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Abstract

Background: Long non-coding RNAs (IncRNAs) possess significant regulatory functions in multiple biological and
pathological processes, especially in cancer. Dysregulated IncCRNAs in hepatocellular carcinoma (HCC) and their
therapeutic applications remain unclear.

Methods: Differentially expressed IncRNA profile in HCC was constructed using TCGA data. LINCO0958 expression
level was examined in HCC cell lines and tissues. Univariate and multivariate analyses were performed to
demonstrate the prognostic value of LINC00958. Loss-of-function and gain-of-function experiments were used to
assess the effects of LINC0O0958 on cell proliferation, motility, and lipogenesis. Patient-derived xenograft model was
established for in vivo experiments. RNA immunoprecipitation, dual luciferase reporter, biotin-labeled miRNA pull-
down, fluorescence in situ hybridization, and RNA sequencing assays were performed to elucidate the underlying
molecular mechanisms. We developed a PLGA-based nanoplatform encapsulating LINCO0958 siRNA and evaluated
its superiority for systemic administration.

Results: We identified a lipogenesis-related IncRNA, LINC00958, whose expression was upregulated in HCC cell lines
and tissues. High LINC00958 level independently predicted poor overall survival. Functional assays showed that
LINC00958 aggravated HCC malignant phenotypes in vitro and in vivo. Mechanistically, LINC00958 sponged miR-
3619-5p to upregulate hepatoma-derived growth factor (HDGF) expression, thereby facilitating HCC lipogenesis and
progression. METTL3-mediated N°-methyladenosine modification led to LINC00958 upregulation through stabilizing
its RNA transcript. A PLGA-based nanoplatform loaded with si-LINC00958 was developed for HCC systemic
administration. This novel drug delivery system was controlled release, tumor targeting, safe, and presented
satisfactory antitumor efficacy.
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Conclusions: Our results delineate the clinical significance of LINC00958 in HCC and the regulatory mechanisms
involved in HCC lipogenesis and progression, providing a novel prognostic indicator and promising

nanotherapeutic target.
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Introduction

With 841,080 new cases and 781,631 deaths annually,
hepatocellular carcinoma (HCC) ranks the sixth most
commonly diagnosed malignancy and the fourth leading
cause of death worldwide [1]. Despite great efforts dedi-
cated in the therapeutic strategies for HCC over the past
years, including surgical resection, liver transplantation,
and comprehensive therapy, the 5-year survival rate of
HCC patients remains dismal. Therefore, elucidating the
molecular mechanisms underlying HCC and determin-
ing novel molecular targets are essential to develop ef-
fective treatment modalities for this deadly malignancy.

Long non-coding RNAs (IncRNAs), a class of func-
tional non-coding RNA transcripts >200nt in length,
are engaged in diverse biological processes across every
branch of life. Specific patterns of IncRNA expression
coordinate cell differentiation, development, and patho-
genesis. It has been widely recognized that many
IncRNAs are dysregulated and play an important part in
cancer progression [2]. In HCC, IncRNAs have been re-
ported to affect various malignant phenotypes, such as
cell proliferation, motility, and glucose metabolism re-
programming [3-5]. However, investigations of the in-
volvement of IncRNAs in aberrant lipid metabolism in
HCC are few. LncRNA-NEATT1 disrupts lipolytic enzyme
ATGL-mediated lipolysis and drive HCC proliferation
by binding miR-124-3p [6]. LncRNA HULC activates the
acyl-CoA synthetase subunit ACSL1 in a miR-9-
dependent manner to promote lipogenesis and function
as an oncogene in hepatoma cells [7].

Long non-coding RNA 00958 (LINCO00958) is origin-
ally identified as an oncogenic gene in bladder cancer by
Seitz et al. [8]. Subsequent studies demonstrated that
LINCO00958 is upregulated in several other malignancies,
including glioma [9], oral [10], gastric [11], pancreatic
[12], and gynecological cancer [13, 14]. The involvement
of LINC00958 in HCC has not yet been documented,
prompting us to explore its biological functions and clin-
ical value.

Polymeric nanoparticle (NP) platforms are emerged as
promising carriers in cancer therapy by delivering a var-
iety of drugs, including small interfering RNAs (siRNAs).
NPs prevent siRNAs from rapid degradation, increase
the drug concentration at tumor sites, and enable sus-
tained release [15]. NPs formulated with poly(lactic acid/
glycolic) (PLGA) copolymer are particularly attractive

for clinical applications, due to their low immunogen-
icity, non-toxicity, biocompatibility, and biodegradability
[16]. Poly(ethylene glycol) (PEG) is safe for clinical appli-
cation and has been used in many Food and Drug
Administration-approved medications including intra-
venous injections [17]. PEGylated PLGA NPs have been
acknowledged as one of the best controlled release
nanoplatforms for targeted drug delivery [18].

In the current study, we showed that LINC00958 was
a lipogenesis-associated IncRNA that exacerbated HCC
malignant phenotypes and independently predicted pa-
tient survival outcomes. Patient-derived xenograft (PDX)
mouse models were adopted to evaluate the tumor-
promoting role of LINC00958 in vivo. Mechanistically,
METTL3-mediated N6—methyladenosine (m®A) induced
the upregulation of LINCO00958, which subsequently
promoted HCC progression through the miR-3619-5p/
HDGF axis. We developed a novel PLGA-based si-
LINC00958 nanoplatform and evaluated its superiority
for the treatment of HCC.

Materials and methods

Patients and tissue samples

Fresh tumor tissues and paired adjacent non-tumor sam-
ples were collected from 80 HCC patients who under-
went surgical resection from January 2012 to December
2014 in the First Affiliated Hospital of Nanjing Medical
University. The tissue samples were preserved in liquid
nitrogen. All patients did not receive preoperative
chemotherapy or radiotherapy and signed the written in-
formed consents. This study was approved by the ethical
review board of the First Affiliated Hospital of Nanjing
Medical University.

Fluorescence in situ hybridization (FISH)

Specific FISH probes to LINC00958 and miR-3619-5p
were designed and synthesized by Servicebio (Wuhan,
China). The hybridization was performed in HCC cells
and tissues as previously reported [19]. All images were
analyzed on a confocal laser scanning microscope (Leica
Microsystems, Mannheim, Germany). The FISH probe se-
quences are shown as follows: LINC00958: 5'-TCCTCC
CATGTTTTTGTCTTCCCTACCACC-3’; miR-3619-5p:
5'-GCTGCACCAGCCTGCCTGCTGA-3'.
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Lentivirus transfection and stable cell line construction
We purchased lentivirus overexpressing LINC00958 or
HDGF, and small hairpin RNA (shRNA) targeting
LINC00958 or METTL3 from Genechem (Shanghai,
China). Lentiviruses were transfected into HCC cells with
5 mg/ml polybrene for 48 h. Stable cell clones were selected
for 1 week using puromycin (5 pg/ml). The overexpression
or knockdown efficiency was detected by RT-qPCR. The
sequences used are provided as follows: sh1-LINC00958:
5'-GTACCCAAGTTATTCAGGATT-3’, sh2-LINC00958:
5'-GTGACTAGCTTAAACTAAATT-3’, sh3-LINC00958:
5"-GAGGTACCCAATAGTTTCATT-3"; sh-METTL3: 5'-
GCCAAGGAACAATCCATTGTT-3".

RNA immunoprecipitation (RIP)

RIP assay was performed using a Magna RIP RNA-
binding Protein Immunoprecipitation Kit (Millipore,
Bedford, MA, USA) in accordance with the manufac-
turer’s protocol. Cells were isolated and lysed by RIP
lysis buffer and incubated with antibodies against AGO2
(Abcam, Cambridge, MA, USA), or m°A (Synaptic Sys-
tems, Goettingen, German) at 4 °C overnight. IgG was
used as negative control. The immunoprecipitated RNAs
were eluted and analyzed by RT-qPCR.

Biotin-labeled miRNA pull-down assay

Cells lysates were harvested 48 h after transfecting with
50 nM of biotin-labeled miRNAs (GeneCreate, Wuhan,
China). Streptavidin-coupled Dynabeads (Invitrogen)
were washed and resuspended in the buffer. Then an
equal volume of the biotin-labeled miRNAs was added
in the buffer. After incubating at room temperature for
10 min, the coated beads were separated with a magnet
for 2min and washed three times. The isolated RNAs
were then subjected to RT-qPCR analysis.

RNA sequencing

Total RNA was isolated from sh-NC (z=3) and sh-
LINC00958 (n=3) HCCLM3 cells. RNA samples were
analyzed by RNA sequencing (BGI, Shenzhen, China)
based on the manufacturer’s protocols. Briefly, BGISEQ-
500 platform was used to sequence the samples for sub-
sequent generation of raw data. Genes significantly dif-
ferentially expressed between sh-NC and sh-LINC00958
cells were selected based on fold change >2.0 and P<
0.001 using the DEGseq method. Functional pathway
analysis was conducted using KEGG pathway enrich-
ment analysis.

Oil Red O staining

HCC cells were fixed in 4% paraformaldehyde for 20
min and then permeabilized in 60% isopropanol for 10s.
Subsequently, cells were stained with Oil Red O working
solution for 30 min at room temperature, washed three
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times with PBS, and photographed under a microscope.
Oil Red O staining in frozen sections of HCC tissues
were similarly performed.

PDX mouse model

NOD/SCID and BALB/c mice were used for the estab-
lishment of the HCC PDX model. Briefly, we collected
the primary HCC tissues from two patients after surgical
resection and kept the specimens in iced culture
medium supplemented with 1% penicillin/streptomycin.
Then, the tissues were diced into 2—3-mm?® pieces and
subcutaneously implanted into the flanks of NOD/SCID
mice. When the xenografted tumors grew up to 1-2
cm?®, we harvested the tissues from the mice bearing
PDX tumors and cut the tissues into pieces. The tumor
fragments were further implanted into BALB/c nude
mice for the serial transplantation. When the tumor vol-
ume reached 50 mm?, we intratumorally injected recom-
binant lentivirus vectors into tumor tissues continuously
for 20 days. Tumor weight and volume were recorded.

Preparation of PLGA-PEG(si-LINC00958) NPs

We used the double emulsion solvent diffusion method
for NP preparation as previously described [20]. si-
LINCO00958 was reconstituted in DEPC water and then
mixed with spermidine (Sigma-Aldrich) at the N/P ratio
(the ratio of polyamine amine groups to siRNA phos-
phate groups) of 8:1. The resultant mixture was incu-
bated for 15min at room temperature to form si-
LINC00958/spermidine complex. PLGA-PEG-COOH
(10 mg; DaiGang Biomaterial Co. Ltd., Jinan, China) was
dissolved in 500 pl of dichloromethane (Aladdin Indus-
trial Corp., Shanghai, China). Then, the above dichloro-
methane solution was added dropwise to si-LINC00958/
spermidine complex with a probe sonicator (VCX 130;
Sonics & Materials, Inc., Newtown, CT, USA) in an ice
bath. The resultant primary emulsion was further added
dropwise to 4ml of an aqueous phase containing 2.5%
polyvinyl alcohol (Aladdin Industrial Corp.) and emulsi-
fied using probe sonication for 1 min. The second emul-
sion was then stirred at room temperature for 4h to
evaporate the organic solvent. Subsequently, the NPs
were collected by centrifugation for 15 min and washed
twice with DEPC water.

We used dynamic light scattering (DLS) with a Nano
Particle Analyzer (Zetasizer Nano ZSE, Malvern Instru-
ments Ltd., UK) to investigate the size, zeta potential, and
polydispersity index (PDI) of the NPs. A drop of the sam-
ple was placed onto a copper mesh and dried in room
temperature to obtain transmission electron microscopy
(TEM) images of the NPs. The siRNA encapsulated in
PLGA was measured using UV spectrophotometry to de-
termine the encapsulation efficiency as previously de-
scribed [21].
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In vivo antitumor efficacy and toxicity evaluation of NPs
To investigate the suppressive effect of PLGA-PEG(si-
LINCO00958) NPs on HCC cell growth in vivo, PDX
tumor models were created as described above. When
the tumors developed to 50mm?® PLGA-PEG(si-
LINCO00958) NPs or PLGA-PEG(siRNA control) NPs at
a dose of 200 mg/kg were injected into the mice (n =14
in each group) through the tail vein twice weekly. Treat-
ment continued until 4 weeks later, at which point four
mice in each group were sacrificed. Tumor weight and
volume were recorded immediately. Tumors were sub-
jected to subsequent RT-qPCR and western blotting
analyses. The major organs, including the liver, kidney,
lung, spleen, and heart, were harvested and fixed with
4% paraformaldehyde for further hematoxylin-eosin
(H&E) examination. Blood alanine transaminase (ALT),
aspartate transaminase (AST), creatinine (Cr), and blood
urea nitrogen (BUN) were also analyzed. The remaining
ten mice in each group were monitored for survival ana-
lysis with 10 weeks as the cutoff.

Statistical analysis
SPSS 24.0 (IBM Corporation, Armonk, NY, USA) and
GraphPad Prism 8.0 (GraphPad Software, La Jolla, CA,
USA) were used to perform the statistical analysis. Data
are shown as mean + SEM of the mean. Two-sided Stu-
dent’s ¢ test was used to analyze the differences between
groups. The differences of LINC00958 and HDGF ex-
pression levels between tumor and non-tumor speci-
mens were evaluated by paired ¢ test. Chi-square test
was adopted to analyze the association of LINC00958
and METTL3 expression with clinicopathological fea-
tures. Kaplan-Meier curve with log-rank test was used to
compare the survival outcome, and Cox proportional
hazards model was employed for multivariate survival
analysis. Pearson’s correlation was performed to analyze
the correlation between LINC00958, miR-3619-5p,
METTL3, and HDGEF levels. P value less than 0.05 was
considered statistically significant.

Supplementary methods are described in Additional file 1.

Results

LINC00958 is highly expressed in HCC and predicts
overall survival

With a stringent filter of logFC >2.0 and P value <
0.005, we established the profile of differentially
expressed IncRNAs in HCC based on TCGA data.
As demonstrated in Additional file 2: Figure S1A,
the expression levels of 441 IncRNAs were signifi-
cantly altered in HCC tumor samples. LINC00958
was suggested to be upregulated in HCC (logFC =
4.092782 and P value=4.44x10"7). We then used
the data retrieved from starBase platform and found
a markedly higher expression of LINC00958 in HCC
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(Additional file 2: Figure S1B). To verify the bio-
informatics results, we performed RT-qPCR to quan-
tify the expression levels of LINC00958 in normal
human liver cell line QSG-7701 and six HCC cell
lines. As shown in Fig. la, LINC00958 was highly
expressed in HCC cell lines. Furthermore, we exam-
ined LINCO00958 expression in 80 paired HCC tis-
sues and non-tumor specimens. LINCO00958 was
remarkably overexpressed in HCC tissues (Fig. 1b),
especially in those with moderate/poor differenti-
ation, microvascular invasion, and TNM III/IV stage
(Fig. 1c—e). FISH assay verified the overexpression of
LINC00958 in HCC tissues compared to the non-
tumor samples (Fig. 1f).

To investigate the clinical significance of LINC00958
in HCC, we classified the enrolled 80 patients into
LINC00958™8" and LINC00958'" groups based on
the median expression value (27°°“*=0.134). As indi-
cated in Additional file 3: Table S1, high LINC00958
expression was associated with tumor differentiation
(P=0.019), tumor size (P =0.025), microvascular inva-
sion (P =0.014), and TNM stage (P =0.013). Bioinfor-
matics prediction implied a correlation between
LINCO00958 expression status and patient survival (P =
0.014; Additional file 2: Figure S1C), and we con-
firmed that patients with high LINC00958 expression
had poorer overall survival than those with low
LINCO00958 expression (P =0.003; Fig. 1g). Multivari-
ate Cox regression analysis showed that LINC00958
was an independent prognostic factor for HCC
patients [hazard ratio (HR) 2.153, 95% confidence
interval (CI) 1.105-4.195, P =0.024; Fig. 1h and Add-
itional file 4: Table S2].

LINC00958 is required for malignant behaviors in HCC
cells

We performed RT-qPCR and FISH assays and showed
that LINC00958 was predominantly located in cytoplasm
(Fig. 2a, b). To evaluate the function of LINC00958 in
HCC, we stably knocked down the expression of
LINCO00958 by three shRNAs (sh1-LINC00958, sh2-
LINC00958, and sh3-LINC00958) in HCCLM3 and
Focus cells. As shown in Fig. 2¢, sh2-LINC00958 exhib-
ited the most evident knockdown effect and was chosen
for the subsequent experiments. CCK-8 assays demon-
strated that silencing LINCO00958 significantly reduced
the proliferative capabilities of HCCLM3 and Focus cells
(Fig. 2d). The inhibitory effects of LINC00958 knock-
down on HCC cell proliferation were further confirmed
by colony formation and EdU assays (Fig. 2e, f). Trans-
well assays showed that HCC cells transfected with sh-
LINCO00958 presented a markedly decreased migration
and invasion abilities (Fig. 2g). In addition, we overex-
pressed LINC00958 via lentivirus in Hep3B and HepG2
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cells (Additional file 5: Figure S2A). Based on the results
from CCK-8 assays, we observed increased cell growth
rates in HCC cells with LINCO00958 overexpression
(Additional file 5: Figure S2B). We also performed col-
ony formation and EdU assays and showed that
LINC00958 overexpression significantly elevated the

proliferation of Hep3B and HepG2 cells (Additional file 5:
Figure S2C-D). LINCO00958 overexpression greatly pro-
moted cell migration and invasion abilities in HCC
(Additional file 5: Figure S2E). Collectively, these data
indicated that LINC00958 facilitates HCC proliferation
and migration in vitro.



Zuo et al. Journal of Hematology & Oncology

(2020) 13:5

Page 6 of 20

HCCLM3 E Nuclear
El Cytoplasmic

o
t=}

Relative distribution (%)

GAPDH U6 LINC00958

HCCLM3

1.2

Relative LINC00958 expression

M

HCCLM3

sh-NC

Focus

)

HCCLM3

o
1=}

Relative distribution (%)

1.2

Relative LINC00958 expression

sh-LINC00958

migration

invasion

sh- LINCOOQ58

Focus HE Nuclear

120
| Cytoplasmlc
0

GAPDH U6 LINC00958

D

Focus

Absorbance (OD value)
e = e »n Ind
o o o o (3]

o
o

LINC00958

2.0

HCCLM3

—e- sh-NC
= sh-LINC00958

Absorbance (OD value)
=]

Merge

Focus

- sh-NC
—= sh-LINC00958

n

HCCLM3

{ N

sh-NC sh-LINC00958

N
S
3

Number of clones
2
8

Focus

| M

©
3
3

N
S
3

Number of clones
3
8

sh-NC sh-LINC00958

HCCcLM3

Ia

sh-NC sh-LINC00958
HCCLM3

80
60
40
20

o

sh-NC  sh-LINC00958

3 @
S &g

Migration cell number
a
g

Invasion cell number

HCCLM3

sh-LINC00958

Focus

migration

invasion

sh-NC

sh-NC

©
0
]
o
=1
O
z
]
T

L

2]

HCCLM3

In

sh-NC  sh-LINC00958

» @ o o
s 8 & 8

Proportion of EdU positive
cells (%)
S

Focus

h;

@
3

S
3

cells (%)

20

Proportion of EdU positive

sh-NC  sh-LINC00958
Focus
= 120 -
H —_—
2
€
H
£ 80
©
o
<
S 40
E
=]
= o
sh-NC  sh-LINC00958
Focus

©
8

2
2

N
3

Invasion cell number
N
3

il

sh-NC sh-LINC00958

Fig. 2 Knockdown of LINC00958 inhibits HCC proliferation, migration, and invasion in vitro. a Levels of LINC00958 from the nuclear and
cytoplasmic fractions of HCCLM3 and Focus cells were evaluated using RT-gPCR. GAPDH and U6 were used as positive control for the
cytoplasmic and nuclear fraction, respectively. b FISH was performed to determine the subcellular distribution of LINC0O0958 in HCCLM3 cells. ¢
The expression of LINC00958 was knocked down using three shRNAs in HCCLM3 and Focus cells. d CCK-8 assays were performed to assess the
cell proliferation in LINC00958-silenced HCC cells. @ Colony formation assays showed the clone numbers in HCC cells with LINC00958 knockdown.
f EdU assays were performed to assess the proliferative ability of HCCLM3 and Focus cells with LINC00958 knockdown. g Transwell assays were
conducted to examine the effects of LINCO0958 knockdown on HCC cell migration and invasion. *P < 0.05, **P < 0.01, ***P < 0.001




Zuo et al. Journal of Hematology & Oncology (2020) 13:5

LINC00958 targets miR-3619-5p to exert its tumor-
promoting effects in HCC

Given the cytoplasmic distribution of LINC00958, we hy-
pothesized that LINC00958 might exert its effects via target-
ing miRNAs. As demonstrated in Fig. 3a, the results from
RIP assays using an anti-AGO2 antibody showed that
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endogenous LINC00958 was preferentially enriched in the
AGO?2 IP pellet compared to control IgG IP pellet. To ex-
plore the underlying regulatory mechanism of LINC00958,
we used starBase and miRDB databases and found six miR-
NAs with potential complementary binding sequences
(Fig. 3b and Additional file 6: Supplementary Material 1).
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AGO2-RIP assays showed that miR-3619-5p was the highest
enriched miRNA in the LINC00958-overexpressed group
compared to the negative control (NC) group (Fig. 3c) and
LINCO00958 enrichment was much higher in the miR-3619-
5p mimics group compared to the miR-NC group (Fig. 3d).
These data suggested that LINC00958 and miR-3619-5p
existed in the same RNA-induced silencing complex. Fur-
thermore, we generated a mutant sequence of LINC00958
that could not bind miR-3619-5p for the subsequent lucifer-
ase reporter assays (Fig. 3e). As demonstrated in Fig. 3f,
miR-3619-5p mimics significantly decreased the luciferase
activity in HCC cells transfected with the wildtype
LINC00958 sequence, whereas the luciferase activity was
not obviously altered in HCC cells transfected with the mu-
tant LINC00958. Subsequently, biotin-labeled miRNA pull-
down assays showed significantly increased LINC00958
interaction in the HCC cells transfected with biotin-labeled
miR-3619-5p compared to that in the control (Fig. 3g). FISH
assays revealed the colocalization of LINC00958 and miR-
3619-5p in the cytoplasm in HCC cells (Fig. 3h).

To confirm that LINC00958 exerted the tumor-promoting
effects via miR-3619-5p, we upregulated the expression of
miR-3619-5p in LINC00958-overexpressed Hep3B cells
(Additional file 7: Figure S3A) and conducted rescue experi-
ments. As indicated in Additional file 7: Figure S3B-C, the el-
evated proliferation ability in LINCO00958-overexpressed
Hep3B cells was counteracted by miR-3619-5p mimics. Simi-
larly, miR-3619-5p overexpression could rescue the increased
cell migration and invasion in Hep3B cells overexpressing
LINC00958 (Additional file 7: Figure S3D).

HDGF, a direct target of miR-3619-5p, is crucial for the
function of LINC00958

To investigate the targets of miR-3619-5p regulated by
LINCO00958, we performed bioinformatics analysis using
four different algorithms including PicTar, TargetScan,
miRDB, and RNA22 (Additional file 8: Supplementary
Material 2). Figure 4a shows the overlapping target
genes of miR-3619-5p. Expression analysis yielded that
only hepatoma-derived growth factor (HDGF) was
downregulated in HCCLM3 cells upon LINCO00958
knockdown and upregulated in Hep3B cells upon
LINCO00958 overexpression (Fig. 4b). Furthermore, RNA
sequencing was performed to identify the differentially
expressed genes in LINCO00958-silenced HCC cells.
Using DEGseq method, we found that 429 genes were
downregulated and 134 genes were upregulated after
LINC00958 knockdown (Fig. 4c). Enriched KEGG path-
way analysis on RNA sequencing data was shown in
Fig. 4d. Notably, HDGF was found downregulated by
2.63-fold after LINC00958 knockdown. We then mu-
tated the miR-3619-5p binding site of the 3'-UTR of
HDGF to construct the pmirGLO-HDGF 3'-UTR-MUT
vector (Fig. 4e). Luciferase reporter assays indicated that
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miR-3619-5p mimics significantly decreased the lucifer-
ase activity of pmirGLO-HDGF 3'-UTR-WT, but had
no effect on the activity of pmirGLO-HDGF 3'-UTR-
MUT (Fig. 4f). We then investigated the expression
levels of HDGF in HCC cells transfected with miR-3619-
5p mimics or inhibitor. In HCCLM3 cells, miR-3619-5p
mimics led to a decreased expression level of HDGF.
Compared with the control cells, Hep3B cells transfected
with miR-3619-5p inhibitor presented a higher level of
HDGF expression (Fig. 4g). As demonstrated in both
TCGA data (Fig. 4h) and our RT-qPCR results (Fig. 4i),
HDGF was remarkably upregulated in HCC tissues. Cor-
relation analysis suggested a negative correlation be-
tween the level of miR-3619-5p and HDGF expression
level in HCC tissue specimens (Fig. 4j). In addition, the
expression level of LINC00958 was positively correlated
with HDGF expression level (Fig. 4k).

To confirm that HDGF was the downstream target of
LINC00958-mediated HCC progression, we performed
the subsequent functional rescue assays. We first overex-
pressed HDGF in HCCLM3 sh-LINCO00958 cells and
verified the overexpression efficiency by RT-qPCR and
western blotting (Additional file 9: Figure S4A-B). Based
on the CCK-8 and EdU assays, we found that HDGF
overexpression could rescue the suppressed proliferative
capability in HCCLM3 sh-LINC00958 cells (Add-
itional file 9: Figure S4C-D). Transwell assays showed
that the inhibited cell motility was restored after overex-
pressing HDGF in HCCLM3 sh-LINC00958 cells (Add-
itional file 9: Figure S4E). Together, these data indicated
the tumor-promoting role of the LINC00958/miR-3619-
5p/HDGF axis in HCC.

LINC00958 positively correlates with lipogenesis in HCC
cells

Mounting evidence indicates that abnormal lipid
metabolism plays crucial parts in HCC development
[22-24], and HDGF was recently reported to be a
lipogenesis-associated gene in tumorigenesis [25]. We
started to explore whether LINC00958 could affect
lipogenesis in HCC cells. Pathway enrichment results
also revealed that fatty acid metabolism was among
the top canonical pathways (Fig. 4d). As shown in
Fig. 5a, b, HCCLM3 and Focus cells with LINC00958
knockdown exhibited reduced cellular levels of choles-
terol and triglyceride, whereas Hep3B and HepG2 cells
overexpressing LINCO00958 presented higher choles-
terol and triglyceride levels compared with the control
cells. HCCLM3 and Focus cells with LINC00958
knockdown showed decreased mRNA levels of several
key enzymes in lipogenesis, including SREBP1, FASN,
SCD1, and ACC1 (Fig. 5c). In contrast, Hep3B and
HepG2 cells with LINC00958 overexpression showed
increased SREBP1, FASN, SCD1, and ACC1 mRNA
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Fig. 4 HDGF is a direct target gene of miR-3619-5p. a Venn diagram showing six putative miR-3619-5p target genes predicted by four different
algorithms (PicTar, TargetScan, miRDB, and RNA22). b RT-gPCR analysis showed that HDGF was downregulated in LINC00958-silenced HCCLM3
cells and upregulated in LINC00958-overexpressed Hep3B cells. ¢ Heat map showing the differentially expressed genes modulated by LINC00958
knockdown. d Enriched KEGG pathway analysis showing the most enriched pathways. e Putative binding sequence of miR-3619-5p in the 3-UTR
of HDGF. f Dual luciferase reporter assay revealed that miR-3619-5p could bind to the 3-UTR of HDGF. g Expression levels of HDGF were
detected by RT-gPCR in miR-3619-5p-overexpressed HCCLM3 cells or miR-3619-5p-silenced Hep3B cells. h TCGA data suggested that the
expression level of HDGF was upregulated in liver cancer samples. i RT-qPCR results showing the expression levels of HDGF in 50 paired HCC
tissues and non-tumor specimens. j Correlation analysis showing a negative correlation between miR-3619-5p and HDGF expression (P=0.011). k
Expression level of LINC00958 was positively correlated with HDGF expression level (P=0.002)

levels (Fig. 5d). Western blotting results confirmed
that LIN00958 was positively correlated with the pro-
tein levels of SREBP1, FASN, SCDI1, and ACC1 in
HCC cells (Fig. 5e). To further examine such positive
correlation of LINC00959 with lipogenesis in HCC
cells, we performed Oil Red O staining in HCC cells
with LINC00958 knockdown or overexpression. Lipid
droplets comprising mainly triglycerides and sterol es-
ters, as indicated by Oil Red O staining, were less
abundant in HCCLM3 cells with LINC00958 knock-
down than in the control cells. Conversely, more lipid
droplets were observed in Hep3B cells with LINC
00958 overexpression than in the control cells (Fig. 5f).
Furthermore, more lipid droplets were detected by Oil
Red O staining in HCC patient samples with high
LINCO00958 level compared to those with low LINC
00958 expression level (Fig. 5g, h).

To verify that LINCO00958 promoted lipogenesis
through miR-3619-5p, we performed the subsequent res-
cue experiments. As demonstrated in Additional file 10:
Figure S5A-B, the elevated cholesterol and triglyceride
levels in LINC00958-overexpressed Hep3B cells were
ameliorated by miR-3619-5p mimics. High SREBP1
mRNA and protein levels in LINC00958-overexpressed
Hep3B cells were counteracted by transfecting miR-
3619-5p mimics (Additional file 10: Figure S5C-D). Oil
Red O staining results suggested that miR-3619-5p over-
expression restored the elevated lipid droplets in
LINC00958-overexpressed Hep3B cells (Additional file 10:
Figure S5E). Likewise, we investigated the effects of
HDGF overexpression on lipogenesis in LINC00958-
silenced HCCLM3 cells. As shown in Additional file 11:
Figure S6A-E, the inhibited cellular cholesterol and tri-
glyceride levels, SREBP1 levels, and lipid droplet levels
in LINC00958-silenced HCCLM3 cells were rescued by
HDGF overexpression, suggesting that HDGF was the
downstream effector of LINC00958-mediated lipogen-
esis. Together, these data supported that LINCO00958
promoted lipogenesis in HCC through the miR-3619-5p/
HDGF signaling pathway.

LINC00958 facilitates HCC growth in vivo
PDX mouse models were utilized to investigate the effects
of LINC00958 on HCC growth in vivo. We intratumorally

injected recombinant sh-NC, sh-LINC00958, LINC00958,
and NC on four groups of PDX mice, respectively (Fig. 6a).
Clinical characterization of the donor patients is presented
in Fig. 6b. We histopathologically analyzed the engrafted
tumors using H&E staining (Fig. 6¢). As indicated in
Fig. 6d—f, we found that LINC00958 knockdown resulted
in a blunted tumor growth in terms of tumor weight and
volume, whereas LINC00958 overexpression accelerated
tumor growth. We then determined the expression levels
of LINC00958 in the four groups of PDX tumors by FISH
and RT-qPCR. As shown in Fig. 6g, h, decreased
LINCO00958 levels were detected in the sh-LINC00958
group, whereas elevated LINC00958 levels were observed
in the LINC00958 group. The expression level of HDGF
was found downregulated in the sh-LINC00958 group
and upregulated in the LINC00958 group (Fig. 6i). The
expression levels of HDGF, SERBP1, and Ki67 in the PDX
tumors were then examined by immunohistochemistry.
As presented, downregulated HDGF, SERBP1, and Ki67
expression levels were detected in the sh-LINC00958
group, while upregulated levels of HDGF, SERBP1, and
Ki67 were found in the LINC00958 group (Fig. 6j).

mC®A modification is associated with LINC00958
upregulation in HCC cells

Recent advancements in tumor epigenetic regulation
have shed light on the involvement of m°A modifica-
tion in IncRNA [26, 27]. We then wondered whether
m®A was associated with LINC00958 upregulation in
HCC. According to the results from an online bio-
informatics database mé6Avar [28], we found four
RRACU mC°A sequence motifs in the exon region (at
ch11:13001568, 13002361, 13002410, and 13011005).
m®A RIP-qPCR analysis showed that m°A was highly
enriched within LINC00958 in Hep3B, HepG2,
HCCLMS3, and Focus cells (Fig. 7a). METTL3 is a cru-
cial m®A methyltransferase and has been reported to
be involved in HCC development [29]. RT-qPCR re-
sults indicated that METTL3 expression level was
positively correlated with the level of LINC00958 in
50 HCC tissues (Additional file 12: Figure S7A). As in-
dicated in Additional file 13: Table S3 and Add-
itional file 12: Figure S7B, high METTL3 expression
was associated with tumor differentiation (P =0.002),
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Fig. 5 LINC00958 positively correlates with lipogenesis in HCC cells. a Cellular cholesterol levels were assessed in HCC cells with LINC0O0958
knockdown or overexpression. b Cellular levels of triglyceride were assessed in HCC cells with LINC00958 knockdown or overexpression. ¢
Expression levels of SREBP1, FASN, SCD1, and ACCT in HCCLM3 and Focus cells with LINC00958 knockdown were detected using RT-gPCR. d
Expression levels of SREBP1, FASN, SCD1, and ACC1 in Hep3B and HepG2 cells with LINCO0958 overexpression were examined using RT-gPCR. e
Western blotting was used to determine the levels of SREBP1, FASN, SCD1, and ACCT in LINC00958-silenced HCCLM3 and Focus cells and
LINC00958-overexpressed Hep3B and HepG2 cells. f Oil Red O staining showing the lipid droplets in HCC cells with LINC00958 knockdown or
overexpression. g Representative FISH images showing the expression levels of LINC00958 and miR-3619-5p in LINC00958™9" and LINC00958"*
HCC patient tissues. h Oil Red O staining was performed to show the lipid droplets in tissue samples of LINCO0958™9" and LINC00958'°" HCC
patients. **P < 0.01, ***P < 0.001
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Fig. 7 m°A modification is associated with LINC00958 upregulation in HCC cells. a m°A RIP-qPCR analysis showed that m°A was highly enriched
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knockdown. f HCCLM3 cells with METTL3 knockdown were treated with actinomycin D for the indicated time points, and the expression level of
LINC00958 was examined using RT-qPCR. g Focus cells with METTL3 knockdown were treated with actinomycin D for the indicated time points,
and the expression level of LINC00958 was examined using RT-gPCR. h HCCLM3 and Focus cells were treated with or without 5-aza-dC, and
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LINC00958. j Schematic diagram demonstrating the molecular mechanisms underlying LINCO0958 in HCC

tumor size (P =0.018), microvascular invasion (P =
0.023), TNM stage (P =0.001), and unfavorable overall
survival. Patients in the LINC00958™¢"METTL3"e"
group had the worst survival outcomes compared with
other groups, indicating its prognostic value in HCC
(Additional file 12: Figure S7C).

To explore the effects of METTL3 on LINC00958 up-
regulation in HCC, we knocked down the expression of
METTL3 using lentivirus in HCCLM3 and Focus cells. As
shown in Fig. 7b, ¢, RT-qPCR and western blotting assays
verified the knockdown efficiency. Compared to the con-
trol group, the m°®A level of LINC00958 was lower in
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METTL3-silenced HCC cells (Fig. 7d). We found that
METTL3 downregulation was associated with decreased
LINCO00958 expression level (Fig. 7e). We then treated
HCC cells with actinomycin D to block transcription and
found that METTL3 knockdown significantly decreased
the half-life of LINC00958 in HCCLM3 and Focus cells
(Fig. 7f, g). These data suggested that MET TL3-mediated
m°A is associated with the upregulation of LINC00958 in
HCC, probably by regulating the stability of its transcript.
In addition, we investigated whether DNA methylation or
histone modification could affect LINC00958 in HCC,
whereas no significant results were observed (Fig. 7h, i). A
graphic illustration of the tumor-promoting role of
LINCO00958 in HCC is depicted in Fig. 7.

Characteristics of PLGA-PEG(si-LINC00958) NPs

To investigate the potential utility of LINC00958 as a thera-
peutic target for HCC, we developed a novel PLGA-based
nanoplatform encapsulating si-LINC00958. The double
emulsion solvent diffusion method was used to prepare the
PEGylated PLGA NPs loaded with si-LINC00958 and
spermidine, named as PLGA-PEG(si-LINC00958) NPs here-
after. PEGylation of PLGA improves the stability of NPs in
physiological environment by decreasing their interactions
with serum proteins [30]. Spermidine can neutralize the
charge of the anionic siRNA, turning it less hydrophilic and
more likely to be encapsulated into hydrophobic PLGA [16].
As shown in representative TEM image (Fig. 8a), PLGA-
PEG(si-LINC00958) NPs were spherical in shape and pre-
sented narrow size distributions. DLS were used to measure
their size and zeta potential. The average diameter of PLGA-
PEG(si-LINC00958) NPs was 170.49 + 4.45 nm, with a PDI
of 0.15+0.01 (Fig. 8b and Additional file 14: Figure S8A).
The zeta potential was —4.85+0.02 mV (Additional file 14:
Figure S8B). A negative surface charge has been previously
reported to be optimal to achieve a long-lasting in vivo circu-
lation time [31]. The encapsulation efficiency of the PLGA-
PEG(si-LINC00958) NPs was 40.8 + 1.1%.

We then evaluated the in vitro release behavior of si-
LINC00958 from PLGA-PEG(si-LINC00958) NPs (Add-
itional file 14: Figure S8C). In the first 24 h, the cumula-
tive release amount of siRNA from free si-LINC00958
and PLGA-PEG(si-LINC00958) NPs was 80.3% and
42.7%, respectively. As time went by, the si-LINC00958
entrapped in NPs was gradually released, and the sus-
tained release continued for approximately 1 week. The
data suggested that PLGA-PEG(si-LINC00958) NPs pro-
vided controlled release.

The cellular uptake of NPs into HCCLM3 cells was
examined by incubating the cells with Courmarin-6 la-
beled NPs. Fluorescence microscopy revealed that
Courmarin-6 NPs exhibited strong fluorescent signal
inside the cells compared to the control (Fig. 8c), indi-
cating that NPs increased the cellular drug uptake.
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Then, we evaluated the targeting properties of NPs
in vivo. Free 1,1'-dioctadecyl-3,3,3",3"-tetramethylindo-
tricarbocyanine iodide (DiR) or DiR-NP was intraven-
ously injected via the tail vein. The fluorescent intensity
of the DiR-NP group in tumor was significantly stron-
ger than that of the free DiR group (Additional file 15:
Figure S9A-B). The data demonstrated the in vivo
tumor-targeting capacity of the NPs.

As shown in Additional file 14: Figure S8D, we verified
the knockdown efficiency of PLGA-PEG(si-LINC00958)
NPs in HCCLM3 cells. We then performed CCK-8 assays
to assess the in vitro antitumor capability of PLGA-
PEG(si-LINC00958) NPs. The results showed that PLGA-
PEG(si-LINC00958) NPs could decrease the proliferative
ability of HCC cells (Additional file 14: Figure S8E).

Therapeutic efficacy and toxicity evaluation of systemic
injection of PLGA-PEG(si-LINC00958) NPs in a PDX model
of HCC

We treated the HCC PDX model by injecting PLGA-
PEG(siRNA control) NPs or PLGA-PEG(si-LINC00958)
NPs via the tail vein. Tumor growth was significantly inhib-
ited following treatment with PLGA-PEG(si-LINC00958)
NPs compared with PLGA-PEG(siRNA control) NPs
(Fig. 8d). The xenograft tumor weight and volume were
markedly reduced in mice injected with PLGA-PEG(si-
LINCO00958) NPs (Fig. 8e, f). RT-qPCR results confirmed
the consistent knockdown of LINC00958 in xenografts de-
rived from mice treated with PLGA-PEG(si-LINC00958)
NPs (Fig. 8g). Downregulated expression levels of HDGF
and SREBP1 in xenograft tumors were verified by western
blotting (Fig. 8h). Survival analysis showed that systemic ad-
ministration of PLGA-PEG(si-LINC00958) NPs remarkably
prolonged the mouse overall survival (Fig. 8i).

We evaluated systemic toxicity by H&E staining and
showed that intravenous administration of PLGA-
PEG(si-LINC00958) NPs exhibited no significant toxicity
to major organs including the liver, kidney, lung, spleen,
and heart (Fig. 8j). In addition, we performed blood
index analyses of ALT, AST, Cr, and BUN and con-
firmed the absence of significant hepatotoxicity and
renotoxicity (Fig. 8k—n).

Discussion

LncRNAs have been established as crucial regulators in
pathogenesis, especially in malignancies [32]. In the
present study, we used TCGA data to determine a land-
scape of differentially expressed IncRNAs in HCC, which
revealed a significant upregulation of LINCO00958 in
HCC. We then confirmed that LINC00958 was highly
expressed in HCC by RT-qPCR and FISH assays. High
LINCO00958 level was correlated with multiple malignant
clinicopathological characteristics and was an independ-
ent predictor for unfavorable survival outcome. By loss-



Zuo et al. Journal of Hematology & Oncology (2020) 13:5

Page 15 of 20

Intensity (percent) w

Diameter (nm)

n

PLGA-PEG(si-LINC00958) NPs PLGA-PEG(siRNA control) NPs

A

80

I PLGA-PEG(siRNA control) NPs 200
B PLGA-PEG(si-LINC00958) NPs

EE PLGA-PEG(siRNA control) NPs.
EE PLGA-PEG(si-LINC00958) NPs

3

jry ns ) T
= = 3
5, 3 e
L = X
.&‘ g :20
20 o

Fig. 8 (See legend on next page.)

2 C Courmarin-6

20
15
10:
5
0
1 10 100 1000

Courmarin-6 NPs

© PLGA-PEG(siRNA control) NPs G

DAPI

DAPI

601 mm PLGA-PEG(siRNA control) NPs.
W PLGA-PEG(si-LINC00958) NPs
ns

! c
R PLGA-PEG(sIRNA control) NPs 2000 S 1.51mm PLGA-PEG(siRNA control) NPs
_ | mm pLeA-PEG(siLINCOOSSE) NPS e o PLGA-PEG(si-LINC00958) NPs % |mm PLGA-PEG(si-LINCO0SSE) NPS
i—" . anx £ 1500 was g_ ane
- o 1.0
> £ ; E
g K S 1000 S
o 3 3
o < Z 05
£ o o 500 4
> £
L >
Lol 0.0,
PLGA-PEG(siRNA control) NPs PLGA-PEG(si-LINC00958) NPs —— PLGA-PEG(siRNA control) NPs
—— _ —— PLGA-PEG(si-LINC00958) NPs
T T O : z 3 100
HDGF RN N R ek =
T 804
2
= — - — 2 604
e g e
SREBP1| 2
; . = 40
i §
— i _ S 20  P=0003
. o
B-tublin . . . .
- 0 20 40 60 80
Time (days)

15 B PLGA-PEG(siRNA control) NPs.

BUN (mmol/L)




Zuo et al. Journal of Hematology & Oncology (2020) 13:5

Page 16 of 20

(See figure on previous page.)

and those injected with PLGA-PEG(siRNA control) NPs. ***P < 0.001

Fig. 8 Characterization and therapeutic efficacy of PLGA-PEG(si-LINC00958) NPs in HCC PDX model. a Representative TEM image of PLGA-PEG(si-
LINC00958) NPs. b The size distribution profile of PLGA-PEG(si-LINC00958) NPs. ¢ Cellular uptake of NPs into HCCLM3 cells was evaluated by
incubating HCCLM3 cells with Courmarin-6 labeled NPs. d HCC PDX model was used to demonstrate the therapeutic efficacy of PLGA-PEG(si-
LINC00958) NPs via the tail vein injection. The harvested xenografted are shown. e Tumor weight was compared between PLGA-PEG(si-
LINC00958) NPs and PLGA-PEG(siRNA control) NPs. f Tumor volume was compared between PLGA-PEG(si-LINC00958) NPs and PLGA-PEG(siRNA
control) NPs. g RT-gPCR was performed to compare the expression level of LINCO0958 between PLGA-PEG(si-LINC00958) NPs and PLGA-
PEG(siRNA control) NPs. h Western blotting was performed to compare the expression level of LINC0O0958 between PLGA-PEG(si-LINC00958) NPs
and PLGA-PEG(SIRNA control) NPs. i Kaplan-Meier curves were plotted to compare the overall survival between the mice injected with PLGA-
PEG(si-LINC00958) NPs and those injected with PLGA-PEG(siRNA control) NPs (P=0.003). j Representative H&E staining of major organs including
the liver, kidney, lung, spleen, and heart at the end of the experiment. k Blood ALT levels between the mice injected with PLGA-PEG(si-
LINC00958) NPs and those injected with PLGA-PEG(SIRNA control) NPs. | Blood AST levels between the mice injected with PLGA-PEG(si-
LINC00958) NPs and those injected with PLGA-PEG(SIRNA control) NPs. m Blood Cr levels between the mice injected with PLGA-PEG(si-
LINC00958) NPs and those injected with PLGA-PEG(SiRNA control) NPs. n BUN levels between the mice injected with PLGA-PEG(si-LINC00958) NPs

of-function and gain-of-function experiments, we dem-
onstrated that LINC00958 promoted the proliferation,
migration, and invasion of HCC in vitro. PDX models
have emerged as invaluable preclinical models for cancer
research [33]. We adopted PDX models and verified the
tumor-promoting role of LINC00958 in vivo. Sequestra-
tion of miRNAs is the most frequently reported mechan-
ism by which IncRNAs exert their regulatory function.
Given the cytoplastic distribution of LINCO00958 in
HCC, we wondered whether LINC00958 could serve as
a miRNA sponge. We screened six miRNAs overlapped
by two different bioinformatics databases and verified
the binding between LINC00958 and miR-3619-5p using
RIP, dual luciferase reporter, RNA pull-down, and FISH
assays. Further functional experiments showed that
LINCO00958 sponged miR-3619-5p to promote HCC pro-
gression. Previous studies indicated that miR-3619-5p
inhibits cell proliferation and migration in HCC [34].
miR-3619-5p is involved in LINC00202-mediated retino-
blastoma progression through targeting the expression
of an oncogene RIN1 [35]. miR-3619-5p has also been
demonstrated to exert a tumor-suppressive role in sev-
eral types of malignancies, including bladder cancer [36],
lung cancer [37], prostate cancer [38], and cutaneous
squamous cell carcinoma [39].

To investigate the target gene of the LINC00958/
miR-3619-5p pathway in HCC, we combined four bio-
informatics algorithms and RNA sequencing results
and found that HDGF was the downstream effector of
the LINC00958/miR-3619-5p axis. HDGF has been
established as an oncogene that facilitates the progres-
sion of HCC [40, 41]. One recent study suggested that
HDGF could affect lipid metabolism via SREBP1 in
HCC [25]. Our results revealed that LINC00958 facili-
tated lipogenesis via the miR-3619-5p/HDGF pathway.
LINCO00958 increased cellular cholesterol and triglycer-
ide levels and contributed to lipid droplet formation.
Key enzymes in lipogenesis, including SREBP1, FASN,
SCD1, and ACC]1, were also affected by LINC00958. As

one of the hallmarks of cancer, metabolic alteration
plays an indispensable role in cancer. However, only a
few studies focused on the involvement of IncRNAs in
HCC lipid metabolic reprogramming. Our data have
provided novel insights into the lipogenesis-modulating
role of LINC00958 in HCC.

Recent years have witnessed remarkable advancements of
m°A modification in regulating all stages of the RNA life
cycle. The deposition of m°A is encoded by “writers” that
catalyze m°A formation (such as METTL3, METTL14, and
WTAP), “erasers” that selectively remove the m°A code
(such as FTO and ALKBH5), and “readers” that decode
m°A methylation (such as YTH domain proteins and
IGF2BP) [42]. m°A has been demonstrated to affect the tar-
geted mRNA or miRNA and participate in the progression
of various cancers [43]. However, studies on m®A modifica-
tion in IncRNAs are scarce in the field of cancer. Recently,
Wu et al. demonstrated that m®A modification upregulates
IncRNA RP11 by increasing its nuclear accumulation [27].
m°A was suggested to be highly enriched on IncRNA
FAM225A and can increase its RNA stability [26]. Herein,
we revealed that m°A methylation was enriched within
LINC00958 in HCC cells using both in silico data and m°®A
RIP experiment. Moreover, METTL3 regulated the m®A
modification in LINC00958, thus affecting its RNA stability.
These results suggested that elevation of LINC00958 in
HCC may be attributed to the m®A modification.

Targeting delivery of siRNA using NPs has been
recognized as practical and promising for cancer
nanotherapy. Liposomes and viral vectors have been
implicated to be potential vehicles for siRNA deliv-
ery, but they may induce toxicity and cannot main-
tain sustained release of siRNAs [16]. Approved by
the Food and Drug Administration, PLGA is bio-
degradable and non-toxic and provides high stability,
prolonged blood circulation time, and sustained re-
lease profile [44]. PLGA has gained substantial atten-
tion among the various polymers developed for
formulation of nanoplatform and has been used for
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siRNA delivery. Byeon et al. used PLGA-based NPs
incorporating FAK siRNA for overcoming chemore-
sistance in ovarian cancer [45]. PLGA NPs loaded
with siRNA against osteopontin have been demon-
strated to be effective for mammary carcinoma sys-
temic treatment [46]. PEGylated NPs are regarded as
“stealth NPs” and characterized by increased circula-
tion time in vivo and tumor uptake. The surface
shielding with PEG avoids plasma protein adsorption,
protects NPs from the immune recognition, and in-
creases bioavailability [18].

In this study, we developed and characterized a PEGy-
lated PLGA nanoplatform loaded with LINC00958 siRNA
for HCC therapy. PLGA-based nanosystem ensured the
controlled release of si-LINC00958 and protected it from
premature degradation. According to the results from cellu-
lar uptake experiments, NPs exhibited enhanced uptake
into the tumor cells, which may facilitate the accumulation
of NPs in the tumor. Biodistribution of NPs by systemic ad-
ministration showed accumulated NPs in the xenograft
tumor sites as well as the liver. The enhanced permeability
and retention (EPR) effect is based on the leaky vasculature
and poor lymphatic drainage present in the tumor. NPs >
100nm can avoid being engulfed by the mononuclear
phagocyte system and excreted by the kidney, while NPs <
400 nm preferentially accumulate in tumor sites and exhibit
an optimal EPR effect [47]. Taking advantage of the EPR ef-
fect, PLGA-PEG(si-LINC00958) NPs achieved high concen-
tration in HCC xenografts in vivo. Since the liver is the
primary organ responsible for drug biotransformation,
many NP-based drug delivery systems present substantial
amounts of NPs in the liver [48, 49]. The results from PDX
models demonstrated that this nanodrug system promin-
ently reduced tumor burden. Compared with the control
group, hampered tumor growth was observed in the
PLGA-PEG(si-LINC00958) NP group. In addition, the re-
sults from H&E histopathological analysis and blood bio-
chemical examination confirmed no significant toxic side
effects.

Conclusions

In summary, we comprehensively investigated the
functional roles, molecular mechanisms, and clinical
applications of LINC00958 in HCC. Our results re-
vealed that LINC00958 was upregulated in HCC cell
lines and tissues. High LINCO00958 expression level
was an independent prognostic factor for overall sur-
vival in HCC patients. We showed that LINC00958
promoted HCC cell proliferation, migration, invasion,
and lipogenesis through the miR-3619-5p/HDGF axis.
Moreover, PDX models were employed to confirm the
effects of LINC00958 on HCC growth in vivo. We
demonstrated that m°A modification was responsible
for the upregulation of LINC00958 in HCC. For
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potential clinical application, we developed a novel
nanoplatform encapsulating LINC00958 siRNA for
HCC systemic treatment. Our study revealed that
LINCO00958 plays a crucial part in HCC lipogenesis
and progression and highlighted its value as a prog-
nostic predictor and nanotherapeutic candidate in
HCC.
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