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IntroductIon

Alzheimer’s disease (AD) is a devastating neurodegenerative 
disease characterized by progressive cognitive impairment 
and psychobehavioral disturbances or language impairment. 
Accumulating evidence indicated that excess production of 
β‑amyloid (Aβ) occurs early in the disease progression, it may 
represent a crucial step in AD pathogenesis.[1] Recently, it has 
been demonstrated that there is a close link between nuclear 
factor kappa‑B (NF‑κB) and nerve degeneration diseases 
such as AD, Parkinson’s disease (PD), and Huntington’s 
disease (HD).[2] In the early stage, the activation of NF‑κB 
pathway with deposition of amyloid was observed in neurons 
and astrocytes in human ADs.[3] However, the exact function 
of NF‑κB activation in such context remains unclear.

The concentrated extracts of Ginkgo biloba leaves (EGB 761) 
have been found to protect against various neural and vascular 
damages.[4,5] EGB 761 is a well‑known anti‑oxidant which 
inhibits Aβ‑derived fibril formation and apoptosis. In addition, 
the herb can modulate brain cholinergic transmission, increase 
brain cholinergic activity, and normalize the acetylcholine 
receptors in the hippocampus area.[6] Hyperbaric oxygen (HBO) 
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therapy ameliorates the disease course of a number of human 
diseases such as hypoxia, ischemia, and reperfusion. Further, 
recent studies have shown that the HBO therapy reduces spinal 
cord injury (SCI) and facilitates recovery of neurological 
functions.[7,8] In this regard, it has been reported that HBO 
exerts its protective effect through TLR2/NF‑κB pathway 
inhibition and consequent suppression of pro‑inflammatory 
cytokine release.[9] In this study, we analyzed the biological 
effects of Aβ25–35 on neurons, which is an active fragment 
of toxic Aβ (Aβ1–40 and Aβ1–42).[10] Further, we investigated 
the potential role of NF‑κB in mediating protective effects of 
HBO/EGB 761 against cognitive and memory impairment 
using a rat model of AD.

Methods

Animals
Seventy‑two male Sprague‑Dawley rats (age: 5–6 months and 
weight: 250–350 g) were obtained from Shanghai Laboratory 
Animal Center. The animals were acclimatized for 7 days at 
23°C with a 12‑h light‑dark cycle and allowed free access to 
drinking water and pellet diet. All animal experiments were 
evaluated and approved by the Animal and Ethics Review 
Committee of the Southeast University (Nanjing, Jiangsu, 
China), and all efforts were made to minimize the number 
of used animals as well as their suffering.

Preparation of β‑amyloid 25–35 and Ginkgo biloba 
extract 761
Aβ25–35 (A4559, Sigma‑Aldrich, USA) was resolved in 
sterile saline solution at 37°C for 7 days for the preparation 
of aggregated Aβ25–35 (1 g/L). EGB 761 (40 mg/tablet, 
German pharmaceutical company, Dr. Weimashupei, 
Germany) was prepared in drinking water (20 mg/ml).

Injection of aggregated β‑amyloid 25–35
In brief, all animals were anesthetized by intraperitoneal 
injection of chloral hydrate (300 mg/kg; Tianjin Chemical 
Reagent Development Center, China). Surgery and injection 
of Aβ25–35 was carried out as previously described.[11] The 
aggregated Aβ25–35 (10 μl; 1 μl/min) was injected into 
bilateral hippocampus. The sham control was injected with the 
same amount of saline. Postoperatively, animals were treated 
with prophylactic antibiotics (penicillin; 80,000 unit/0.25 ml) 
for 3 days. After 3 weeks, animals were randomly assigned 
into six groups (n = 12/each group): Normal, sham, AD model, 
HBO, EGB 761, and HBO/EGB 761 groups according to 
different treatment regiments (see below).

Hyperbaric oxygen and Ginkgo biloba extract 761 
administrations
The gavage of EGB 761 was performed in the EGB 761 
group as previously described.[12] For HBO treatment 
in the HBO group, 100% oxygen was administered at 
a pressure of 2.0 atmosphere absolute in a hyperbaric 
chamber (SHC3200–8500, Shanghai 701 Yang garden 
hyperdaric oxygen chamber Co Ltd., China) for 1 h including 
15 min of compression and decompression. Depending on 

experimental design, EGB 761 and HBO was administrated in 
the HBO/EGB 761 group. The treatment groups (HBO, EGB 
761 and HBO/EGB 761) consisted of two courses (10 days 
per course) with an interval of 3 days between two courses. 
There was no treatment with the other groups (normal, sham, 
AD model). Moreover, all of the animals were bred with food 
pellets and water throughout the experiment.

Morris water maze
The Morris water maze was performed in a circular water 
tank (160 cm × 50 cm) filled with water to a depth of 25 cm. 
The tank was divided into four quadrants (I, II, III, and IV). 
A platform was placed inside the quadrant I. The hidden 
platform (from day 1 to day 6) and probe trial (on day 7) was 
performed. For the hidden platform trial, rats were tested 
twice per day. Specifically, rats were placed in the water 
at the starting location (quadrants II and III). The trial was 
considered to be successful when they managed to escape to 
the platform within 90 s. If a rat failed to escape within 90 s, 
the escape latency was recorded as 90 s. All rats were allowed 
to spend 20 s on the platform and returned to their cages. The 
escape latency, swimming speed, and trajectory were recorded 
for each rat. For the probe trial, the platform was removed and 
the starting point was located in quadrant III. Within 90 s, the 
number of crossings time spent in the quadrant I were record.

TdT‑mediated dUTP Nick‑End Labeling staining
After trials, rats (n = 6/each group) were immediately 
anesthetized and perfused with 0.01 mol/L phosphate 
buffer (pH 7.4), followed by ice‑cold 4% paraformaldehyde 
through the left ventricle. Brains were removed and 
embedded in paraffin. Sections were taken from each brain 
for TdT‑mediated dUTP Nick‑End Labeling (TUNEL) test. 
The process was conducted according to the manufacturer’s 
instructions of Tunel kit (Nanjing KeyGEN Biotech. Co., 
Ltd., Jiangsu, China). The data were represented as the 
apoptotic index (AI = apoptosis/total cellular score × 100%) 
in the CA1 of hippocampus.

Western blotting analysis
The protein of hippocampus tissue was prepared using 
tissue isolation kit and measured using BCA kit (Beyotime 
Biotechnology, Jiangsu, China). Samples of protein (15 mg) 
were subjected to dodecyl sulfate, sodium salt‑polyacrylamide 
gel electrophoresis and were transferred onto polyvinylidene 
fluoride membranes. Membranes were blocked and incubated 
with a set of primary antibodies (anti‑p‑IKKα, anti‑IKKα/β, 
anti‑IκBα, and anti‑p‑IκBα, Bioss Inc., USA) overnight at 
4°C. The blots were visualized using an ECL detection kit (GE 
Healthcare, Germany). A densitometric analysis was performed.

Statistical analysis
Data were shown as mean ± standard deviation (SD). Statistical 
analysis was performed using one‑way or repeated measures 
analysis of variance (ANOVA), followed by Turkey’s post‑hoc 
analysis for multiple comparisons and t‑test for dependent 
samples using SPSS 11.5 (SPSS Inc., Chicago, IL, USA). 
A value of P < 0.05 was considered statistically significant.
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results

Hyperbaric oxygen/Ginkgo biloba extract 761 improves 
cognitive and memory capacities in rat model of 
Alzheimer’s disease
Hidden platform trail
In the hidden platform trial, rats swam along pool wall 
in the 1st day. However, on the 4th day, the searching 
behavior performed the cognitive task. In the 6th day, 
rats almost had a clear goal, their trajectories were 
nearly single‑type [Figure 1a]. The escape latency of 
HBO/EGB 761 group decreased significantly comparing 
with AD model group in the 5th day [HBO/EGB 761 

group: 22.70 ± 3.08 s vs. AD model: 44.55 ± 3.74 s; 
F = 25.968, P < 0.05; Figure 1b]. Moreover, in the 6th day, 
the escape latency decreased significantly in the treatment 
group (HBO, EGB 761, and HBO/EGB 761 groups) 
compared to AD model group (HBO: 23.88 ± 3.08 s vs. 
AD model: 40.55 ± 3.74 s, F = 16.671, P < 0.05; EGB 
761: 24.44 ± 2.78 s vs. AD model: 40.55 ± 3.74 s, 
F = 18.428, P < 0.05; HBO/EGB 761: 19.70 ± 3.08 s vs. 
AD model: 40.55 ± 3.74 s, F = 69.692, P < 0.01). Moreover, 
HBO/EGB 761 group had superior effects. No significant 
difference was observed in the swim speed in the six 
continuous Morris water maze test [F = 0.886, P > 0.05; 
Figure 1c].

Figure 1: Hyperbaric oxygen (HBO)/Ginkgo biloba extract 761 (EGB 761) improved cognitive and memory capacities of Alzheimer’s disease 
rats. (a) The swimming trajectories of each group in the 6 consecutive training days. (b) The escape latency of each group in the 6 consecutive 
training days. (c) The swimming speed of each group in 6 consecutive training days. (d) The swimming trajectories of each group in the 7th day. (e) 
The times of crossing the former platform position of each group. (f) Percentage of time spent in the quadrant I. *P < 0.05, †P < 0.01, versus 
AD model group; ‡P < 0.05, versus HBO/EGB 761 group.
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Probe trail
In the 7th day, rats’ swimming trajectory was depicted in 
Figure 1d–1f. The trajectory was around the position of 
quadrant I. Compared with AD model group, HBO, EGB 
761, and HBO/EGB 761 groups had longer time in quadrant 
I to cross the platform [HBO: 4.20 ± 0.29 s vs. AD model: 
3.00 ± 0.30 s, F = 8.308, P < 0.05; EGB 761: 4.60 ± 0.48 s vs. 
AD model: 3.00 ± 0.30 s, F = 8.113, P < 0.05; HBO/EGB 
761: 4.30 ± 0.37 s vs. AD model: 3.00 ± 0.30 s, F = 8.308, 
P < 0.05; Figure 1e]. The percentage of time in quadrant I 
increased significantly in HBO, EGB 761, and HBO/EGB 761 
groups comparing with AD model group [HBO: 26.50 ± 1.60% 
vs. AD model: 20.33 ± 1.78%, F = 6.621, P < 0.05; EGB 
761: 26.50 ± 1.70% vs. AD model: 20.33 ± 1.78%, F = 6.218, 
P < 0.05; HBO/EGB 761: 41.70 ± 1.94% vs. AD model: 
20.33 ± 1.78%, F = 64.26, P < 0.01; Figure 1f]. In this 
regard, HBO and EGB 761 had synergistic effects (HBO/
EGB 761: 41.70 ± 1.94% vs. EGB 761: 26.50 ± 1.70%, 
F = 36.18, P < 0.05; HBO/EGB 761: 41.70 ± 1.94% vs. HBO: 
26.50 ± 1.60%, F = 34.392, P < 0.05).

Hyperbaric oxygen/Ginkgo biloba extract 761 reduces 
apoptosis
In TUNEL staining [Figure 2a–2f], no positive staining was 
observed in normal and sham groups, however, a significant 
amount of positively stained cells was observed in AD model 
group. In HBO, EGB 761, and HBO/EGB 761 groups, normal 

hippocampus neurons were surrounded by sporadically 
positive cells. The AI calculation uncovered a significant 
difference among these groups [HBO: 5.35 ± 0.25% 
vs. AD model: 23.50 ± 1.41%, F = 160.110, P < 0.05; 
EGB 761: 5.19 ± 0.31% vs. AD model: 23.50 ± 1.41%, 
F = 160.960, P < 0.05; HBO/EGB 761: 4.29 ± 0.44% vs. 
AD model: 20.33 ± 1.78%, F = 64.260, P < 0.05; Figure 2g].

Hyperbaric oxygen/Ginkgo biloba extract 761 activates 
nuclear factor kappa‑B pathway
In addition, we went on to investigate whether NF‑κB pathway 
is activated in our models [Figure 3]. This analysis revealed that 
NF‑κB pathway‑related proteins such as phospho‑IKKα, ‑IκBα, 
and NF‑κB were slightly induced in model group. However, 
this difference did not reach statistical significance comparing 
with the normal, sham group (p‑IKKα: Normal: 13.40 ± 1.43% 
vs. AD model: 11.36 ± 0.35%, F = 0.081, P > 0.05; sham: 
11.78 ± 0.37% vs. AD model: 11.36 ± 0.35%, F = 4.050, 
P > 0.05. p‑IκBα: normal: 10.36 ± 0.34% vs. AD model: 
11.36 ± 0.81%, F = 0.820, P > 0.05; sham: 10.92 ± 0.84% vs. 
AD model: 11.36 ± 0.81%, F = 0.640, P > 0.05. NF‑κB: normal: 
10.64 ± 0.34% vs. AD model: 11.34 ± 0.25%, F = 2.690, 
P > 0.05; sham: 10.24 ± 0.61% vs. AD model: 11.34 ± 0.25%, 
F = 0.645, P > 0.05).

Interestingly, HBO and EGB 761 significantly activated 
NF‑κB pathway in hippocampus neurons. As shown in 

Figure 2: Hyperbaric oxygen (HBO)/Ginkgo biloba extract 761 (EGB 761) reduces apoptosis (a–f: TUNEL staining). (a and b) There was no brown 
precipitate (apoptosis identification) in normal and sham groups. (c) The large visible brown precipitate (arrows) was detected in the AD model 
group. (d–f) The normal hippocampal neurons were surrounded by the sporadic visible brown precipitate (arrows) in the HBO; EGB 761 and 
HBO/EGB 761 groups. (g) The apoptotic index showed the significant difference among different groups: AD Model, HBO, EGB 761 and HBO/
EGB 761 groups. *P < 0.01, †P < 0.05, versus AD model group. AI: Apoptotic index.
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Figure 3: Hyperbaric oxygen (HBO)/Ginkgo biloba extract 761 (EGB 761) activates nuclear factor kappa-B pathway. HBO and EGB 761 significantly 
increased phosphorylation of IKKα/β (a), IκBα (b), and nuclear factor kappa-B (c). *P < 0.05, ‡P < 0.01, versus AD model group; †P < 0.05, 
versus HBO/EGB 761 group.
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Figure 3, comparing with the normal, sham and model 
groups, the expression of NF‑κB‑related proteins were 
significantly increased in HBO, EGB 761, and HBO/EGB 
761 groups (p‑IKKα: HBO: 15.92 ± 0.52% vs. AD model: 
11.36 ± 0.359%, F = 52.780, P < 0.05; EGB 761: 16.02 ± 0.35% 
vs. AD model: 11.36 ± 0.35%, F = 86.230, P < 0.05; HBO/EGB 
761: 23.92 ± 0.38% vs. AD model: 11.36 ± 0.35%, F = 576.300, 
P < 0.01. p‑IκBα: HBO: 14.18 ± 0.09% vs. AD model: 
11.36 ± 0.35%, F = 60.810, P < 0.05; EGB 761: 14.28 ± 0.14% 
vs. AD model: 11.36 ± 0.35%, F = 56.164, P < 0.05; 
HBO/EGB 761: 24.41 ± 0.56% vs. AD model: 11.36 ± 0.35%, 
F = 126.310, P < 0.01. NF‑κB: HBO: 15.00 ± 0.19% vs. 
AD model: 11.34 ± 0.25%, F = 105.100, P < 0.05; EGB 
761: 14.64 ± 0.59% vs. AD model: 11.34 ± 0.25%, F = 53.510, 
P < 0.05; HBO/EGB 761: 25.01 ± 0.38% vs. AD model: 
11.34 ± 0.25% F = 709.690, P < 0.01).

dIscussIon

Aging, as a risk factor for AD, has been widely investigated. 
The aging of the nervous system is a physiological process 

characterized by chronic apoptosis of functional neurons. It 
is widely accepted that the extracellular accumulation of Aβ 
in senile plaques is an important event in the pathogenesis of 
AD.[13] The aggregated Aβ is toxic to neurons both in vitro and 
in vivo[14] and the overexpression of human amyloid precursor 
protein is observed in transgenic mouse models of AD,[15] 
which causes neuritic plaques similar to those seen in AD 
patients with learning and memory deficits.[16] The transgenic 
APP mice demonstrated a cognitive decline and were well 
accepted as very successful AD model.[17,18] Meanwhile, soluble 
Aβ oligomers can inhibit cognitive function[19] and long‑term 
potentiation in vitro and in vivo.[20] Moreover, the animal 
models where cognitive impairment and neuropathological 
signs are induced by intracerebral injection of pre‑aggregated 
Aβ‑oligomers are useful models for the early stages of AD,[21] 
which were used as a good AD model in many studies.[22‑24]

Our results showed that the excessive deposition of Aβ caused 
apoptosis in hippocampus neurons, resulting in impairment 
of memory and learning ability in a rat model of AD. In the 
interventional groups, HBO/EGB 761 treatment significantly 
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improved the memory and cognitive capacities of AD rats, 
and they reduced apoptosis in hippocampus neurons. In this 
respect, HBO and EGB 761 had a synergistic effect. Moreover, 
we observed that HBO/EGB 761 treatment activated NF‑κB 
pathway in hippocampus neurons. These data was in line with 
previously published results showing that the activation of 
NF‑κB pathway may have a protective role in AD.[25]

Several studies have demonstrated a correlational link 
between NF‑κB activity and neurodegenerative diseases such 
as AD, PD, and HD. They proposed that NF‑κB activation in 
neurons had a neuroprotective role in the degenerative process 
of these diseases.[26] In addition, NF‑κB may be involved 
in the gene long‑term memory changing from short‑term 
memory coming from the synaptic signals, which have an 
important role in signal transduction, memory formation, 
and neural modeling.[27] Meanwhile, in the pathological 
conditions, the activation of NF‑κB promotes survival neuron 
survival. For example, NF‑κB inhibits apoptosis through 
regulating apoptosis protein (1APs), anti‑oxidative enzymes 
and inhibition of mitochondrial depolarization, membrane 
permeability changes, and cytochrome C release.[28] However, 
there are also evidences indicating that it may cause neuronal 
death. In TG2576 transgenic mice, the increased NF‑κB 
activation and apoptosis was found in the same cells, implying 
that NF‑κB activation may increase neuronal apoptosis.[29]

Taken together, these findings demonstrated that HBO/EGB 
761 ameliorates the cognitive and memory impairment in 
rat model of AD. The protective effects of HBO/EGB 761 
are associated with a reduced apoptosis and NF‑κB pathway 
activation in hippocampus neurons.
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