
Rudra et al. BMC Bioinformatics  (2017) 18:143 
DOI 10.1186/s12859-017-1539-6

METHODOLOGY ARTICLE Open Access

Model based heritability scores for
high-throughput sequencing data
Pratyaydipta Rudra1†, W. Jenny Shi2†, Brian Vestal1†, Pamela H. Russell1, Aaron Odell3, Robin D. Dowell4,5,
Richard A. Radcliffe6, Laura M. Saba6 and Katerina Kechris1*

Abstract

Background: Heritability of a phenotypic or molecular trait measures the proportion of variance that is attributable
to genotypic variance. It is an important concept in breeding and genetics. Few methods are available for calculating
heritability for traits derived from high-throughput sequencing.

Results: We propose several statistical models and different methods to compute and test a heritability measure for
such data based on linear and generalized linear mixed effects models. We also provide methodology for hypothesis
testing and interval estimation. Our analyses show that, among the methods, the negative binomial mixed model
(NB-fit), compound Poisson mixed model (CP-fit), and the variance stabilizing transformed linear mixed model (VST)
outperform the voom-transformed linear mixed model (voom). NB-fit and VST appear to be more robust than CP-fit
for estimating and testing the heritability scores, while NB-fit is the most computationally expensive. CP-fit performed
best in terms of the coverage of the confidence intervals. In addition, we applied the methods to both microRNA
(miRNA) and messenger RNA (mRNA) sequencing datasets from a recombinant inbred mouse panel. We show that
miRNA and mRNA expression can be a highly heritable molecular trait in mouse, and that some top heritable features
coincide with expression quantitative trait loci.

Conclusions: The models and methods we investigated in this manuscript is applicable and extendable to
sequencing experiments where some biological replicates are available and the environmental variation is properly
controlled. The CP-fit approach for assessing heritability was implemented for the first time to our knowledge. All the
methods presented, as well as the generation of simulated sequencing data under either negative binomial or
compound Poisson mixed models, are provided in the R package HeritSeq.

Keywords: Heritability, RNAseq, Recombinant inbred panel, Negative binomial mixed model, Compound Poisson
mixed model, Variance partition coefficient

Background
Heritability is an important concept in genetics and pro-
vides a quantitative measure for the proportion of trait
variation that is attributed to genetic variation. It is used in
a variety of fields including psychology, behavioral genet-
ics, and breeding [1, 2]. For example, the heritability of
cow milk yield is crucial for cattle breeders. The heritabil-
ity of the desirable trait, either phenotypic or molecular,
can then be used to predict the genetic merit of a cow and
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help design an appropriate breeding program [3]. Other
uses of heritability are relevant to the study of disease.
If a pattern of inheritance for a disease in a family has
been discovered, it can lead one to hypothesize that one
or more molecular traits are in part responsible for the
development of the disease [4, 5]. Heritability analysis may
then be applied to evaluate the likelihood of an offspring
inheriting the molecular traits and/or the probability of
presenting the symptoms of the disease. This usage can
be extended to personalized medicine. A large list of traits
might be relevant to a disorder, and as a quantitative mea-
sure, heritability provides a way to rank the traits and
helps to prioritize candidates for further investigation [6].
Heritability may be measured for “intermediate” or

molecular traits for a physiological or disease state. Gene
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expression has been well studied as an intermediate trait
in genomics [7–9]. The study of expression quantitative
trait loci (eQTL) and heritability of gene expression is rel-
evant for understanding the basis of complex traits [10].
However, most of the expression trait methodologies are
based on microarray technology and assume the data to
be Gaussian [11]. The rise of high throughput sequenc-
ing (HTS) technology demands the development of new
methods as it produces data that are highly non-Gaussian.
Such technology has several advantages over microar-
rays and is now favored by most researchers [12]. High
throughput sequencing studies of RNA (RNA-Seq) result
in sequence reads that are mapped to a gene or other
genomic feature, and the mapping procedure produces
count data for each feature. The mean-variance relation-
ship in the data is usually different from that of a Gaus-
sian distribution [13]. Sun [14] proposed a method based
on negative binomial regression to find eQTL in RNA-
Seq data. However, methodologies to estimate heritability
scores for such data are lacking.We propose several statis-
tical models and different methods to estimate heritability
for high throughput sequencing data based on linear and
generalized linear mixed effects models.
In animals and plants, panels of Recombinant Inbred

(RI) strains are an excellent resource for systems genet-
ics studies. RI strains have been used in genetic mapping
for over four decades [15, 16]. Details on the origin and
history of RI strains can be found in [17]. Since RI pan-
els allow replicated samples with nearly homogeneous
genetic information per strain under a controlled environ-
ment, they have the advantage of reproducible genotypes
and the ability to separate genetic variability from envi-
ronmental variability. Therefore, an RI panel with an ade-
quate number of replicates and strains facilitates analysis
of complex traits and heritability. In this work, we ana-
lyzed microRNA (miRNA) and messenger RNA (mRNA)
sequencing data from a large RI mouse panel that have
been bred from reciprocal crosses between the Inbred
Long Sleep (ILS) and Inbred Short Sleep (ISS) strains,
called the ILSXISS (LXS) panel. The original long-sleep
and short-sleep lines were selectively bred for a long or
short duration of loss of righting reflex due to ethanol (i.e.,
sleep time) [18, 19]. Although the expression data from the
LXS panel motivated this work, the methods described
in this paper are applicable to any HTS data with bio-
logical replicates and properly controlled environmental
variation and population structure.
We present four methods for estimating heritability that

account for the challenges posed by count and possi-
bly zero-inflated data. Since many of these alternatives
are non-linear models, standard methods do not apply
and we introduce the usage of the Variance Partition
Coefficient (VPC). We also propose a statistical test for
evaluating whether the heritability is greater than zero

and a method for defining confidence intervals. Simu-
lations and the motivating data including miRNA and
mRNA expression from the LXS panel are used to com-
pare and test the methods. We give recommendations
about the performance of the heritability methods under
different situations. Finally, our methods are provided as
an R package HeritSeq.

Methods
Definition of heritability
Heritability of a genetic or phenotypic (P) trait is the pro-
portion of total variance (VP) that is attributable to geno-
typic (G) variance (VG). The classical approach assumes
that the total variance VP can be partitioned into VG, the
variance attributable to genotypes, and VE , the remain-
ing variability, which is also known as variance due to
environment (E). In other words, VP = VG + VE . The
(broad sense) heritability, H2 = VG/VP, is “the propor-
tion of phenotypic differences due to all sources of genetic
variance” [20].
The two most common approaches for estimating her-

itability differ based on the population and sample being
studied. One is based on analysis of correlations and
regression, first developed by Sewall Wright then popu-
larized by Ching Chun Li and Jay Laurence Lush [21–24].
Traditionally, this approach estimates heritability from
simple, often balanced designs, and computes the cor-
relation of offspring and parental traits, the correlation
of full or half siblings, or the difference in the correla-
tion of monozygotic and dizygotic twin pairs. The second
approach is based on the analysis of variance (ANOVA) in
breeding studies, using intraclass correlation among rel-
atives and was originally developed by Ronald A. Fisher
[24, 25]. Given the nature of RI panels, our methods follow
the latter approach and focus on estimation of variance
components.

Heritability for linear mixedmodels: intra-class correlation
A common approach to estimate heritability is to apply
a random effects analysis of variance model and use the
intra-class correlation (ICC) [26]. Such a model usually
involves a fixed intercept, a random effect term to explain
the effect of genetic background (which can be repre-
sented by different strains) and an error term that explains
all other non-genetic variation. A simple model can be

y = α + bs + ε, bs ∼ N
(
0, σ 2

g

)
, ε ∼ N

(
0, σ 2

ε

)
, (1)

where y is the trait, α is the fixed intercept, bs is the ran-
dom effect due to strain s and ε is the random error. σ 2

g =
Var(bs) is the variance due to genotype and σ 2

ε = Var(ε)
is the error variance.
For the above linear mixed model, the variance compo-

nents are additive so the total variance can be written as
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Var(y) = σ 2
g + σ 2

ε . (2)

The intra-class correlation for individuals from the same
genetic strain can be shown to be the proportion of the
total variability explained by the genetic component:

ICC = σ 2
g

σ 2
g + σ 2

ε

. (3)

However, such an interpretation is not straightforward
for a non-linear model.

Heritability for non-linear mixedmodels: variance partition
coefficient (VPC)
Generalized linear mixed models (GLMM) are often used
when the data are not Gaussian. For instance, a count data
model such as the negative binomial with a log-link is a
common choice for modeling RNA-Seq data. A GLMM
version of Eq. 1 is as follows:

h(μ) = α+bs, bs ∼ N
(
0, σ 2

g

)
, E(y) = μ, Var(y) = f (μ).

(4)

Here, the function h is the link function for the GLMM
and the function f describes the mean variance relation-
ship which depends on the assumed statistical distribution
of the phenotype. Unfortunately, the additive property of
the variance components does not hold for GLMMs.
Goldstein et al. [27] proposed a method to partition the

variability in non-linear models. In a multi-level modeling
setup, the authors describe a way to separate the variation
due to the “higher level” (in our example, the strains) and
any other sources of variability that remains. The Variance
Partition Coefficient (VPC) is defined as the proportion
of variability due to the “higher level” compared to the
total variability. For instance, the total variation in y for
the model given by Eq. 4 can be partitioned as

Var(y) = Var(E(y|s)) + E(Var(y|s)). (5)

Here, the first term is similar to the between-strain-
variance and the second term can be considered as aver-
age within-strain-variance. The VPC for this model is:

VPC = Var(E(y|s))
Var(E(y|s)) + E(Var(y|s)) . (6)

In the following sections, we propose four different
methods for modeling the HTS data and derive the VPC
in each case following the framework by Carrasco et al.
[28] and Nakagawa and Schielzeth [29].

Approaches for modeling HTS data
We will consider four different methods for estimating
heritability from HTS data. Two of these methods are
based on linear mixed models (LMM) after transforma-
tion of count data while the other two are based on

GLMMs and therefore do not require the count data to be
transformed.
Data obtained from HTS are counts ranging from 0

to 10,000s, and often contain many zero counts for fea-
tures of interest (e.g., gene, miRNA) in particular samples.
However, true zero inflated models were not consid-
ered because the example datasets examined here did not
reflect explicit zero inflation (see Additional file 1: Section
1.1 and Figure S1).
We propose two GLMMs that can directly use the

data without a transformation: (i) the compound Pois-
son mixed model (CPMM), which is a special case of the
Tweedie distribution, and can model data using a con-
tinuous distribution with a mass at zero; (ii) the negative
binomial mixed model (NBMM) which is the most popu-
lar choice for modeling HTS data due to its simplicity and
ability to accommodate overdispersion. Both CPMM and
NBMM allow for overdispersion, and we used a log-link
in both cases. Below, we describe the LMM, NBMM and
CPMM setups and derive the VPC in each case.

Linearmixedmodel (LMM)
Traditional LMMs can be applied to HTS data after the
data have been properly transformed. A LMM assumes
that the errors are normally distributed, and there are
various ways to transform sequencing data so that the
resulting data are approximately normal. We consider two
popular transformations: (i) voom, in the limmaR package
[13] and (ii) a variance stabilizing transformation (VST),
in the DESeq2 R package [30]. Both methods account for
over-dispersion.
Suppose a dataset contains a total of S sample strains

andG genes. Let Ygsr be the observed number of sequenc-
ing read for the gth gene of sample r from strain s. g =
1, · · · ,G; s = 1, · · · , S; r = 1, · · · ,Rs, where Rs is the num-
ber of biological replicates within strain s. Denote the cor-
responding transformed read (either voom-transformed,
LMM-voom, or VST-transformed, LMM-vst) as Y ∗

gsr . The
LMM can be expressed as the following:

Y ∗
gsr = α∗

g +b∗
gs+ε∗

gsr , b∗
gs ∼ N

(
0, σ 2∗

g

)
, ε∗

gsr ∼ N(0, σ 2∗
εg ).

(7)

For a fixed gene g, the intercept α∗
g is shared among

all samples, while the random effect b∗
gs is strain specific.

Furthermore, b∗
gs and ε∗

gsr are assumed to be indepen-
dently distributed. Under this model, the VPC for gene g
is defined as

VPCLMM
g = Var(E(Y ∗

gsr|s))
Var(E(Y ∗

gsr|s)) + E(Var(Y ∗
gsr|s))

= σ 2∗
g

σ 2∗
g + σ 2∗

εg

.

(8)
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Negative binomial mixedmodel (NBMM)
Sun [14] showed that modeling the HTS data directly
using count data models can be more powerful as com-
pared to using linear models on transformed data. Also,
the interpretation of VPCs as a measure of heritability
becomes problematic if it is calculated from the trans-
formed data. The following two aspects of HTS data were
considered for deciding the choice of model.
It has been repeatedly shown that HTS data are overdis-

persed [31]. The negative binomial distribution has been
the most popular choice to accommodate overdispersion.
Methods such as edgeR [31], baySeq [32], and DESeq2
[33] use the negative binomial distribution in different
ways to model HTS data. However, the existing meth-
ods using negative binomial model primarily concentrate
on the analysis of differential expression rather than her-
itability and do not use mixed effects models. In other
applications, ICC for NBMM has been used for reliability
measurements [28, 34].
Under the NBMM, an observed number of reads aligned

to gene g, Ygsr , follows a negative binomial distribution
with mean μgs and variance μgs + φgμ2

gs, where φg is the
dispersion parameter, shared across strains. The general-
ized linear model uses a log-link.

log(μgs) = αg + bgs, bgs ∼ N
(
0, σ 2

g

)
. (9)

Similar to the LMM, the intercept αg is only gene spe-
cific and the random effect bgs depends on both the genes
and strains. The corresponding VPC for the gth gene is

VPCNBMM
g = Var(E(Ygsr|s))

Var(E(Ygsr|s)) + E(Var(Ygsr|s)) (10)

= Var(eαg+bgs)

Var(eαg+bgs) + E(φge2(αg+bgs) + eαg+bgs)
(11)

= eσ
2
g − 1

eσ
2
g − 1 + φgeσ

2
g + e−αg−σ 2

g /2
. (12)

The last equality holds since eαg+bgs follows a log-normal
distribution and the result is obtained using the mean
and variance of that distribution. Note that VPCNBMM

g

is strictly bounded above by eσ
2g −1

eσ
2g −1+φg

, its range is there-

fore not [0,1], especially if gene g is overdispersed. Also it
is almost always necessary to take into account different
library sizes and possible batch effects for large studies,
which results in post normalized data that are no longer
integer counts. To use the NBMM the normalized data
must be rounded off to the nearest integer.

Compound poissonmixedmodel (CPMM)
Some studies have shown that the negative binomial dis-
tribution might not always be the best model for HTS
data [35, 36]. The compound Poisson distribution model

provides an alternative and has been a popular tool in
actuarial science and economy. However, few applications
have been implemented in the field of biology and genet-
ics. The compound Poissonmodel belongs to the family of
Tweedie distributions that covers a relatively larger class
of mean-variance relationships [37], and includes models
like gamma regression or inverse Gaussian regression. It
has the advantage of being able to model continuous post-
normalized data while still accounting for potential zero
inflation.
Under the CPMM an observed number of reads aligned

to gene g, Ygsr , follows a compound Poisson distribution
with mean μgs and variance φgμ

pg
gs , for some 1 < pg < 2,

where pg is referred to as the Tweedie parameter. Under
the CPMM, with a log-link, the regression on the mean
has the same form as the NBMM:

log(μgs) = αg + bgs, bgs ∼ N
(
0, σ 2

g

)
. (13)

The VPC for gene g can be derived as

VPCCPMM
g = Var(E(Ygsr|s))

Var(E(Ygsr|s)) + E(Var(Ygsr|s)) (14)

= Var(eαg+bgs)

Var(eαg+bgs) + E(φgepg (αg+bgs))
(15)

= eσ
2
g − 1

eσ
2
g − 1 + φge(pg−2)αg+(p2g/2−1)σ 2

g
. (16)

Similar to the derivation for VPCNBMM
g , the final equal-

ity is a consequence of log-normal distribution properties.

Testing the presence of heritability
The point estimate of the heritability score can be used to
interpret the proportion of variability due to genetics. It
is also useful to test whether genetics influence the vari-
ance of a specific trait (e.g., whether the expression of a
particular gene is heritable). We propose a test for the null
hypothesis that the heritability is 0 against the alternative
that it is positive.
From the expression of the VPC for each model, clearly

the VPC for gene g is 0 if and only if σ 2
g = 0. Conceptu-

ally, this is equivalent to the fact that the heritability will
be zero if the variance component attributable to geno-
type is zero. Also, the VPC for each model is an increasing
function of σ 2

g when all other model parameters remain
constant. With indefinite increase of σ 2

g , the VPC con-
verges to its upper bound (1 for LMM and CPMM, 1

1+φ

for NBMM). We use a likelihood ratio test (LRT) to test

H0 : σ 2
g = 0 vs H1 : σ 2

g > 0
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Since the null hypothesis lies on the boundary of the
parameter space, the LRT statistic will follow a 50 : 50
mixture of χ2

0 and χ2
1 distributions [38], i.e. under H0,

−2 log(LR) ∼ 0.5χ2
0 + 0.5χ2

1 .

The null can be accepted or rejected at specific levels by
comparing the observed test statistic with the correspond-
ing threshold of the mixture of chi-square distributions,
and a p-value can also be computed. However, it should be
noted that this method of hypothesis testing is not directly
related with the point estimate of heritability using VPC.
Therefore, the most significant features from the test may
not be the same as the features with the highest heritability
scores (more discussion in “Results” section).

Confidence intervals for heritability
Finding confidence intervals for the heritability scores is
challenging due to the complexity of the heritability score
obtained using GLMMs and the inter-dependence among
the model parameter estimates. Therefore, we have pro-
posed a parametric bootstrap approach [39] to obtain
the confidence intervals for both CPMM and NBMM
approaches. For every fitted model, we bootstrap from
the corresponding parametric family and fit the model.
The appropriate percentiles of the bootstrap distribution
are used as the lower and upper bounds of the confi-
dence interval. We also proposed a third method using
LMM-vst where we bootstrap from the model initially
fitted using NBMM, but the bootstrapped data are fit-
ted using LMM-vst. The justification of this approach lies
in the fact that the variance stabilizing transformation
assumes a negative binomial distribution. This method,
although approximate in nature, has the advantage of
being much faster than the CPMM and NBMM based
bootstrap confidence intervals. We selected LMM-vst
over LMM-voom due to the fact that the former appeared
to be the superior method from each of our simulations
(see Results).

Implementation
Several existing R-packages have been used to implement
the methods described. Packages glmmADMB (Version
0.8.3.3) [40] and lme4 (Version 1.1-12) [41] were used
for fitting NBMMs and the package cplm (Version 0.7-
4) [42] was used for fitting CPMMs. The LMM methods
were fit using lme4 after transforming the data using the
packages limma (Version 3.28.21) [43] or DESeq2 (Ver-
sion 1.12.4) [33]. We have built an R-package HeritSeq
that integrates all of thesemethods to estimate heritability,
perform hypothesis testing, and provide confidence inter-
vals. The package also includes functions to simulate data
from each model.

Data
The LXS RI panel reported by [19] originally consisted of
77 strains. With a well-controlled environment, the panel
allows meaningful estimation of heritability of genetic
traits. The miRNA and mRNA expression datasets used
are based on a subset of the panel with multiple mice
per strain. A miRNA is a small non-coding RNA contain-
ing about 22 nucleotides which promotes degradation or
represses translation of target messenger RNA (mRNA).
miRNAs are well conserved in both plants and animals,
and are a vital and evolutionarily ancient component of
gene regulation [44–48]. Estimating the heritability of the
expression of each miRNA or mRNA can help reveal
which are influenced by genetics.
miRNA data: Derived from [19], a total of 175 mice

(57 LXS strains with 3 replicates and 2 strains with 2
replicates) were sacrificed and had total RNA extracted
from whole brain tissues using the RNeasy Plus Universal
Midi, Mini and miniElute kits for sequencing (Qiagen,
Valencia, CA). The libraries were prepared using the Illu-
mina TruSeq Small RNA Sample Prep kit. Fragments
between 20–35 bp were selected and the libraries were
sequenced on the Illumina HiSeq 2500 platform. The
size selected small RNAs were then mapped using a
novel k-mer matching method to quantify the number of
sequencing reads per individual miRNA. Following map-
ping and quantitation, normalization and batch correction
were performed (see Additional file 1: Section 1.2 and
Figures S2–S4).
mRNA data: The original mRNA dataset includes a

total of 236 samples (42 LXS strains) with either saline
or ethanol treatment [49]. We worked with the saline
treated samples that have at least two biological repli-
cates per strain. The resulting mRNA dataset contains
118 samples (40 LXS strains, 2 to 3 replicates each).
Total RNA was extracted from whole brain tissue using
RNeasy Mini Kits (Qiagen, Valencia, CA), quantity and
quality were determined using a NanoDrop spectropho-
tometer (Thermo Fisher Scientific, Wilmington, DE) and
Agilent 2100 BioAnalyzer (Agilent Technologies, Santa
Clara, CA). The libraries were prepared using Illumina
ScriptSeq RNA-Seq Library Preparation Kit v2. Sequenc-
ing was performed on the Illumina HiSeq 2000 platform.
Details on generation of strain-specific genomes can be
found in the Additional file 1: Section 1.3. Each LXS sam-
ple was aligned with Tophat2 (v2.0.6) to its strain-specific
genome. Gene quantification was performed using HTseq
(v0.6.1) to obtain RNA fragment counts over each anno-
tated gene. The dataset was normalized without any batch
correction, since there was no noticeable batch effect.
Both miRNA and mRNA features were filtered to elimi-

nate those with small counts onmost samples. FormiRNA
we required at least 5 samples to have at least 10 counts;
for mRNA we required at least 2 samples to have at least
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10 counts. We chose 5 to be the number of minimum
samples because the data from parental strains were also
obtained, and each parental strain had at least 5 samples.
As for the mRNA data, only LXS samples were available
to us; each strain had at least 2 samples. After filtering,
the LXS miRNA and mRNA datasets have 881 and 17537
features, respectively. We then adjusted read counts for
effective library size using the R-package DESeq2.

Simulations
To compare the performance of the four methods:
NBMM, CPMM, LMM-vst, LMM-voom, we created five
types of simulations (Table 1). The first type (Simulation
I) explores the behavior of each approach for every com-
bination of model parameters. The goal is to investigate if
certain combinations of parameters result in more precise
estimates of heritability. The second type (Simulation II)
generates a more realistic full dataset where each feature
is based on a distinct combination of model parameters.
This simulation checks how the heritability methods com-
pare across many features that are based on independent
and unrestricted combinations of parameters. The third
type (Simulation III) is based on the model parameter
combinations observed when modeling the preprocessed
LXS RI miRNA dataset. The simulated datasets in this
case reflect the properties of the LXS RI miRNA dataset,
including potential dependence among the features. The
last two simulations compare the four methods through
hypothesis testing for the presence of heritability. The
fourth type (Simulation IV ) used to investigate the type-I
error and power and the fifth type (Simulation V ) com-
pares the confidence intervals using bootstrap. Table 1
provides an overview of the simulation setups. For each
simulation, we generated datasets either under NBMM or
CPMM to examine the performance under model mis-
specification. To distinguish the data generating model
and the fitting model, for the rest of the paper we will use
NB-sim and CP-sim explicitly for data generation; NB-fit
and CP-fit will be used to denote fitting methods being
compared. The methods LMM-vst and LMM-voom will
be simply referred to as VST and voom.

Simulation I: evaluate influence of different parameter
combinations
We generated datasets from different sets of model
parameters to see how the four methods perform under
different situations. The true distribution was assumed
to be either negative binomial or compound Poisson. For
each scenario, we fixed the parameters for negative bino-
mial or compound Poisson distribution, i.e. we had the
same αg and φg (or the same αg , pg and φg) for each g,
but varied σ 2

g to generate different heritability scores for
different features. For each scenario, we simulated 1000
features. For each feature, we simulated data for 300 sam-
ples (50 strains and 6 samples per strain). We computed
the true VPC for each feature and compared these to the
estimated VPCs from the proposed methods. While using
the VST or voom transformations, we treated the 1000
features as one dataset. The parameters specific to the
NB or CP distributions were chosen from the range of
the estimated parameters when the models are fitted to
the LXS-miRNA data. The σ 2

g values were simulated from
a U(0, σ 2

max) distribution where σ 2
max was chosen to be

either 1 or 5.

Simulation II:
In a second set of simulations we sought to examine
the behavior of the proposed methods in a more real-
istic setting where an entire dataset of features with a
wide variety of parameter combinations were simultane-
ously analyzed. One of the main reasons this simulation
paradigm was investigated was the fact that both of the
transform methods (VST and voom) rely on the entire
dataset in their underlying algorithms, so we sought to
give them an opportunity that would better replicate the
scenario they were designed for. This was done under
both the NB-sim and CP-sim models where each fea-
ture had a random set of parameters drawn from an
appropriate distribution (see Additional file 1: Section 1.4
for details).
The dataset generating functions also allow for some

proportion of features to be simulated from a null model
that has a heritability that is identically equal to 0 (i.e.

Table 1 Simulation setup summary

Simulation (φ,α) or (p,φ,α) σ 2 (G, S, Rs)

I. Parameter effects Constant for all features Random samples from Unif(0, σ 2
max), where σ 2

max = 1 or 5 (1000, 50, 6)

II. Exhaustive combo of
parameters

Ind. combo of parameters for every feature Random samples from Unif(0, 5) (1000, 50, 3)

III. Observed combo of
parameters

Estimated from the LXS miRNA dataset (881, 59, 2 or 3)

IV. Size & power Estimated from the LXS miRNA dataset 0,0.1,0.25,0.5,0.75 or 1 (1000, 50, 3)

V. Confidence intervals Specifically chosen to generate heritability scores 0.2, 0.5 and 0.8 (500, 50, 3)

The parameters (φ,α) and (p,φ,α) are for NB-sim and CP-sim, respectively; σ 2 denotes the random effect variance in either model. The last column shows the number of
features (G), strains (S), and biological replicates (RS) in each simulation. Under each scenario, we simulated data using both NB-sim and CP-sim models. Simulation II and III
include 10 replicated synthetic datasets for each case
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the random effect variance σ 2
g = 0 and thus all ran-

dom effects are identically 0). A final option was the
specification of a proportion of features that have a
high heritability. This is achieved in general by forcing
a small dispersion value φg and a larger random effect
variance σ 2

g .
Using this algorithm, we generated 10 datasets each

under 4 combinations of the data generating model and
number of strains S. In all datasets the number of features
G was set at 1,000 and the number of replicates Rs was
fixed at 3. For both NB-sim and CP-sim data we exam-
ined two values for the number of strains S, 25 and 50.
In each of the 40 simulated datasets, 10% of the features
were simulated with 0 heritability and 10% of the fea-
tures were simulated with high heritability. The remaining
80% were simulated with independent draws of the model
parameters (Additional file 1: Section 1.4). All four of the
proposed methods for assessing heritability were fit on
each dataset.

Simulation III: LXSmiRNA dataset based
Datasets generated in Simulation III mimic the LXS
miRNA data described in “Data” section. The model
parameters are obtained from fitting GLMMs to the pre-
processed LXS miRNA dataset. Details on preprocessing
this dataset are discussed in Additional file 1: Section
1.2. We simulated a new dataset based on the estimated
parameters from the regressions under NB-sim and CP-
sim. Both retain the same mean-variance relationships as
the processed dataset Additional file 1: Figure S4. Sim-
ulating based on real data also retains the dependencies
among parameters. Each generated data matrix has the
same number of samples per strain (Rs, ∀s = 1, · · · , S.) and
the same number of genes (G) as the original LXS miRNA
dataset. The simulation procedure was repeated 10 times
with different random seeds.

Simulation IV: power and type-I error of the hypothesis test
We performed a set of simulations to compare the power
and type-I error of the four methods for hypothesis test-
ing. The true distribution was assumed to be either NB or
CP. Datasets with 1000 features, 50 strains and 3 samples
per strain were simulated. For each feature, the param-
eters of the NB (or CP) distribution were selected at
random with replacement from the sets of parameters
estimated from the LXS data (from the first step of Simu-
lation III). A fixed value of σ 2

g was used for each dataset.
We considered six such fixed values: 0 (null hypothesis),
0.1, 0.25, 0.5, 0.75, and 1. The goal was to investigate how
the power of the tests increase as the strain specific vari-
ance component increases. The tests were performed at
5% level, and the type-I error and power of the tests were
recorded.

Simulation V: confidence intervals
In this final set of simulations, we investigated the cov-
erage of our proposed interval estimation methods. The
goal of this simulation was to study the coverage of the
confidence intervals for low (0.2), medium (0.5) and high
(0.8) heritability features. Using NB-sim, we simulated 500
features for each of the three levels of heritability and
computed the proportion of cases where the true heri-
tability is covered by the estimated confidence interval
using the NB-fit, CP-fit, and VST methods. The analysis
is repeated using data generated from the CP-sim model.

Results
In this section we compare the VPC computed via the four
methods: NB, CP, VST, and voom. The performance of
each method in the simulations is evaluated by compari-
son to the true VPC values. For the real data implementa-
tion, we show the pairwise comparisons between the top
methods, as well as the estimated score distributions.

Simulation I: evaluate influence of different parameter
combinations
From the simulation results, we observed that the perfor-
mance of the method is largely driven by the amount of
overdispersion φ and the strength of strain-specific vari-
ance σ 2

g (Fig. 1). When data were generated from the same
model that estimates the heritability, precision is maxi-
mized. The range of the RMSE is [0.03,0.07] for NB-fit
and [0.02,0.11] for CP-fit in such cases. Under model mis-
specification (CP-sim generated data), the performance of
NB-fit suffers when the amount of over-dispersion (φ) is
large and p is small. While with NB-sim generated data,
CP-fit usually suffers when the strain specific variance σ 2

g
is large. The VST approach appears to be quite robust
against the choice of the true distribution, but it is usually
less accurate than the model that is used to generate the
data. VST has the second best performance in 72% of the
cases under NB-sim and in 58% of the cases under CP-
sim. It has low RMSE for NB-sim data (maximum RMSE
= 0.17) and is highly correlated with NB-fit for CP-sim
data (correlation coefficient = 0.86). The performance of
voom is not satisfactory (mean RMSE under NB-fit and
CP-fit are 0.25 and 0.20 respectively), especially when the
data comes from a highly over-dispersed negative bino-
mial distribution. Additional file 1: Figures S5 and S6 show
the comparison of different methods for the two true dis-
tributions under high and low dispersion situations. It
is evident that when the true distribution is CP, NB-fit
may under-estimate the heritability. On the other hand,
when the true distribution is NB, CP-fit may result in
over-estimation of the heritability.
We used a relatively larger number of samples per

strain (6) for this simulation set up since we wanted to
investigate how the methods perform in a relatively ideal
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Fig. 1 Comparison of heritability precision for different combinations
of true model parameters. (Simulation I). Heatmap of Root Mean
Square Error (RMSE) corresponding to the four methods for
estimating VPC. The data are generated from a NB-sim b CP-sim. The
parameter combinations for the simulation are shown by the
sidebars, the darker the color in the sidebar, the higher the value of
the parameter. In the heat map, red indicates better performance
(small RMSE) compared to green

situation. However, we also carried out the simulations
for 3 samples per strain and the results were similar (data
not shown).

Simulation II: more realistic sequencing data
When looking at the results based on the entire simulated
datasets, we again see the pattern of NB-fit, CP-fit, and
VST methods generally agreeing with each other and the
true values, while the voom transform struggles to recover
the true heritability regardless of whether the data were
generated using NB-sim or CP-sim (Fig. 2). We found
that the NB-fit estimates clearly perform best with both
the smallest average bias across all 10 simulated datasets
(0.0005) and RMSE. The next best performing method
was the VST with an average bias of 0.0560, followed by

the CP-fit with an average bias of 0.0876. As in Simulation
I, the voom transform performed the worst of the meth-
ods examined here with an average bias of 0.1822. When
looking for patterns in the bias for each method we see
no systematic trend when using the NB-fit with NB-sim
data, but the CP-fit appears to almost always overestimate
the VPC on such data. The VST shows underestimation
for smaller values of the true VPC while then switching to
overestimating in the larger values. The voom transform
also tends to strictly overestimate the VPC throughout the
range of true values, and also tends to give larger values to
the features that were simulated with a VPC of 0 (stacked
dots above 0 in Fig. 2). In terms of classifying features
as heritable or not, the AUC from creating ROC curves
based on VPC threshold of 0.5 was strong for all 4 meth-
ods. The best performer was again theNB-fit with anAUC
of 0.996while the CP-fit had the lowest AUC of 0.935. This
general behavior for all the methods was repeated in each
of the 10 simulations using the NB-sim data with S = 50,
as well as when S = 25 (data not shown). Adding in the
additional strains in the 10 simulations with S = 50 did
not qualitatively alter the performance of the methods in
terms of average bias or RMSE from what was observed in
the simulations with S = 25.
When using CP-sim data with S = 50, we saw that

the ordering of the methods in terms of average bias and
RMSE changed similarly to what was observed in Sim-
ulation I in that now CP-fit performs the best in terms
for average bias and RMSE, followed by VST, NB-fit, and
then voom (Additional file 1: Figure S7). The same pattern
held for AUC analysis using a 0.5 heritability threshold.
The only major difference from the NB-sim results is that
now all of the methods tended to underestimate the VPC
on CP-sim data, and no method could match the aver-
age bias or RMSE from the NB-fit on NB-sim data. As
was observed with the NB-sim datasets, the average bias,
RMSE, and AUC estimates for all methods were virtually
identical when both S = 25 was used (data not shown).

Simulation III: LXS dataset based
Although the different preprocessing procedures (Addi-
tional file 1: Section 1.2) have limited effect on the VPC
estimation, the results do depend on which GLMM was
used to generate the dataset. Similar to previous simu-
lations, NB-fit, CP-fit and VST show good performance
while the voom approach is worst at estimating heri-
tability. Therefore, we omit the results from voom and
focus only on NB-fit, CP-fit and VST from now on. The
method that matches the true underlying model is best
at distinguishing heritable features as defined by having
a VPC>0.5 (AUC = 0.99 for the NB-fit on the NB-sim
data; AUC = 0.99 for the CP-fit on the CP-sim data, also
see Fig. 3). Under model mis-specification, NB-fit (AUC =
0.98; median RMSE = 0.0822) appears to be more robust
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Fig. 2 Bias comparisons for the four methods for a single NB-sim dataset with 1000 features, 50 strains, and 3 replicates per strain. Bias is measured
as estimated VPC − true VPC

than CP-fit (AUC = 0.97; median RMSE = 0.1041), while
VST shows fairly robust result for both sets of simulated
data (AUC = 0.99 for NB-sim; AUC = 0.98 for CP-sim).

Simulation IV: power and type-I error of the hypothesis test
When the data were simulated from CP-sim, power for
the CP-fit and NB-fit methods were very close (Table 2).
For the NB-sim data, CP-fit method had higher power,
but it also had inflated type-I error (estimated type-I error
= 0.10). The CP-fit method can over-estimate heritabil-
ity when the data are generated from NB-sim. The VST
method appeared to be conservative and hence less pow-
erful in both cases. The voom method had low power for
detecting smaller departures from null, but was quite good
for large departures (data not shown).

Simulation V: confidence interval
The results of the confidence interval simulation (Table 3)
indicate that the confidence interval coverages of all the

methods are slightly below the target 95% for NB-sim
data. The CP-fit based method has higher coverage com-
pared to NB-sim for all true heritability levels. For CP-sim
data, the coverage of all three methods are similar for low
heritability, the percentage coverage being slightly smaller
than 95%. However, the coverage percentage becomes
lower for NB-fit and VST based methods as the true her-
itability score increases. The coverage of CP-fit stays at
the same level. The coverages of NB-fit and VST are sig-
nificantly less than 95% for high heritability when data
are generated from CP-sim. The coverage of VST is the
highest for low heritability, but not satisfactory for higher
heritability under CP-sim.
The average lengths of the confidence intervals are very

similar across methods, approximately 0.3 for low and
medium heritability, and approximately 0.2 for high her-
itability. We have also observed that in most the cases
where the confidence interval does not cover the true her-
itability, the interval underestimates (i.e. the upper limit
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Fig. 3 Accuracy comparisons for Simulation III. RMSE for NB-fit (salmon), CP-fit (green), and VST (blue) across 10 simulated dataset generated based
on either a NB-sim or b CP-sim. The true positives are defined as miRNAs with true VPC greater than 0.5

of the interval is smaller than the true value). The pro-
portions of underestimation among all non-coverages for
NB-fit basedmethod are 75% (NB-sim data) and 97% (CP-
sim data). The same percentages are 80% and 97% for
VST, and 69% and 78% for CP-fit (See Figure S8 for a
representative example).

Application to the LXS RI miRNA dataset
For the real data application, we observed similar result as
in the simulations. The NB-fit, CP-fit, and VST methods
produce highly correlated heritability estimates (Fig. 4).
The locally weighted scatterplot smoothing (LOESS) fits
(red lines in Fig. 4) are roughly linear. The overall VPC
distributions are very similar among the methods. The
result for voom is omitted here due to poor performance.
Since VST is a negative binomial based transformation,
it is not surprising that the results from NB-fit and
VST are highly consistent (ρ = 0.95), as was observed
in the simulations. The CP-fit estimators are also highly
correlated with NB-fit results (ρ = 0.99). The overall
distribution of heritability estimates have similar shape
for NB-fit, CP-fit, and VST; they are all right-skewed.

However, the range of estimates differs slightly between
methods due to theoretical ranges (see Section “Methods”
section).
We also tested the presence of heritability using each

method and looked at the distribution of the correspond-
ing p-values (not shown here). The p-value distributions
are more similar between the two GLMM (NB-fit & CP-
fit) and between the two LMM (VST & voom). This is a
consequence of modeling based on the original data ver-
sus the transformed data and is consistent with the power
comparison results. At False Discovery Rate (FDR) level
0.001, the four methods NB-fit, CP-fit, VST, and voom
respectively report 471 (53%), 475 (54%), 306 (35%), 304
(35%) miRNA features with evidence of heritability (σ 2

g �=
0). Although the heritability estimation and the hypothe-
sis testing use two different statistics and are not expected
to have matching results, the rank correlations between p-
value and heritability estimate within a method are very
high except for voom, which indicates that for the other
three methods the score estimation and testing substan-
tially agree with each other (Additional file 1: Section 2.1
and Figure S9).

Table 2 Type-I error and power (α = 0.05) of the four methods for data simulated from NBMM and CPMM

Data from NB-sim Data from CP-sim

Method/ σ 2
g 0 0.10 0.25 0.50 0.75 1 0 0.10 0.25 0.50 0.75 1

CP-fit 0.10 0.78 0.89 0.94 0.96 0.97 0.04 0.72 0.86 0.92 0.96 0.96

NB-fit 0.04 0.71 0.86 0.92 0.95 0.95 0.04 0.72 0.86 0.92 0.96 0.96

VST 0 0.56 0.76 0.86 0.90 0.92 0 0.55 0.76 0.86 0.90 0.92

The value in a cell denotes the value of the power function (rounded off to 2 places after decimal) for each case. The value of σ 2
g drives the power. The case σ 2

g = 0 reflects

the null hypothesis, therefore corresponding the cell value is the type-I error. Columns with σ 2
g > 0 indicates the power for increasing strain specific variance
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Table 3 Coverage of the VPC by 95% confidence intervals (based on 500 simulations)

Data from NB-sim Data from CP-sim

Method/ True VPC Low Medium High Low Medium High

CP-fit 91.8 (0.32) 93.2 (0.32) 94.2 (0.19) 93.4 (0.32) 92.4 (0.33) 92.8 (0.20)

NB-fit 90.2 (0.31) 91.8 (0.32) 92.0 (0.18) 93.4 (0.31) 90.4 (0.31) 78.4 (0.19)

VST 92.0 (0.32) 91.6 (0.33) 92.4 (0.20) 94.8 (0.32) 89.6 (0.34) 84.0 (0.22)

Coverage percentage is shown at each level of true heritability score for data generated fromNB-sim and CP-sim. Trues VPCs 0.2, 0.5 and 0.8 were considered as representatives
for low, medium and high heritability. The values in parentheses show the average lengths of the intervals for the different cases. 200 bootstraps are used in each case

In addition, we conducted the analysis for CPMM pre-
processed data and the comparison of heritability esti-
mates across methods are similar (Additional file 1: Figure
S10). Regardless of the preprocessing methods, the top
heritable features identified coincide (Table 4). Some of
themiRNAs present a continuous spectrum of reads while
others exhibit bimodal read distributions (Additional
file 1: Figure S11). The feature mmu-miR-446q has a high
heritability score without the bimodal trend (Fig. 6a). Such

sequencing read distribution were also observed for sev-
eral other features, suggesting that those corresponding
miRNAs are likely to have an eQTL.
From a separate eQTL study on the same data using

CPMM model (Additional file 1: Section 1.5), we found
that all of the top 7 heritable miRNAs had an eQTL when
tested at FDR= 0.05.While there were several moderately
heritable miRNA features which did not have an eQTL,
the results show that the highest heritability estimates

Fig. 4 Heritability comparison across estimation methods for the LXS miRNA preprocessed dataset. The histograms with rug (tick marks along the
x-axis) and kernel density plots are shown along the diagonal. The panels below the diagonal show the scatter plots and the LOESS fits for the
pairwise comparisons. The corresponding correlation values are listed above the diagonal
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Table 4 Top heritable miRNA based on the LXS dataset

miRNA VPC (NB) p-value VPC (CP) p-value

novel:chr10_26214 0.959 2.2e–39 0.978 9.6e–38

mmu-miR-5621-5p 0.947 1.2e–27 0.955 1.1e–28

mmu-miR-466q 0.941 1.4e–22 0.982 1.5e–21

mmu-miR-9769-3p 0.914 8.5e–33 0.994 1.6e–33

novel:chr4_11381 0.898 2.6e–31 0.996 8.8e–28

novel:chr8_23508 0.867 1.8e–25 0.994 1.8e–27

mmu-miR-7057-5p 0.844 5.5e–27 0.979 5.3e–25

The second and fourth columns are the VPC scores for the datasets processed and
fit under NBMM (NB-proc & NB-fit) and processed and fit under CPMM (CP-proc &
CP-fit), respectively. The corresponding p-values for testing the presence of
heritability are listed in the adjacent columns. The features are sorted by their
heritability estimates using the NB-fit method

were observed in cases where a single nucleotide poly-
morphism (SNP) is strongly associated with the miRNA
expression. However, there were several miRNAs with
high heritability score, but no eQTL at the above thresh-
old. This shows the utility of the heritability analysis
to find features with high genetic variation that eQTL
analysis alone cannot detect, one possible reason being
the weak association of miRNA expression with multiple
SNPs.

Application to the LXS RI mRNA dataset
As with the miRNA data, NB-fit, CP-fit, and VST show
highly consistent results for the LXS mRNA data (Fig. 5).
There are a few features that exhibit zero VPC scores
under the CP method while displaying small heritabil-
ity under other models. This is an artifact caused by the
optimization algorithm for regression fitting. It does not
affect the identification of moderately or highly herita-
ble features. Similar to the miRNA dataset, the overall
distribution of estimated heritability scores have nearly
identical shape for NB-fit, CP-fit, and VST. They are all
right-skewed and peak near 0. The distributions are much
more narrow compared to the miRNA data. The range
of the estimated heritabilities differs between methods,
but not as much as with the miRNA. This could be due
to the fact that the mRNA dataset includes 16851 fea-
tures while the miRNA data only have 881 features. At
FDR level 0.001, the number of features with significant
presence of heritability are 2470 (15%), 2633 (16%), 1763
(10%), and 1850 (11%) for methods NB-fit, CP-fit, VST,
voom, respectively.
Based on NB-fit, heritability estimate of 16 genes

exceeds 0.95 threshold (Additional file 1: Section 2.2 and
Table S1). Two of them show continuous read distribu-
tion trend, while the others are bimodal (figure not shown
here). We also examined the top 30 heritable features
using either NB-fit, CP-fit, or VST models and found 7

genes that appear across the list: A830036E02Rik, Ccl28,
D030028A08Rik, Exoc3, Gm5148, Gm21967, Krt12. Like
gene A830036E02Rik (Fig. 6b), all of them have bimodal
sequencing read distributions. The read distributions,
their corresponding heritability estimates and p-values are
reported in the Additional file 1: Table S2 and Figure S12.

Discussion
Heritability is an important concept in evolutionary biol-
ogy and relevant for breeding in agriculture and animal
studies. It can be useful to gain insight on the genetic basis
of individual traits [50] and is therefore a critical concept
in the prediction of disease risk in medicine [4]. When
the traits of interest are gene expression, a related analy-
sis is the detection of eQTLs. The top heritable results we
report have a bimodal pattern, which is likely a result of a
single strong eQTL. Despite this overlap, heritability and
eQTL analysis also give complementary information. We
found that other highly heritable miRNA features did not
show a bimodal pattern, and may be a result of associa-
tions from multiple loci more difficult to detect in eQTL
analysis [51, 52].
While we did observe this bimodal distribution in many

of the features with the highest heritability measures, we
do not believe that it necessitates the use of a zero-inflated
model. For a given miRNA or mRNA that showed this
bimodal distribution of counts, virtually all of the small
or zero counts were observed in samples from strains that
had means close to zero. The zero counts were not equally
distributed across all of the strains, and thus we found
that the strain-specific means estimated using the random
effects within the GLMMs (i.e. NBMM and CPMM) were
able to capture the observed behavior.
A crucial element for proper heritability estimation is

the use of a genetically well characterized population. We
take advantage of RI panels maintained in controlled envi-
ronments. The generalized linear models discussed here
may be used for other types of experiments that are not
based on RI panels, but with modifications. Even though
mixed effects models may be appropriate for repeatedly
measured data such as longitudinal data, the variance par-
tition coefficient may not always be suitable as a measure
of heritability. The user should be careful about the differ-
ence between heritability and repeatability where the lat-
ter measures the relatedness of the repeated observations
[26, 53]. However, for a recombinant inbred panel, the
only common factor among the strains are their genetic
background. Animals from the same strain will have a
shared environment in a well designed animal study. Thus,
the proportion of strain specific variation can accurately
measure the heritability. If our methods are to be used
for other types of populations, one should make sure that
there is no other common factor other than the genetic
factor among the subjects within a class.
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Fig. 5 Heritability comparison for the LXS mRNA dataset. The histograms and kernel density plots are shown along the diagonal. The panels below the
diagonal show the scatter plots and the LOESS fits for the pairwise comparisons. The corresponding correlation values are listed above the diagonal

Among the four methods proposed in this work, the
NB-fit, CP-fit and VST methods perform similarly and
all of them have very high accuracy. However, voom
failed to perform well in many cases and appears to be
useful only in limited situations. voom’s performance is
especially limited when the data are overdispersed and
not highly heritable. CP-fit and NB-fit are most accu-
rate when the data are generated from the respective
distributions. The estimation performance of NB-fit is
slightly better than CP-fit under model-misspecification.
The estimation using VST is the most robust against
model-misspecification and it performs the second best in
most cases.
The hypothesis testing procedure using CP-fit may

have anti-conservative results when the data are NB-
sim. The test using NB-fit is slightly conservative, but
sufficiently powerful under model-misspecification. Tests
using VST are the most conservative and hence the least
powerful. The CP-fit based bootstrap confidence interval
performs the best among the three different methods con-
sidered. All the confidence intervals have a tendency to

underestimate the true heritability, but the CP-fit based
method seem to be the least biased and have coverage
closest to the target 95%. These bootstrap based confi-
dence intervals are computationally expensive and one
may choose to use them only for a limited number of
interesting features. In terms of computational cost (both
estimation and hypothesis test), CP-fit is faster than NB-
fit, and the LMM methods (VST and voom) are much
faster than both CP-fit and NB-fit. For the LXS miRNA
dataset with hypothesis testing, the CPU time required
was 17.167, 12.607, 0.265, 0.301 for NB-fit, CP-fit, VST,
and voom, respectively (OS X 10.10.5, 2.5 GHz Intel Core
i7, 16 GB 1600 MHz DDR3).
Each method has additional considerations as well.

One limitation of the NB-fit based heritability score is
that it needs to be interpreted with caution because the
maximum possible heritability score is less than 1 for
over-dispersed data. This is a direct consequence of the
algebraic expression of VPCNBMM

g . For the same reason,
the heritability score for a feature may have a smaller value
when using NB-fit as compared to CP-fit. Although CP-fit
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Fig. 6 Sequencing read examples for a a top heritable miRNA and b a top heritable mRNA features. Each boxplot summarizes the reads for one
strain and they are sorted by strain mean in an increasing order. The color of the boxes have no special significance. The estimated VPC scores are
reported in the top left tables

does not show any significant increase in accuracy to esti-
mate the heritability for data similar to our count data, it
might be appropriate for other types of post-normalized
data withmany zeros or heavy tails (e.g. for sparse data like
microbiome).We showedVST is robust and inmany cases
sufficiently accurate while voom results can be mislead-
ing. Both methods fit the model on a completely different
scale due to data transformation which makes the inter-
pretation of the heritability score more problematic than
the NB and CP methods.
In summary, we suggest to use VST, NB-fit, CP-fit,

and compare the results. The three methods have differ-
ent strengths. Computationally, VST is the most efficient
and robust; the NB-fit method performs well in hypoth-
esis testing even under model mis-specification; the CP-
fit based confidence intervals are the most reliable. The
choice of one method out of the three should depend on
the goal of analysis.

Conclusions
In this work, we have proposed several statistical mod-
els and methods for estimating and testing heritability for
high-throughput sequencing data and have provided an R

package HeritSeq implementing our methods. Although
mixed effects models have been used in the context of
repeatability [29], we studied the rather unexplored area
of calculating heritability for non-Gaussian or count based
data. Our work reports the use of the variance partition
coefficient to extend the definition of heritability for gen-
eralized linear mixed models in the context of sequencing
data. The variance partition coefficient is conceptually dif-
ferent from traditional measures such as intraclass coef-
ficient and is more suitable for measuring heritability in
this context. We have proposed the use of the CP mixed
model which has not been previously used for genomic
data. Through simulations and two sets of sequencing
data from an RI panel, we demonstrate that NB-fit, CP-
fit, and VST are better methods for estimating heritability
than the voom method. For a miRNA and mRNA expres-
sion dataset, we identified heritable features and found
that many of the highly heritable features exhibit bi-modal
sequencing counts, which are likely expression quantita-
tive trait loci. In summary, the ability to better model high
throughput sequencing data and estimate the heritability
scores will elucidate the functional mechanisms in genetic
networks.
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