.  Intestinal parasites identified in domestic animals by real-time PCR.

Animals (no. samples)

Parasites

Total infection (%) Blastocystis sp. (%) Enterocytozoon bieneusi (%) Encephalitozoon spp. (%)

Cattle
(n = 32) 23 (71.87) 16 (50) 11 (34.4) –

Sheep
(n = 70) 40 (57.14) 30 (42.9) 18 (25.7) –

Chicken
(n = 45) 14 (31.11) 2 (4.4) 13 (28.9) 1 (2.2)

Horse
(n = 26) 3 (11.53) – 3 (11.5) –

Total = 173 80 (46.2) 48 45 1

Table 2.  The genotype distribution of E. bieneusi among animals.

Animals

Genotype

Total (%)I (%) BEB6 (%) D (%) Horse 1 (%)

Cattle 7 (77.8) 1 (4.5) 2 (33.3) – 10 (26.3)

Sheep – 17 (77.3) – – 17 (44.7)

Chicken 2 (22.2) 3 (13.7) 4 (66.7) – 9 (23.7)

Horse – 1 (4.5) – 1 (100) 2 (5.3)

Total 9 (23.7) 22 (57.9) 6 (15.8) 1 (2.6) 38 (100)



3

Vol.:(0123456789)

Scientific Reports |        (2021) 11:17467  | https://doi.org/10.1038/s41598-021-96960-x

www.nature.com/scientificreports/

(11/32), 25.7% (18/70), 28.9% (13/45), 11.5% (3/26), respectively (Table 1). No statistical significant association 
was evidenced between the presence of E. bieneusi and the types of animal (P = 0.230).

Also, Encephalitozoon sp. was observed only in one chicken sample with Ct and  Tm values of 31.72 and 84.7, 
respectively (Supplementary Figs. 2, 3c). Furthermore, the prevalence rate of Encephalitozoon sp. in chicken 
was 2.2% (1/45) (Table 1). No statistical significant association was evidenced between the presence of Encepha-
litozoon sp. and the types of animal (P = 0.595). In addition, no cases of Cryptosporidium spp. were detected by 
real-time PCR.

E. bieneusi genotyping and phylogenetic analysis. The ITS fragment of the ribosomal RNA (rRNA) 
gene was successfully amplified among 38/45 (84.44%) of real-time PCR-positive samples. All amplified samples 

Table 3.  Genotype distribution, classification, and accession numbers of E. bieneusi-positive samples.

Sample Hosts Genotypes Groups Accession number

EA1 Chicken D 1a MW429392

EA2 Chicken I 2b MW429393

EA3 Chicken I 2b MW429394

EA4 Cattle I 2b MW429395

EA5 Cattle I 2b MW429396

EA6 Cattle I 2b MW429397

EA7 Cattle I 2b MW429398

EA8 Cattle I 2b MW429399

EA9 Cattle I 2b MW429400

EA10 Sheep BEB6 2c MW429401

EA11 Sheep BEB6 2c MW429402

EA12 Sheep BEB6 2c MW429403

EA13 Sheep BEB6 2c MW429404

EA14 Sheep BEB6 2c MW429405

EA15 Sheep BEB6 2c MW429406

EA16 Sheep BEB6 2c MW429407

EA17 Sheep BEB6 2c MW429408

EA18 Sheep BEB6 2c MW429409

EA19 Cattle D 1a MW429410

EA20 Sheep BEB6 2c MW429411

EA21 Sheep BEB6 2c MW429412

EA22 Sheep BEB6 2c MW429413

EA23 Sheep BEB6 2c MW429414

EA24 Cattle D 1a MW429415

EA25 Sheep BEB6 2c MW429416

EA26 Chicken BEB6 2c MW429417

EA27 Cattle BEB6 2c MW429418

EA28 Sheep BEB6 2c MW429419

EA29 Chicken D 1a MW429420

EA30 Chicken BEB6 2c MW429421

EA31 Chicken D 1a MW429422

EA32 Chicken BEB6 2c MW429423

EA33 Chicken D 1a MW429424

EA34 Cattle I 2b MW429425

EA35 Sheep BEB6 2c MW429426

EA36 Sheep BEB6 2c MW429427

EA37 Horse Horse 1 1e MW429428

EA38 Horse BEB6 2c MW429429

EA39 Cattle Not amplified – –

EA40 Sheep Not amplified – –

EA41 Chicken Not amplified – –

EA42 Chicken Not amplified – –

EA43 Chicken Not amplified – –

EA44 Chicken Not amplified – –

EA45 Horse Not amplified – –
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Figure 1.  Phylogenetic tree of the ITS gene for E. bieneusi isolated from cattle, sheep, chicken, and horses 
together with reference sequences represents that all identified genotypes were cluster in two groups: 1 (1a and 
1e) and 2 (2b and 2c). The phylogenetic tree was drawn using the maximum-likelihood method and the Tamura 
3-parameter model. Bootstrap support (%) values of > 75% are indicated above the branches. Asterisks indicate 
reference genotypes. Sh: Sheep; Ca: Cattle; Chi: Chicken; Ho: Horse.
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were effectively sequenced and the BLAST analysis showed the presence of the genotypes I (9/38; 23.68%), BEB6 
(22/38; 57.89%), D (6/38; 15.79%), and horse1 (1/38; 2.63%) among samples. A statistically significant cor-
relation was seen between the genotypes and animals (P ≤ 0.05). The genotype I was reported from cattle (7/9; 
77.77%) and chickens (2/9; 22.23%). The genotype BEB6 was the most prevalent genotype and was characterized 
from sheep (17/22; 77.27%), chickens (3/22; 13.63%), cattle (1/22; 4.54%), and horse (1/22; 4.54%). The genotype 
D was identified from chickens (4/6; 66.67%) and cattle (2/6; 33.33%). The genotype horse1 was only character-
ized from horse samples (Tables 2, 3). The phylogenetic tree of the internal transcribed spacer (ITS) fragment of 
E. bieneusi revealed that all the genotypes were clearly separated in accordance with the currently known geno-
types and groups. All the genotypes D, horse1, I, and BEB6 were also clearly divided into four clusters including 
1a, 1e, 2b, and 2c, respectively (Fig. 1).  

Blastocystis subtyping and phylogenetic analysis. The barcoding region was successfully amplified 
among 47/48 (97.91%) of samples, which were Blastocystis sp.-positive using real-time PCR. All positive samples 
were sequenced that apart from two samples, all other 45 PCR products provided suitable sequencing results. 
Accordingly, sequencing results represented the presence of ST1 (1/45; 2.22%), ST5 3/45; 6.66%), ST7 (1/45; 
2.22%), ST10 (24/45; 53.33%), and ST14 (16/45; 35.55%) among samples (Table 4). The statistical correlation 
between certain subtypes and animals was assessed that the results showed no significant correlation (P = 0.173). 
ST1 was only characterized from cattle. ST5 was detected from cattle (1/4; 33.33%) and sheep (2/3; 66.66%). 
ST7 was only reported from chicken. ST10 was the most prevalent subtype and was detected from sheep (16/24; 
66.66%), cattle (7/24; 29.16%), and a chicken (1/24; 4.16%). ST14 was identified in sheep (10/16; 62.5%) and 
cattle (6/16; 37.5%). The allele analysis represented that ST1 was allele 4. All ST5 sequences were allele 115. ST7 
showed allele 99, and all ST10 sequences exhibited allele 152 (Table 5). The phylogenetic analysis showed that 
all subtypes were clearly separated based on the currently known subtypes. The phylogenetic tree also revealed 
that there was no separation based on the hosts. In addition, similar subtypes, which were isolated from different 
hosts, were clustered together with bootstrap support ranging from 80 to 99% (Fig. 2).

Discussion
Blastocystis sp., microsporidia, and Cryptosporidium spp., are among protozoa, which may be zoonotically trans-
mitted to humans. In the current study 46.2% of samples were detected positive for selected parasites using 
real-time PCR. This prevalence rate is similar to previous reports from  Belgium20,  Canada21,  France22,  China12, 
but is higher than another report from China (25.6%)23. Although evaluated pathogens between our study and 
most of indicated reports are similar, it seems that method of evaluation has critical role in true estimation of 
the prevalence. Actually, in the study performed by Yu et. al. (2018)23, parasitological techniques were used to 
detect parasites while molecular genotyping was performed for only those samples, which were positive for 
Giardia and Cryptosporidium; therefore, a lower prevalence rate was expectable. In this regard, Incani et al., 
(2017)24 investigated the prevalence of intestinal parasites in a rural community and compared the results with 
microscopy, and concluded that real-time PCR was a more sensitive technique, although microscopy could be 
advisable, particularly in cases without molecular tests.

E. bieneusi is a prevalent microorganism in humans and animals. Increasing reports suggest the importance 
of zoonotic transmission of E. bieneusi due to the low host-specificity of most of its  genotypes18. In the current 
study, E. bieneusi was detected from 34.4% (11/32), 25.7% (18/70), 28.9% (13/45), and 11.5% (3/26) of cattle, 
sheep, chickens, and horses, respectively, with an overall prevalence rate 26.0% (45/173). The prevalence of E. 
bieneusi in cattle is higher than previous reports from  China15,25,26,  Thailand27,  Turkey28,  Brazil29,  Australia30, and 
the United States (USA)31, but it is in the line of reports from the  USA32 and  China33,34. The genotypes D, hoerse1, 
I, and BEB6 were characterized in the current study that are categorized as groups 1a, 1e, 2b, and 2c, respec-
tively. These genotypes were all or individually reported in studies from the  USA31,32,35,  Argentina36,  Germany37, 
 Australia30,  Thailand27, and many studies from  China25,34,38–40. The genotype D is the most frequently reported 
genotype from humans and broad range of domesticated and wild  animals7,41–43 and thought to be a high zoonotic 
potential genotype with worldwide distribution. The genotype I is one of the most prevalent genotypes in cattle, 
which together with the genotype BEB6, were reported from  humans44,45, as well. These genotypes are categorized 
among the genotypes with low level of host specificity and increasing zoonotic  concerns18,46. In contrast to the 
genotype I, which is frequently reported from cattle and thought to be a cattle genotype, the genotype BEB6 is 
common in sheep and was suggested that this genotype has been probably adapted to cattle during  years46,47.

The prevalence of E. bieneusi in sheep is in line of some studies from  China48,49, higher than studies from 
 Brazil29,  Ethiopia50, and lower than reports from  Sweden47 and  China39,51. In the line of our study, the genotype 
BEB6 is the most prevalent genotype reported from  sheep47,50,51. However, this genotype represents low level of 

Table 4.  The prevalence of Blastocystis sp., subtype in studied animals.

Animals

Subtypes

Total (%)ST1 (%) ST5 (%) ST7 (%) ST10 (%) ST14 (%)

Cattle 1 (100) 1 (33.3) – 7 (29.2) 6 (37.5) 15 (33.3)

Sheep – 2 (66.7) – 16 (66.7) 10 (62.5) 28 (62.2)

Chickens – – 1 (100) 1 (4.1) – 2 (4.5)

Total 1 (2.2) 3 (6.7) 1 (2.2) 24 (53.3) 16 (35.6) 45 (100)
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host specificity and is reported from broad range of animals, and  humans45. The genotype BEB6 was recently 
reported from raw milk of sheep and  cattle52, which increases the zoonotic concern due to the emerging of E. 
bieneusi genotype BEB6 in humans.

Reports of the prevalence of E. bieneusi in chickens are limited. For the first time, Reetz et al., (2002)53 detected 
E. bieneusi from two of six chickens in Germany. There are reports of E. bieneusi in chicken in the  world54–56. 
Recently, E. bieneusi was identified in 7.3% of chicken samples in Turkey, neighboring to  Iran57. As a result, E. 

Table 5.  Subtype and allele distribution and accession numbers of Blastocystis sp.,-positive.

Sample Host Subtypes Alleles Accession number

BA1 Cattle Low quality – –

BA2 Cattle ST10 152 MW426210

BA3 Cattle ST5 115 MW426211

BA4 Sheep ST14 Unknown allele MW426212

BA5 Sheep ST5 115 MW426213

BA6 Sheep ST10 152 MW426214

BA7 Sheep ST10 152 MW426215

BA8 Sheep Low quality – –

BA9 Sheep ST14 Unknown allele MW426216

BA10 Sheep ST10 152 MW426217

BA11 Cattle ST10 152 MW426218

BA12 Cattle ST14 Unknown allele MW426219

BA13 Cattle ST10 152 MW426220

BA14 Cattle ST10 152 MW426221

BA15 Cattle ST14 Unknown allele MW426222

BA16 Cattle ST14 Unknown allele MW426223

BA17 Sheep ST10 152 MW426224

BA18 Sheep ST10 152 MW426225

BA19 Cattle ST10 152 MW426226

BA20 Sheep ST14 Unknown allele MW426227

BA21 Chicken ST7 99 MW426228

BA22 Sheep ST14 Unknown allele MW426229

BA23 Sheep ST14 Unknown allele MW426230

BA24 Cattle ST1 4 MW426231

BA25 Sheep ST10 152 MW426232

BA26 Sheep ST10 152 MW426233

BA27 Cattle ST14 Unknown allele MW426234

BA28 Sheep ST10 152 MW426235

BA29 Cattle ST10 152 MW426236

BA30 Sheep ST10 152 MW426237

BA31 Sheep ST10 152 MW426238

BA32 Sheep ST10 152 MW426239

BA33 Sheep ST10 152 MW426240

BA34 Cattle ST14 Unknown allele MW426241

BA35 Sheep ST10 152 MW426242

BA36 Sheep ST14 Unknown allele MW426243

BA37 Sheep ST14 Unknown allele MW426244

BA38 Sheep ST10 152 MW426245

BA39 Cattle ST14 Unknown allele MW426246

BA40 Sheep ST10 152 MW426247

BA41 Sheep ST5 115 MW426248

BA42 Sheep Low quality – –

BA43 Cattle ST10 152 MW426249

BA44 Sheep ST14 Unknown allele MW426250

BA45 Sheep ST14 Unknown allele MW426251

BA46 Sheep ST10 152 MW426252

BA47 Sheep ST14 Unknown allele MW426253

BA48 Chicken ST10 152 MW426254
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Figure 2.  Phylogenetic tree of the barcoding fragment of Blastocystis sp. isolated from cattle, sheep, chicken, 
and horses together with reference sequences. The phylogenetic tree represents that all identified subtypes were 
clearly clustered. The phylogenetic tree was drawn using the maximum-likelihood method and the Tamura 
3-parameter model. Bootstrap support (%) values of > 75% are indicated above the branches. Asterisks indicate 
reference subtypes. Jap: Japan; Chi: China; Fra: France; UK: United Kingdom; Aus: Australia; USA: United State 
of America; Sh: Sheep; Ca: Cattle; Sw: Swamp wallaby; Hu: Human; Chi: Chicken; Pin: Pigeon; Kan: Kangaroo; 
Cam: Camel; Cc: Chinchilla; Elp: Elephant; JMD: Java Mouse Deer. One of Blastocystis sp., ST10 with accession 
number MW426247 was short to be included in phylogenetic tree.
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No Regions Hosts Number of samples/Pos Genotypes (no.) References

1 Asia

China Sheep 260/237 BEB6 (237) Ye et al. (2015)69

China Dairy cattle 1040/202 BEB6 (3), I (87) Hu et al. (2017)70

China Sheep 318/20 BEB6 (12) Qi et al. (2019)71

China Sheep 832/28 BEB6 (18) Li et al. (2019)72

China Cattle (yak) 577/29 BEB6 (2), D (10), I (12) Wu et al. (2019)73

China Sheep 414/177 BEB6 (60) Shi et al. (2016)74

China Dairy cattle 879/214 I (61), BEB6 (17), D (2) Li et al. (2016)34

China Horse 333/75 Horse 1 (37), D (3) Deng et al. (2016)66

China Sheep 953/194 BEB6 (129) Yang et al. (2018)49

China Dairy calves 388/61 D (3), Mixed of J and D (1) Feng et al. (2019)75

China Sheep 620/93 BEB6 (6), I (1) Chang et al. (2019)76

China Dairy cattle 3527/501 I (226), D (4) Wang et al. (2019)25

China Chicken 206/4 D (2) Cao et al. (2020)56

China Horse 262/81 BEB6 (9), D (1), horse1 (4) Qi et al. (2016)65

China Cattle 314/31 I (1) Zheng et al. (2020)77

China Sheep 1014/124 BEB6 (111) Peng et al. (2019)78

China Dairy calves 514/85 I ( 19), D (2) Qi et al. (2016)79

China Sheep 177/61 BEB6 (22) Wu et al. (2018)80

Northeast China Dairy Cattle 133/40 I (2), D (1) Zhao et al. (2015)81

Northern China Horse 325/24 Horse1 (8), BEB6 (2) Li et al. (2020)67

Northeast China Cattle and sheep 1026/100
BEB6 (28), mixed of I and J (3)
mixed of BEB6 and CM7 (5), mixed of BEB6 
and NESH4 (3), mixed of BEB6 and NESH6 
(1), mixed of BEB6 and OEB1 (5)

Jiang et al. (2015)15

Southwestern China Sheep 325/40 BEB6 (24) Chen et al. (2018)82

China Sheep and Cattle (yak) 866/113 BEB6 (38) Zhang et al. (2018)48

China Sheep 360/148 BEB6 (91)* Zhang et al. (2020)51

China Sheep 138/31 BEB6 (15), D (6) Zhao et al. (2015)83

China Cattle 93/35 I (8), mixed of I and J (5), mixed of I, J, and 
CHN1 (1) Zhang et al. (2011)44

China Horse, Yak, Cattle, and Sheep 306/51 BEB6 (25) Zhang et al. (2019)39

Iran Cattle 256/48 D (22) Kord-Sarkachi et al. (2017)84

Thailand Cattle 60/3 D (3) Udonsom et al. (2019)27

South Korea Cattle 538/80 I (3), D (1) Lee et al. (2007)85

South Korea Cattle 180/15 I (7), D (1) Lee et al. (2008)86

2 Europe

Czech Republic Horse 66/34 D (34) Wagnerová et al. (2012)64

Czech Republic Cattle 240/37 I (6) Jurankova et al. (2012)87

Sweden Sheep (lambs) 72/49
BEB6 (32),
mixed of BEB6 and OEB1 (4), mixed of BEB6 
and OEB2 (4)

Stensvold et al. (2014)47

Turkey Horse 300/56 BEB6 (8) Yildirim et al. (2020)68

Germany Cattle 28/3 I (2) Rinder et al. (2000)37

Germany Cattle 60/7 I (1) Dengjel et al. (2001)88

Slovakia Cattle 100/2 I (2) Valenčáková et al. (2019)89

3 Africa

Algeria Horse 219/15 horse1 (6), D (1) Laatamna et al. (2015)63

Algeria Calves 102/11 BEB6 (2), I (1) Baroudi et al. (2017)90

Central Ethiopia Sheep (lambs) 389/39 BEB6 (13) Wegayehu et al. (2020)50

South Africa Cattle 50/9 I (1), D (1) Abu Samra et al. (2012)91

Continued
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bieneusi was detected from 28.9% of chicken samples, which is higher than previous reports in the world. The 
reason for this observation could be related to the method of detection. Actually, in the current study, real-time 
PCR was employed to detect E. bieneusi, which has higher sensitivity compared to conventional PCR. The 
genotype D, BEB6, and I were characterized in chicken samples. As mentioned above, these genotypes show 
low level of host specificity and have been reported from broad range of  animals18. The genotype D was reported 
from chickens in a study conducted by Cao et al. (2020)56, and is known as the most prevalent genotypes in the 
world. Many studies in Iran reported this genotype from  humans7,43,  wastewater58,  vegetables58, and wild and 
domesticated  animals13,42,59,60, which implies the cross-transmissibility of this genotype between humans and 
animals and the importance of zoonotic transmission of the genotype D in Iran. The presence of the genotypes 
BEB6 and I in chicken samples indicates high host-multiplicity and -adaptation of these genotypes.

Reports of E. bieneusi in horses are not too much. In current study, 11.5% of horses harbored E. bieneusi, 
which is close to the previous  reports61–64, but lower than most of reports from  China65–67. In Turkey, a country 
neighboring Iran, 18.7% of horses were detected positive for E. bieneusi68. E. bieneusi genotype horse1 thought 
to be a horse-specific genotype. This genotype was reported from horses in studies from  Colombia61, Czech 
 Republic62,64  Algeria63, and  China65,66. However, this genotype is categorized in group 1, which is known as 
zoonotic group and might be an emerging zoonotic genotype in Iran. In addition, the genotype BEB6 was previ-
ously reported from horses in  Turkey68 and  China65,67. The presence of the genotype BEB6 in horses, chickens, 
cattle, and sheep in our study implies the non-host specificity of this genotype and high capability of the genotype 
BEB6 for adaptation in different hosts (Table 6).

Blastocystis sp., was the most prevalent protozoan among samples 27.7% (48/173). Blastocystis sp. is a protist, 
which is frequently reported from  humans95,96 and  animals97. The prevalence rate of Blastocystis sp. in this study 
was higher than recent reports from Iran that indicated a rate of 14.98%98 among cattle, sheep, and, poultry, and 
17.5%99 among dog and cat samples. Increasing evidence suggest the importance of animal to human transmis-
sion besides human to human transmission of Blastocystis sp. Until now, 17 genetic lineages (subtypes) have 
been confirmed together with recently five suggested  subtypes100. In this study, ST1, ST5, ST7, ST10, and ST14 
were reported from samples. Molecular epidemiology studies represented no host-specificity among subtypes, 
although some subtypes are frequently reported from certain hosts. In this study, ST1 and ST7 were the only 
human-prevalent subtypes, which were detected from cattle and chicken, respectively. ST1 was allele 4, which 
is commonly reported among ST1 isolated from humans, as well. This finding may highlight the importance of 
humans to animals and vice versa besides human to human transmission for this subtype. ST7 is an originally 
avian subtype, which has been reported from humans, as  well101–103. Our finding showed that one of Blastocystis 
sp., isolated from chickens was ST7 allele 99. To our best of knowledge, allele 99 was only detected in a recent 
study by Mohammadpour et al. (2020)99 who characterized ST7 allele 99 from stool samples of dogs in south of 
Iran. The presence of avian subtypes such as ST7 among humans suggests the probability of zoonotic transmis-
sion from avian  source102,103.

As result, ST10 was the major subtype identified in sheep and was also detected from cattle and a chicken. 
ST10 has been frequently reported from sheep and cattle with majority reports from  sheep98,104–106. Notable, the 
presence of ST10 in chickens is not a common phenomenon and there is limited data on the report of this subtype 
in  birds98. Although pseudoparasitism should be ruled out, cross-transmission of subtypes of Blastocystis sp. 
between different hosts appears to be a probable event. All ST10 in our study represents allele 152. Data on the 
allele distribution of ST10 is insufficient. In a most recent study, Mohammadpour et al. (2020)99, characterized 
allele 152 among stool samples from cats and dogs, which support the hypothesis suggesting cross-transmission 
of ST10 among animals. ST14 is a major subtype reported from sheep and cattle; however, there is no sufficient 
data on allele distribution of this subtype (Table 7).

Table 6.  A summary of distribution of the genotypes D, BEB6, I, and horse1 from selected studied hosts 
(sheep, cattle, chicken, and horse) in the world. *Due to lack of access to supplementary tables, the number of 
the genotype BEB6 is attributed to all E. bieneusi-positive samples.  In studies that worked on several hosts, the 
number of samples, positive samples, and the genotypes were justified based on the only selected hosts (cattle, 
sheep, chicken, and horse) and investigated genotypes.

No Regions Hosts Number of samples/Pos Genotypes (no.) References

4 America

Brazil Dairy cattle 452/79 I (33), D (4), mixed I and BEB13 (1), mixed 
BEB4 and I (1) da Silva Fiuza et al. (2015)29

Brazil Chicken 151/24 D (14) da Cunha et al. (2015)54

Brazil Sheep 125/24 BEB6 (11), I (2) da Silva Fiuza et al. (2016)92

Argentina Dairy cattle 70/10 I (2), D (1) Del Coco et al. (2013)36

USA Dairy cattle 571/131 D (2) Santín et al. (2005)93

USA Dairy cattle 990/239 I (134) Santín et al. (2009)94

USA Horse 84/7 Horse1 (7) Wagnerova et al. (2015)62

USA Horse 195/21 Horse1 (13), D (4) Santín et al. (2010)61

USA Dairy cattle 47/17 I (17) Fayer et al. (2012)35

USA Dairy cattle 819/285 I (59), mixed of I and BEB4 (3) Santın et al. (2011)32

5 Oceania Australia Cattle 471/49 I (18) Zhang et al. (2018)30
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Conclusion
The current study provides interesting data about the prevalence of Blastocystis sp., and E. bieneusi and their 
subtypes/genotypes among livestock. The presence of zoonotic potential genotypes of E. bieneusi in animals in 
this study increases the concerns on emerging microsporidia infections among humans who are in close-contact 
with livestock. Despite of levels of host-adaptation among the genotypes I, BEB6, and horse1 in our study, our 
findings propose high probability of cross-transmission of E. bieneusi among different hosts. In addition, charac-
terization of zoonotic potential subtypes ST1 and ST7 among our samples provides a clue about the transmission 
dynamic of Blastocystis sp. between animals–animals and humans–animals, which needs further investigations 
with larger sample size.

Table 7.  A summary of distribution of the subtypes 1, 5, 7, 10, and 14 from selected studied hosts (sheep, 
cattle, chicken, and horse) in the world. NA: not assigned.  This table contains only those studies that amplified 
and sequenced the “barcoding region” of the SSU rRNA gene of Blastocystis sp.  In studies that worked on 
several hosts, the number of samples and the number of positive samples were justified based on the only 
selected hosts (cattle, sheep, chicken, and horse).

No Regions Hosts
Number of samples/
Pos Subtypes (no.) References

1 Asia

Iran Chicken, sheep, cattle 395/115 1 (2), 5 (2), 7 (7), 10 
(1), 14 (14) Salehi et al. (2021)107

Iran Cattle, sheep, chicken 322/64 7 (15), 10 (31), 14 (15) Rostami et al. (2020)98

Iran Cattle 75/11 5 (9), 10 (2) Sharifi et al. (2020)108

Malaysia Cattle 80/35 1 (2), 5 (7), 10 (17), 
14 (1)

Kamaruddin et al. 
(2020)109

Malaysia Cattle 3/1 10 (1) Mohammad et al. 
(2018)110

Malaysia Chicken 104/27 1 (3), 7 (12) Noradilah et al. 
(2017)111

Malaysia Chicken 179/47 1 (1), ST7 (5) Farah Haziqah et al. 
(2018)112

Lebanon Dairy cattle 254/161 1 (9), 5 (3), 7 (1), 10 
(55), 14 (46) Greige et al. (2019)104

Indonesia Cattle 108/108 10 (20) Suwanti et al. (2020)113

Indonesia Chicken 38/13 7 (8) Yoshikawa et al. 
(2016)114

Thailand Cattle 42/21 10 (2) Udonsom et al. 
(2018)11

China Cattle 526/54 5 (1), 10 (41), 14 (10) Zhu et al. (2017)115

China Sheep 832/50 5 (8), 10 (25),14 (10) Li et al. (2018)105

China Yak (cattle) 1027/278 10 (170), 14 (70) Ren et al. (2019)116

China Cattle, sheep 256/20 1 (1), 5 (1), 10 (13), 
14 (3) Wang et al. (2017)117

China Chicken 46/6 7 (3) Wang et al. (2018)118

United Arab Emirates Cattle, sheep 114/23 10 (7), 14 (3) AbuOdeh et al. 
(2019)106

South Korea Cattle 1512/ 101 1 (6), 5 (5), 10 (9), 
14 (10) Lee et al. (2018)119

Japan Dairy cattle 133/57 10 (1), 14 (44) Masuda et al. (2018)120

2 Europe

Turkey Cattle 80/9 10 (2), 14 (7) Aynur et al. (2019)121

England Cattle, sheep, chicken 46/29
1 (1), 5 (2), 7 (1), 10 
(14), 14 (2), mixed 
type (9)

Alfellani et al. 
(2013)122

Denmark Cattle, sheep NA 5 (3), 10 (23) Stensvold et al. 
(2009)123

3 Africa Libya Cattle 36/15
ST5 (2), ST10 (6), 
ST14 (2), mixed 
type (5)

Alfellani et al. 
(2013)122

America

USA Cattle, chicken 36/8 10 (7), 7 (1) Santín et al. (2011)124

USA Dairy cattle 47/9 10 (6), 14 (1), mixed 
type (2) Fayer et al. (2012)35

USA Dairy calves 2539/73 ST5 (27), ST10 (5), 
ST14 (8)

Maloney et al. 
(2018)125

Colombia Cattle 25/20 1 (12) Ramírez et al. 
(2014)126
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Materials and methods
Ethics approval and consent to participate. Informed consent was taken from animal’s owners. Sam-
ples were taken during the veterinary medical care or checkup. All experimental protocols were approved by 
the Research Institute for Gastroenterology and Liver Diseases and all procedures performed in this study were 
approved by the ethical standards (IR.SBMU.RIGLD.REC.1398.033) released by Ethical Review Committee of 
the Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, 
Tehran, Iran. In addition, all methods were carried out in accordance with relevant guidelines and regulations, 
and all authors complied with the ARRIVE guidelines.

Sample collection. A total of 173 stool samples were collected from domesticated animals including cat-
tle, sheep, horse, and chickens. Stool samples of cattle, sheep, and chickens were from animal husbandry of two 
Kordestan and Lorestan provinces, western district of Iran. To avoid sampling biases, all samples of each farm 
were taken in one day. In addition, horse samples were collected from a horse riding club in Tehran province 
(Fig. 3). To avoid from sampling biases, all samples were collected from stalls before cleaning in one day. All 
samples were collected during Dec 2017 to Feb 2019. Samples were collected in appropriately sealed, labeled, 
and clean packages, and transported to the parasitology laboratory in the Research Institute for Gastroenterol-
ogy and Liver Diseases, Shahid Beheshti University of Medical sciences, Tehran, Iran without preservative solu-
tions. During 48 h after sampling, all samples were transferred to sterile 1.5 mL tubes and kept out in − 20 °C 

Figure 3.  Iran map highlighting the sampling sites. The raw map was downloaded from free web  source: 
https:// commo ns. wikim edia. org/ wiki/ Atlas_ of_ the_ world and edited with Photoshop cc by Hanieh Mohammad 
Rahimi.

Table 8.  Primers used in this study. *The fragment size is different regarding the species.

Target organism Primer name Primers sequence (5′ to 3′)
Approximate size of amplified 
fragment (bp) Annealing (°C) Target gene References

E. bieneusi EbITS-89F
EbITS-191R

TGT GTA GGC GTG AGA GTG 
TAT CTG 
CAT CCA ACC ATC ACG TAC 
CAATC 

103 60 Internal transcribed
spacer (ITS)

127

Encephalitozoon spp. MSP1F
Eint227R

CAC CAG GTT GAT TCT GCC 
TGAC 
CTA GTT AGG CCA TTA CCC TAA 
CTA CCA 

214* 60 Small subunit ribosomal RNA 127

Cryptosporidium spp. JVAF
JVAR

ATG ACG GGT AAC GGG GAA T
CCA ATT ACA AAA CCA AAA 
AGTCC 

159 58 18S ribosomal RNA 128

Blastocystis sp. BHRMF
BHRMR

CGA ATG GCT CAT TAT ATC 
AGTT 
AAG CTG ATA GGG CAG AAA CT

220 60 18S ribosomal RNA 129

https://commons.wikimedia.org/wiki/Atlas_of_the_world
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until DNA extraction and further analyses. DNA extraction was performed during the six months from sample 
collection.

DNA extraction and purification. In order to extract total DNA from samples, aliquots of 250 mg (250 μL 
for liquid/diarrheic stools) of stool samples were placed in 1.5-mL tubes. In the case of formed samples, 250 mg 
of stool samples was suspended in one mL sterile PBS (pH = 7–8). Samples were centrifuged at 2500×g for 5 min, 
supernatant was discarded, and DNA was extracted from the remained pellet using stool DNA Extraction kit 
(Yekta Tajhiz Azma, Tehran, Iran). Finally, purified DNA was stored at − 20 °C until use in real-time PCR.

Performing real-time PCR amplification. Four different specific primers targeting ribosomal genes of 
Cryptosporidium spp., Blastocystis sp., E. bieneusi, and Encephalitozoon spp., were selected (Table 8).

Real-time PCR was carried out using Rotor-Gene Q (QIAGEN, Germany) real-time instrument. The real-
time PCR reactions were conducted in a 15-μL total volume containing 7.5 μL of 2 × real-time PCR master mix 
(BIOFACT, Korea), 0.5 μL of each primer (5 ρM), 3.5 μL of distilled water, and 3 μL of template DNA. Amplifica-
tion reactions were done as follows: 95 °C for 10 min followed by 40 cycles: 95 °C for 25 s, 59 °C for 30 s, 72 °C 
for 20 s, and ramping from 70 °C to 95 °C at 1°Cs−1. Appropriate positive sequenced controls for each parasite 
together with sterile distillated water as negative controls were tested in each run. The real-time PCR assays were 
carried out in duplicate to check the reproducibility. The melting profiles were also analyzed using Rotor-Gene 
Q software to exclude non-specific amplifications and primer-dimers.

Real-time PCR results were considered negative when the Ct value was more than 38 or no amplification 
curve was obtained. All samples with Ct value above 35 were either retested or their melting curve were justified 
by the positive control to confirm the result.

Genotyping of E. bieneusi. To characterize the genotypes, Nested PCR was employed to amplify the ITS 
fragment of the rRNA gene of E. bieneusi, which were positive by the real-time PCR, as previously mentioned 
by Mirjalali et al. (2015)43. Primers EbGeno-Fe (5′-TTC AGA TGG TCA TAG GGA TG-3) and EbGeno-Re (5-ATT 
AGA GCA TTC CGT GAG G-3) were used to amplify a 465-bp fragment of the ITS gene. Afterward, EbGeno- Fi 
(5′-TCG GCT CTG AAT ATC TAT GG-3′) and EbGeno-Ri (5′-ATT CTT TCG CGC TCGTC-3′) together amplified 
a 410-bp of the targeted fragment.

Blastocystis subtyping. The barcoding region of Blastocystis sp. was amplified using primers RD5 (5′-
ATC TGG TTG ATC CTG CCA GT-3′) and BhRDr (5′-GAG CTT TTT AAC TGC AAC AACG-3′)130 in samples, 
which were positive using real-time PCR. Positive sequenced isolates of E. bieneusi and Blastocystis sp. together 
with sterile distillated water were included in each PCR run as positive and negative controls, respectively. To 
visualized the targeted fragments, 5 μL of PCR products was electrophoresed on 1.5% of agarose gel in TBE 
(0.09 M Tris, 0.09 M boric acid, 2 mM EDTA), stained with 0.5 μg/mL ethidium bromide, and visualized with 
UV transilluminator (Cleaver Scientific Ltd, Warwickshire, United Kingdom). All positive PCR products were 
sequenced using an ABI 3130 sequencer (Applied Biosystems, USA).

To characterize the genotypes and subtypes of E. bieneusi and Blastocystis sp., respectively, generated 
sequences were compared in the basic local alignment search tool (BLAST) search (http:// www. ncbi. nlm. nih. 
gov/ blast/) and then aligned and analyzed together with references orthologs, downloaded from the GenBank 
database, by the ClustalW program incorporated in BioEdit v. 7.2.6 software. Moreover, to obtain the alleles of 
Blastocystis sp. subtypes, the sequences of each subtype were subjected to typing tool (http:// pubml st. org/ blast 
ocyst is/) database. The generated sequences were submitted in the GenBank database with accession numbers 
MW429392–MW429429 and MW426210–MW426254 for E. bieneusi and Blastocystis sp., respectively.

Phylogenetic analysis. Phylogenetic trees were drawn for the ITS fragment and the barcoding region of 
E. bieneusi and Blastocystis sp., respectively, using the maximum-likelihood algorithm and Tamura-3-parameter 
substitution model in MEGAX software (http:// www. megas oftwa re. net/)131. Bootstrap analyses with 1000 rep-
lications were employed to test the reliabilities of the trees. A number of reference sequences retrieved from the 
GenBank database were also included, alongside with our sequences to evaluate the phylogenetic relationships 
among isolates.

Statistical analysis. Statistical analysis was performed using SPSS version 23 software (SPSS Inc., IBM, 
Chicago, IL, USA). Pearson’s chi-squared (χ2) for independence and Fisher’s exact two-sided tests were con-
ducted to evaluate the prevalence and association between parasite and animals. A P value < 0.05 was considered 
statistically significant.

 Data availability
All generated data from the current study are included in the article and its supplementary materials and data.
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