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ABSTRACT Cryptosporidium species cause significant morbidity in malnourished
children. Nitazoxanide (NTZ) is the only approved treatment for cryptosporidiosis,
but NTZ has diminished effectiveness during malnutrition. Here, we show that amixi-
cile, a highly selective water-soluble derivative of NTZ diminishes Cryptosporidium in-
fection severity in a malnourished mouse model despite a lack of direct anticrypto-
sporidial activity. We suggest that amixicile, by tamping down anaerobes associated
with intestinal inflammation, reverses weight loss and indirectly mitigates infection-
associated pathology.
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Cryptosporidium species are intestinal apicomplexan protozoa that cause significant
global morbidity and mortality in young children (1). Even when asymptomatic,

childhood Cryptosporidium infections are associated with impaired growth attainment
(2). Syndromic-based diarrhea interventions may be ineffective for cryptosporidiosis,
and targeted anticryptosporidial therapeutics are unavailable, especially in resource-
limited settings (2). Nitazoxanide (NTZ) is currently the only FDA-approved drug for
treating cryptosporidiosis. Early clinical studies of NTZ in immunocompetent children
demonstrated decreased duration of diarrhea and 75% parasitological cure (3). How-
ever, parasitological cure occurred in only 52% of malnourished children (4), and even
prolonged durations of NTZ were ineffective during HIV coinfection (5). Similarly, NTZ
does not consistently treat Cryptosporidium infection in several murine models, includ-
ing immunodeficient knockout mice that develop relapsing disease (6) and malnour-
ished mice that spontaneously clear infection (7, 8). Finally, despite its in vitro activity,
NTZ only partially clears Cryptosporidium infections in piglet models (9).

It is unusual for an antibiotic to work in humans but not in established preclinical
animal models, which has raised questions about its mechanism of action. NTZ is a
broad-spectrum antiparasitic drug that inhibits pyruvate:ferredoxin oxidoreductase
(PFOR) through targeting the thiamine pyrophosphate vitamin cofactor of PFOR (10).
Anaerobic bacteria and parasites that rely on PFOR as an essential enzyme for central
metabolism are highly susceptible to nitazoxanide. In the development of NTZ, the
PFOR of Cryptosporidium was never validated by a direct enzyme assay (10). The
Cryptosporidium PFOR is a hybrid enzyme containing a C-terminal cytochrome P450
protein, composed of flavodoxin and NADPH oxidase (Fig. 1) (11). This atypical arrange-
ment appears to connect the oxidative decarboxylation of pyruvate with the reduction
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of NADP, thus bypassing the typical ferredoxin/hydrogenase redox route. NTZ impairs
the invasion of Cryptosporidium species in epithelial cell monolayers (12); however,
given the off-target effects of NTZ, such as anticancer (13), antiviral (14), and non-PFOR
antiparasitic activities (15, 16), one cannot rule out the possibility that the hybrid PFOR
of Cryptosporidium is not the target of NTZ. Furthermore, with the exception of the
apicomplexan (Cryptosporidium) group, most pathogens that are susceptible to NTZ are
also susceptible to metronidazole. Since PFOR is associated with the mode of action of
both drugs, we sought to explain the basis for the exception.

Amixicile (VPC162134) is a recently developed low-toxicity water-soluble derivative
of NTZ, with high systemic bioavailability (17). Amixicile was developed by replacing
the 2-acetoxy group with propylamine, leading to a more water-soluble and noncyto-
toxic drug (18). Compared with only 30% absorption of the active NTZ metabolite
tizoxanide, nearly 100% of amixicile is absorbed (17). Amixicile is a highly selective
inhibitor of PFOR in anaerobes (19) and Helicobacter pylori (17, 20), and it is much more
active than NTZ against other PFOR-producing pathogens, including Clostridium diffi-
cile, H. pylori, Campylobacter jejuni, and periodontal disease-promoting anaerobes
(18–20). Amixicile is effective against C. difficile and H. pylori infections in mice (17), but
its effect on Cryptosporidium species and malnutrition is unknown.

In order to determine the effectiveness of amixicile against Cryptosporidium species,
we used previously published models of in vivo challenge during murine protein
malnutrition (PM) (8, 21) and in vitro epithelial cell monolayer inhibition assays (6, 22).

All animal studies were performed at the University of Virginia with a protocol
approved in accordance with the Institutional Animal Care and Use Committee (IACUC)
policies of the University of Virginia (protocol number 3315). Briefly, weaned C57BL/6
mice (Jackson Laboratories) fed a 2% protein deficient diet (Research Diets) that
recapitulates features of cryptosporidiosis in malnourished children, including dose-
dependent disease severity (8), were challenged with 5 � 107 Cryptosporidium parvum
oocysts (Iowa isolate; Waterborne, Inc., New Orleans, LA). Similar to other Cryptospo-
ridium murine models recently developed for preclinical anticryptosporidial drug test-
ing (6), C. parvum fecal shedding was determined by quantitative PCR (qPCR; 18S rRNA
target) (21) that was present only after challenge with viable, but not heat-inactivated
oocysts (8). Shedding in this model is greatest during the first 3 days postchallenge,

FIG 1 The C. parvum PFOR (GenBank accession number AF208233) is a hybrid enzyme with C-terminal
cytochrome P450 that oxidizes pyruvate with reducing equivalents internally transferred through flavo-
doxin to NADPH oxidase that produces NADPH (11). Other PFORs transfer reducing equivalents through
ferredoxin to electron acceptors to produce hydrogen. The 4-subunit H. pylori PFOR and the single-unit
PFOR of C. jejuni also produce NADPH via flavodoxin (Fld) and NADPH oxidase FqrB (33) with functional
evolutionary similarities with the C. parvum enzyme, including an inability to reduce the redox-active
prodrug metronidazole. Not to scale.
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coincident with rapid weight loss. Parasites are detectable for 7- to 11-days postchal-
lenge, but unlike immunodeficient murine knockout models, there is no relapse phase
(6). Statistical analyses (two-way analysis of variance [ANOVA], including Bonferroni
posttest analysis of repeated measures for growth where appropriate) were performed
with GraphPad Prism 7.0 software.

Amixicile (diluted in deionized water) or NTZ (as a pediatric solution [Alinia; Romark
Pharmaceuticals, Tampa, FL] diluted in deionized water) was given at equivalent doses
of 100 mg/kg/day of body weight (7, 18) by orogastric gavage once daily beginning
1-day postinfection (1 dpi) and continued through 3 dpi. We performed four indepen-
dent experiments investigating the effectiveness of amixicile against C. parvum chal-
lenge in vivo. First, in direct comparison, amixicile, but not NTZ, partially rescued
mice from early weight loss (0.69% versus 4.5% weight loss at 4 dpi; P � 0.05) (Fig.
2A). C. parvum stool shedding on 1 (collected prior to treatment), 5, or 7 dpi was
similar in all challenged mice regardless of treatment (see Fig. S1A in the supplemental
material). In one of two separate follow-up experiments (Fig. 2B and C), amixicile
partially attenuated severity of weight loss (Fig. 2C). C. parvum shedding was not
conclusively reduced in amixicile-treated animals (see Fig. S1B and C in the supple-
mental material).

Since neither PFOR inhibitor eliminated C. parvum, we hypothesized that the
primary effect of amixicile was to benefit the malnourished host. Whereas uninfected
mice treated for 3 days with NTZ exhibited weight loss, mice treated with amixicile did
not (see Fig. S2 in the supplemental material). In a fourth experiment, extending
amixicile treatment to 5 days promoted weight gain by malnourished uninfected
animals (Fig. 2D). Composite data for untreated and amixicile-treated infected groups
compared with untreated uninfected controls for all in vivo experiments demonstrated
a modest growth benefit in amixicile-treated animals (P � 0.05 for untreated C.
parvum-challenged mice) (Fig. 2E) that was most apparent as a rescue from weight loss
upon initiation of amixicile (see Fig. S3 in the supplemental material).

For in vitro testing, we compared both PFOR inhibitors using an assay which involves
inoculating HCT-8 cells (ATCC) grown to confluence with 5.5 � 103 excystation-primed
C. parvum oocysts (Bunchgrass Farms, Deary, ID) (12), staining for epifluorescence
microscopy after a 48-h incubation, and counting parasites and host cells using
automated microscopy (12). The 50% effective concentration (EC50) of NTZ was 1.55
(range, 1.31 to 1.84) �M, but across repeated experiments, amixicile had no anticryp-
tosporidial activity, even at �100 �M (Fig. 3A and B). Since NTZ and amixicile are
identical in docking simulations with PFOR and amixicile is highly selective for PFOR, it
is likely that the PFOR-CytP450 is not a target for either drug (20). Our suggestion that
PFOR/CytP450 is an unlikely target of NTZ is consistent with a growing view that other
inhibitory mechanisms are involved (16). Although off-target activities attributed to
NTZ against Cryptosporidium species are not known, amixicile is a more selective PFOR
inhibitor which might explain why nitazoxanide, but not amixicile, is active against C.
parvum in vitro. Off-target promiscuous activities of NTZ against Cryptosporidium spe-
cies may contribute to the variable outcomes observed clinically with this drug.

Promising new anticryptosporidial therapeutics rapidly eliminate parasites in other
animal models (6, 23, 24). In contrast, amixicile mitigated weight loss, a very important
disease feature of cryptosporidiosis, but did so without significantly accelerating par-
asite elimination, which suggests that its effect on malnutrition in cryptosporidiosis is
indirect. Cryptosporidium infections (25) and other intestinal microbial disruptions (26)
are increasingly linked to malnutrition in both children (27) and murine models (28–30).
Together, these microbial exposures may result in a multimicrobial condition of chronic
intestinal inflammation and injury termed environmental enteric dysfunction (EED) (25,
26, 31). In murine models of EED, there is an overabundance of anaerobic Bacteroidales
members in the upper small intestine during malnutrition, and inclusion of Bacteroides
spp. with a cocktail of Escherichia coli isolates was necessary to enhance intestinal
inflammation (26).

Given the spectrum of amixicile activity (17), its absence in stools, and its apparent
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ability to concentrate in regions of local intestinal inflammation due to serum leakage
(17, 18), we suggest amixicile likely targets the offending mucosal-associated anaer-
obes, and, thus, reduces inflammation and improves barrier function and absorption
that collectively leads to weight gain and elimination of the parasite. NTZ, which
concentrates in the gut lumen, does not reverse weight loss in this model. Supporting
this multimicrobial pathogenesis hypothesis, Cryptosporidium infection as well as other
enteric infections in this model of PM can exacerbate diet-dependent disruptions in
gut-bacterium-derived metabolites, such as trimethylamine (TMA) and trimethylamine
oxide (TMAO) (28, 30), that are also altered in some malnourished children (29, 32).
These observations are consistent with previous findings that amixicile, which does not
alter the gut microbiome, eliminates C. difficile and H. pylori infections in murine models
(17, 18).

FIG 2 Amixicile partially reduces the severity of cryptosporidiosis during malnutrition. (A) Experiment 1. Amixicile or nitazoxanide (NTZ) was
administered by orogastric gavage at equivalent doses (100 mg/kg/day) to protein-malnourished weaned mice beginning 1 day after C. parvum
oocyst challenge (5 � 107 oocysts in all experiments) and continued through 3-day postchallenge. Growth is shown as percent initial weight
beginning on the day of C. parvum challenge (**, P � 0.01 and ***, P � 0.001 for Uninfected versus Cp; ^, P � 0.05 and ^^, P � 0.01 for Cp versus
Cp-Amixicile; #, P � 0.05 for Cp-Amixicile versus Cp-NTZ). (B, C) Experiments 2 and 3. Growth is shown as percentage of weight on the day of C.
parvum challenge in two separate experiments. Amixicile was administered orally at 100 mg/kg/day for 3 days beginning 1 day after challenge
with C. parvum oocysts. (B) *, P � 0.05 and ****, P � 0.0001 for Cp versus Uninfected; ^^^, P � 0.001 for Cp-Amixicile versus Uninfected. (C) *,
P � 0.05; **, P � 0.01; ***, P � 0.001; ****, P � 0.0001 for Cp-Amixicile versus Cp. ^^^^, P � 0.0001 for Cp versus Uninfected. (D) Experiment 4.
Growth in weaned mice fed a protein deficient diet as percent initial change beginning on the day of C. parvum challenge. Amixicile was
administered orally at 100 mg/kg/day on day 1 to 5 postchallenge. *, P � 0.05 for Cp versus Uninfected; ^^, P � 0.01; ^^^, P � 0.01; and ^^^^,
P � 0.001 for Uninfected-Amixicile versus Cp-Amixicile. %, P � 0.05; %%, P � 0.01; and %%%, P � 0.001 for Uninfected-Amixicile versus Cp. #, P �
0.05 for Uninfected-Amixicile versus Uninfected. (E) Growth curves for Uninfected, Cp, and Cp-Amixicile groups combined across all four
experiments (*, P � 0.05 for Cp versus Cp-Amixicile; 3 dpi). For growth curves B, C, and E, brackets designate comparisons of growth curves
throughout the time course (two-way ANOVA).
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In conclusion, the NTZ derivative amixicile, a highly selective water-soluble PFOR
inhibitor that appears to concentrate in sites of local inflammation (18), reversed weight
loss in the malnourished host, despite no evidence of in vitro anticryptosporidial
activity. Furthermore, neither NTZ nor amixicile resulted in a definitive reduction of
parasite shedding in vivo. Unlike currently available antibiotic regimens for treating
malnutrition/EED (31) that could cause collateral loss of potentially beneficial microbi-
ota, amixicile spares the intestinal microbiota of mice (17), and may, therefore, preserve
healthy luminal microbial density while selectively targeting subpopulations of anaer-
obes causing active infection. Thus, demonstrating that Cryptosporidium parasites are
resilient to PFOR inhibition in vitro, but that infection can be attenuated by the PFOR
inhibitor amixicile, led us to propose a model of mixed-microbial pathogenesis during
cryptosporidiosis and malnutrition (30) and the potential role for both direct and
indirect therapies to address the management of this emerging global pathogen.

SUPPLEMENTAL MATERIAL
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