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Abstract: Natural coumarins are present in remarkable amounts as secondary metabolites in edible and
medicinal plants, where they display interesting bioactivities. Considering the wide enzymatic arsenal
of filamentous fungi, studies on the biotransformation of coumarins using these microorganisms
have great importance in green chemical derivatization. Several reports on the biotransformation of
coumarins using fungi have highlighted the achievement of chemical analogs with high selectivity
by using mild and ecofriendly conditions. Prompted by the enormous pharmacological, alimentary,
and chemical interest in coumarin-like compounds, this study evaluated the biotransformation
of nine coumarin scaffolds using Cunninghamella elegans ATCC 10028b and Aspergillus brasiliensis
ATCC 16404. The chemical reactions which were catalyzed by the microorganisms were highly
selective. Among the nine studied coumarins, only two of them were biotransformed. One of the
coumarins, 7-hydroxy-2,3-dihydrocyclopenta[c]chromen-4(1H)-one, was biotransformed into the
new 7,9-dihydroxy-2,3-dihydrocyclopenta[c]chromen-4(1H)-one, which was generated by selective
hydroxylation in an unactivated carbon. Our results highlight some chemical features of coumarin
cores that are important to biotransformation using filamentous fungi.
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1. Introduction

Natural heterocyclic products consisting of fused benzene and α-pyrone rings are designed as
coumarins [1]. The great structural diversity of coumarins can be found both in simple coumarins,
whose chemical structures contain only two rings, and in coumarins that contain an additional ring,
such as furano- and pyranocoumarins. In all coumarin scaffolds, hydroxy or methoxy groups at
position 7 are common structural features [2].

Natural coumarins are widespread in edible and medicinal plants as secondary metabolites [3].
These chemicals display broad biological activities [4], including antioxidant [5], antibacterial [6],
antiviral [7], anti-inflammatory [8], antidepressant [9], and antitumoral activities [10], among others.
In addition to other secondary metabolites, the biosynthesis of coumarins is controlled by several
enzymes, and their accumulation is directly influenced by biotic and abiotic factors [11]. Given the
wide pharmaceutical, chemical, and alimentary importance of coumarins, several alternative ways
to achieve them have been developed in an attempt to replace the natural compound obtained by
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bioprospecting [12,13]. As a result, limitations associated with obtaining such substances in low yields
from natural sources may be circumvented.

Since the first synthetic coumarin [14], coumarin-like compounds have been mainly used in the
pharmaceutical industry as precursors for the synthesis of anticoagulant drugs or in the production of
fragrances. Several chemical compounds bearing a coumarin moiety continue to be produced by using
synthetic methodologies [15,16], but some specific structural modifications and substituents insertions
are barely performed. Sometimes, the synthetic methods require corrosive catalysts and long reaction
times, and they generally generate byproducts along with the desired product [17].

Chemical derivatization using microorganisms (defined as biotransformation) represents a
powerful tool for obtaining derivatives for fine chemical, pharmaceutical, and agrochemical industries
according to green chemistry principles [18]. Biotransformation using microorganisms may operate
in mild conditions (neutral pH, room temperature, and atmospheric pressure), and generally, it
is conducive to high regio-, stereo-, and chemoselectivity at low cost [19]. Biotransformation
processes have an interesting diversity, which allows for diverse products to be obtained from a
single substrate [20]. Moreover, some chemical transformations that cannot be performed through the
traditional synthetic methods are readily obtained using the biotransformation approach in ecofriendly
reactions [21]. Within this context, the microbiological transformation of diterpenes has been studied
to achieve the specific hydroxylation of unactivated C–H bonds, which is difficult to prepare using
chemical methods [22].

Microbial biotransformation can be described as a reaction or a set of simultaneous reactions in
which a precursor molecule is converted, rather than a fermentation process where molecules are
produced from a carbon and energy source. Biotransformation could involve the use of enzymes or
whole cells, or combinations thereof. In general, whole cells are more popular than isolated enzymes
in industrial biotransformation [23] because the former allows for a great quantity of catalysts in small
volumes and high turnover rates of enzymes and cofactors. Besides, filamentous fungi are especially
useful as industrial enzyme sources because of their broad diversity in the production of proteins,
which are quickly secreted [24].

Recently, our research group published a review on the biotransformation of simple, furano-,
and pyranocoumarins using different genera of filamentous fungi [25]. The survey showed that
Cunninghamella sp. and Aspergillus sp. are the most common genera used as catalysts in the
biotransformation of several types of coumarins. These findings prompted us to investigate the
chemical specificities of Cunninghamella and Aspergillus genera in transforming coumarin cores.

Therefore, the present study reports on the biotransformation of a variety of coumarin compounds
using Cunninghamella elegans ATCC 10028b and Aspergillus brasiliensis ATCC 16404. Our results provide
an interesting way of mapping these microbial systems onto the derivatization of coumarin scaffolds.
The approach used by us highlights some chemical features in the coumarin structures that allow for
their biotransformation. Additionally, the biotransformation of coumarins using the selected fungi
strains occurred under chemo- and stereoselectivity. One of the assays led to a selective hydroxylation
at an unexpected position of the coumarin core.

2. Results and Discussion

Coumarins represent an important class of natural products and also synthetic oxygen-containing
heterocycles. Several reports have claimed that the most common structural pattern in natural
coumarins is hydroxylation at C-7. Based on this, the present study focused on an evaluation of
the biotransformation of a panel of coumarins that contained one or two hydroxyl groups in the
aromatic ring.

Initial screening of the biotransformation of nine coumarin compounds (1 to 9, Figure 1) was
carried out using the filamentous fungi Cunninghamella elegans ATCC 10028b and Aspergillus brasiliensis
ATCC 16404. The biotransformations were carried out for 72 h, and samples were analyzed using
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HPLC every 24 h. Both fungi were able to transform only two of the coumarins (4 and 7) after 72 h
of incubation.Molecules 2019, 24, x FOR PEER REVIEW 3 of 9 

 

 
Figure 1. Chemical structures of coumarins used as substrates in biotransformation through 
Cunninghamella elegans ATCC 10028b and Aspergillus brasiliensis ATCC 16404. 

HPLC analysis (Figure 2) showed that C. elegans and A. brasiliensis biotransformed (exclusively) 
the coumarins 4 and 7 into more polar derivatives. The chemical structures of the coumarin substrates 
4 and 7 contained two common features: aromatic rings from both contained only one hydroxyl 
group at C-7, and both coumarins contained a bulky group at C-4. None of the coumarins whose 
aromatic ring contained two hydroxyl groups (2, 3, 5, 6, 8, and 9) were biotransformed by C. elegans 
or A. brasiliensis. Moreover, none of the coumarins with a methyl group at C-4 (1, 2, and 3) were 
biotransformed by the two evaluated filamentous fungi. 

 
Figure 2. Reverse-phase HPLC elution profiles (λ = 211 nm) of the ethyl acetate extracts of C. elegans 
ATCC 10028b cultures incubated for 72 h with coumarin 4 (chromatogram A) and A. brasiliensis ATCC 
16404 cultures incubated for 72 h with coumarin 7 (chromatogram B). The derivatives of coumarins 4 
and 7 can be visualized in peaks C1 and C2, respectively. AU: absorbance unit. 

A more detailed analysis of the HPLC chemical profiles of the crude extracts of the 
biotransformations catalyzed by C. elegans and A. brasiliensis showed that both fungi biotransformed 
coumarins 4 and 7 into the same derivatives. However, the yields of derivatives C1 and C2 were 
different. Concerning the biotransformation of coumarin 4, the yield of the assay catalyzed by C. 
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Figure 1. Chemical structures of coumarins used as substrates in biotransformation through
Cunninghamella elegans ATCC 10028b and Aspergillus brasiliensis ATCC 16404.

HPLC analysis (Figure 2) showed that C. elegans and A. brasiliensis biotransformed (exclusively)
the coumarins 4 and 7 into more polar derivatives. The chemical structures of the coumarin substrates 4
and 7 contained two common features: aromatic rings from both contained only one hydroxyl group at
C-7, and both coumarins contained a bulky group at C-4. None of the coumarins whose aromatic ring
contained two hydroxyl groups (2, 3, 5, 6, 8, and 9) were biotransformed by C. elegans or A. brasiliensis.
Moreover, none of the coumarins with a methyl group at C-4 (1, 2, and 3) were biotransformed by the
two evaluated filamentous fungi.
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Figure 2. Reverse-phase HPLC elution profiles (λ = 211 nm) of the ethyl acetate extracts of C. elegans
ATCC 10028b cultures incubated for 72 h with coumarin 4 (chromatogram A) and A. brasiliensis ATCC
16404 cultures incubated for 72 h with coumarin 7 (chromatogram B). The derivatives of coumarins 4
and 7 can be visualized in peaks C1 and C2, respectively. AU: absorbance unit.

A more detailed analysis of the HPLC chemical profiles of the crude extracts of the
biotransformations catalyzed by C. elegans and A. brasiliensis showed that both fungi biotransformed
coumarins 4 and 7 into the same derivatives. However, the yields of derivatives C1 and C2 were
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different. Concerning the biotransformation of coumarin 4, the yield of the assay catalyzed by C. elegans
was five-fold higher than that catalyzed by A. brasiliensis. On the other hand, A. brasiliensis was more
efficient in the biotransformation of coumarin 7, generating almost double the yield. Similarly to our
study, Lee and coworkers reported the biotransformation of isoflavone by C. elegans and A. niger [26].
The authors highlighted that A. niger gave a more complex metabolite profile than did C. elegans, but
some derivatives were found in the crude extracts from both fungi.

Next, the biotransformation experiments were repeated to facilitate the isolation and
characterization of C1 and C2. Scale-up biotransformations of coumarin-related compounds 4
and 7 by C. elegans and A. brasiliensis, respectively, led to the isolation of their main derivatives.

The derivative isolated from the biotransformation of coumarin 4 was identified as
7,9-dihydroxy-2,3-dihydrocyclopenta[c]chromen-4(1H)-one (C1), which is reported for the first time
in the present study. Its molecular formula was determined as C12H10O4 by HRESIMS (m/z 217.0507
[M −H]−, Figure S6 in the Supplementary Materials), indicating that one new hydroxyl group was
introduced into 4 as a result of the biotransformation. A comparison between the 4 and C1 1H NMR
spectra (Figure S1 in the Supplementary Materials) showed that their chemical structures were very
similar, except for C-9 (δ 75.1) in the C1 chemical structure. The chemical shift of C-9 (δ 75.1) and the
presence of only one hydrogen attached at C-9 (δ 5.20–5.22, ddd, H-9) indicated hydroxylation at this
position. Heteronuclear HSQC and HMBC analysis, along with 13C NMR data analysis (see spectra in
Figures S2–S4 in the Supplementary Materials), allowed for the unequivocal structural identification of
C1 (Figure 3). The substitution of one hydrogen for the hydroxyl group at C-9 explained the greater
polarity of C1 compared to its precursor, 4 (see chromatogram A, Figure 2).

The hydroxylation at C-9 generated a chiral center in the C1 chemical structure, which explained the
multiplicity of the diastereotopic hydrogens attached at C-10 (δ 2.42–2.48, dddd, H-10a; and 2.00–2.05,
dddd, H-10b) and C-11 (δ 3.17–3.23, dddd, H-11a; and 2.95–3.00 ddd, H-11b). The ddd δ 5.20–5.22 was
attributed to the enantiotopic hydrogen attached at C-9. The optical rotation measurement of the C1
sample ([α]20

D = −16◦) showed that the biotransformation approach used herein was stereoselective
with a preference for levogyre stereoisomer production.

The magnitude of the J between two adjacent C–H bonds (3JHH) is directly dependent on the
dihedral angle α between these two bonds [27]. Therefore, the J analysis of the 1H NMR signals of
the hydrogens belonging to the C1 cyclopentanol ring led to some conclusions about the relative
stereochemistry of its substituents. The largest J value of ddd δ 5.20–5.22 (3JHH = 6.9 Hz) was attributed
to the vicinal coupling between H-9 and H-10a (δ 2.42–2.48) that should occupy the opposite face
of the cyclopentanol ring. By the same rationale, the middle J value (3JHH = 2.2 Hz) was attributed
to the vicinal coupling between H-9 and H-10b (δ 2.00–2.05) that should occupy the same face of
the cyclopentanol ring. Finally, the smallest J value of the ddd (4JHH = 1.4 Hz) was attributed to the
W-coupling between H-9 and H-11a (δ 3.17–3.23). The W-coupling was herein confirmed through
COSY homonuclear analysis (Figure S5 in the Supplementary Materials).
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Several coumarins and their derivatives have displayed interesting biological activities, and they
are useful as a starting point for drug development [25]. The biotransformation approach employed in
the present study provided chemo- and stereoselective hydroxylation of an unactivated C–H bond
(position 9 of coumarin 4). The ability of microorganisms to hydroxylate chemically inaccessible centers
is a powerful synthetic tool because the functionalization of unactivated C–H bonds is a true challenge
to organic synthesis [28]. Traditional chemical methods generally require highly reactive oxidizing
agents, which causes difficulties in the regio- and stereocontrols.

Considering the poor conversion rate of coumarin 4 and the consequent low yield of C1 (9.0%
yield), we investigated the biotransformation of 4 by C. elegans, intending to improve its conversion
rate. The biotransformation of coumarin 4 by C. elegans was then carried out by using twice the
amount of fungus and also by changing the incubation time to 120 and 168 h. We concluded that
the biotransformation assay that used twice the amount of fungus for 72 h was the best one for the
biotransformation of 4 into C1. Next, we repeated the biotransformation of 4 by C. elegans by using the
optimized conditions, and we isolated C1 with a yield of 22.0%.

The next step of our study was the identification of the chemical structure of the derivative C2,
which was achieved through biotransformation of the coumarin 7 by A. brasiliensis with a yield of
35.0%. The C2 1H NMR spectrum analysis (Figure S7 in the Supplementary Materials) showed that
the biotransformation of 7 by A. brasiliensis led to hydrolysis at C-10. The ester group at C-10 of the
chemical structure of 7 was converted into a carboxyl acid group in C2. The C2 and 7 1H NMR spectra
were almost identical. Meanwhile, no methyl hydrogen was present in the C2 1H NMR spectrum.
The 1H NMR of coumarin 7 contained a singlet at δ 3.83 with an integral value of 3. This signal was not
found in the C2 1H NMR spectrum. All C2 NMR data were in accord with those previously reported
for 2-(7-hydroxy-2-oxo-2H-chromen-4-yl) acetic acid or 7-hydroxycoumarinyl-4-acetic acid [29].

It was previously established that C-7 substitution in the coumarin nucleus increases its
antioxidant and antifungal activities [30]. Within this context, Molnar and coworkers have synthesized
some coumarinyl thiosemicarbazides from C2. The synthesized compounds displayed interesting
antibacterial activity against Bacillus subtilis [31].

As part of our studies on the biotransformation of coumarins, we recently reported that
transformations at C-7, reductions at C3–C4, and lactone-ring opening were the most frequent
reactions in coumarin cores submitted to biotransformation using filamentous fungi [25]. Unlike
what was expected, the biotransformations described in the present study led to hydroxylation at an
unexpected position and hydrolysis reaction.

In summary, our investigations into the biotransformation of coumarin compounds by C. elegans
and A. brasiliensis provided useful information about structural features that are important for
the microbial transformation of this kind of compound. Coumarins that contained aromatic
monohydroxylation and a bulky group at C-4 in their chemical structures were efficiently biotransformed
by the fungi strains. Although both fungi strains converted the coumarins into the same derivatives,
the reaction yields were distinct. We demonstrated the occurrence of a stereoselective hydroxylation at
an unactivated carbon of one of the coumarins with a preference for levogyre stereoisomer production.
The spectroscopic analysis allowed for the identification of a new chiral coumarin, whose relative
stereochemistry was identified.

3. Materials and Methods

3.1. General Analytical Procedures

Nuclear magnetic resonance (NMR) spectra were recorded in CD3OD on a Varian VNMRS 600
(1H: 600 MHz; 13C: 150 MHz; Palo Alto, CA, USA) spectrometer operating at 25 ◦C or in DMSO-d6

on a Varian NMR AS 400 (1H: 400 MHz) spectrometer operating at 25 ◦C. The chemical shifts (δ)
were assigned in ppm and the coupling constants (J) in Hz. The assignments were based on chemical
shifts, integration, homonuclear (COSY), and heteronuclear (HMQC and HMBC) measurements.
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Optical rotation was measured at 20 ◦C in a Perkin Elmer 343 Polarimeter (Waltham, MA, USA)
at 589 nm (sodium D line). Analytical HPLC analyses were carried out on a Shimadzu Shim-pack
PREP-ODS(H)KIT 5 µm C18 column (4.6 × 250.0 mm, Kyoto, Japan), and the chemical profiles of the
biotransformation and control extracts were obtained using 10% to 100% methanol in water containing
0.01% acetic acid over 30 min with a flow rate of 0.8 mL/min. The crude extracts were analyzed through
the injection of 20 µL at 1 mg/mL on a Shimadzu (SIL-20A) multisolvent delivery system, a Shimadzu
SPD-M20A, a photodiode array detector, and an Intel Celeron computer for analytical system control,
data collection, and processing. The derivatives were isolated by using a chromatographic column
(40 × 1.5 cm) containing silica gel (Sigma-Aldrich, 60 Å, Saint Louis, MO, USA). Mixtures of n-hexane
(Synth) and ethyl acetate (Synth) were employed as a mobile phase.

3.2. Substrates

Nine synthetic coumarin analogs were submitted to the biotransformation experiments. All
coumarins used as substrates were obtained according to known methods through a Pechmann
reaction, and all of their spectroscopic data were identical to those previously described
for 7-hydroxy-4-methyl-2H-2-chromenone (1) [32], 5,7-dihydroxy-4-methyl-2H-chromen- 2-one
(2) [33], 7,8-dihydroxy-4-methyl-2H-chromen-2-one (3) [34], 7-hydroxy-2,3-dihydrocyclopenta[c]
chromen-4(1H)-one (4) [33], 7,9-dihydroxy-2,3-dihydrocyclopenta[c]chromen-4(1H)-one (5) [33],
6,7-dihydroxy-2,3-dihydrocyclopenta[c]chromen-4(1H)-one (6) [35], methyl 2-(7,8-dihydroxy-
2-oxo-2H-chromen-4-yl)acetate (7) [36], methyl 2-(5,7-dihydroxy-2-oxo-2H-chromen-4-yl)acetate (8) [37],
and methyl 2-(7-hydroxy-2-oxo-2H-chromen-4-yl)acetate (9) [38].

3.3. Biotransformation Assays

The biotransformation of all coumarins (1–9) was done through screening with Cunninghamella
elegans ATCC 10028b and Aspergillus brasiliensis ATCC 16404, which were obtained from the American
Type Culture Collection (ATCC, Rockville, MD, USA). The filamentous fungi were maintained in 80%
glycerol solution at −20 ◦C.

The fungi were grown in a two-step culture procedure. First, each fungus was grown at 28 ◦C in
Petri dishes containing malt agar (malt extract 2.0%, glucose 2.0%, peptone 0.1%, agar 1.8%) for 7 days.
Next, an inoculum of five 6-mm disks containing mycelia and agar was added to 125-mL Erlenmeyer
flasks, each holding 50 mL of Koch’s K1 medium (glucose 0.18%, peptone 0.06%, and yeast extract
0.04%). Coumarins (5 mg) were separately added to each flask as a solution in dimethyl sulfoxide (5
mg dissolved in 200 µL). Control flasks consisted of a culture medium with dimethyl sulfoxide and
a fungus (without coumarin), a culture medium with coumarin and dimethyl sulfoxide (without a
fungus), and a culture medium by itself. Biotransformation experiments were carried out at 28 ◦C for
72 h with shaking at 120 rpm. Samples were analyzed daily by HPLC. The mycelia were separated
by filtration, the fermentation broths were extracted three times with ethyl acetate, and the solvent
was evaporated under reduced pressure to yield crude extracts. All experiments were carried out
in triplicate.

Biotransformations of two selected coumarins (4 and 7) were separately carried out in 10
Erlenmeyer flasks (scale-up biotransformations) using the same aforementioned procedures. According
to the yields of the biotransformation assays in the initial screening, the scale-up biotransformations of
4 and 7 were carried out by C. elegans and A. brasiliensis, respectively. The extraction of the culture
broths by ethyl acetate was followed by evaporation of the solvent to yield the crude extracts of the
biotransformations of 4 and 7 (41.0 mg and 59.0 mg, respectively).

Additionally, the biotransformation conditions of coumarin 4 were investigated with a view
toward increasing its conversion. For this, new assays were designed by using a greater quantity of the
fungus C. elegans (10 6-mm disks containing mycelia and agar) and by increasing the incubation time
(120 and 168 h).
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3.4. Isolation and Purification of the Derivatives

The extracts from the culture broths of C. elegans or A. brasiliensis (scale-up biotransformations)
with coumarins 4 and 7 were submitted to an isolation procedure (as described in Section 3.1) to yield
the derivatives C1 and C2, respectively.

3′,7-dihydroxy-2,3-dihydrocyclopenta[c]chromen-4(1H)-one (C1): 3.6 mg (9.0% yield) brown
powder; [α]20

D =−16◦ (0.34; CH3OH); 1H NMR (600 MHz, CD3OD) 7.44 (d, J = 8.4 Hz, 1H, H-5), 6.77
(dd, J = 8.4 and 2.2 Hz, 1H, H-6), 6.68 (d, J = 2.2 Hz, 1H, H-8), 5.20–5.22 (ddd, J = 6.9, 2.2, and 1.4 Hz,
1H, H-9), 3.17–3.23 (dddd, J = 18.0, 8.0, 6.9, and 1.4 Hz, 1H, H-11a), 2.95–3.00 (ddd, J = 18.0, 9.1, and 3.3
Hz, 1H, H-11b), 2.42–2.48 (dddd, J = 13.5, 9.1, 6.9, and 6.9 Hz, 1H, H-10a), 2.00–2.05 (dddd, J = 13.5,
8.0, 3.3, and 2.2 Hz, 1H, H-10b); 13C NMR (150 MHz, CD3OD) 163.1 (C-2), 162.2 (C-7), 161.3 (C-4),
158.2 (C-8a), 127.8 (C-5 and C-3), 115.5 (C-6), 103.8 (C-4a and C-8), 75.1 (C-9), 34.2 (C-10), 30.3 (C-11).
HRESIMS m/z 217.0507 [M -H]− (calcd for [M −H]− 217.0501).

2-(7-hydroxy-2-oxo-2H-chromen-4-yl) acetic acid (C2): 13.0 mg (35.0% yield) brown powder; 1H
NMR (400 MHz, DMSO-d6) 12.75 (br s, 1H, COOH), 10.57 (s, 1H, OH-7), 7.54 (d, J = 8.7 Hz, 1H, H-5),
6.82 (dd, J = 8.7 and 2.3 Hz, 1H, H-6), 6.74 (d, J = 2.3 Hz, 1H, H-8), 6.23 (s, 1H, H-3), 3.83 (s, 2H, H-9).

Supplementary Materials: The following are available online, Figure S1: 1H NMR spectrum of compound C1
(600 MHz, CD3OD); Figure S2: 13C NMR spectrum of compound C1 (150 MHz, CD3OD); Figure S3: 1H-13C HSQC
2D NMR correlation spectroscopy of compound C1 (600 MHz/150 MHz, CD3OD); Figure S4: 1H-13C HMBC 2D
NMR correlation spectroscopy of compound C1 (600 MHz/150 MHz, CD3OD); Figure S5: 1H-1H COSY 2D NMR
correlation spectroscopy of compound C1 (600 MHz, CD3OD); Figure S6: HRESIMS spectrum of compound C1
(negative ion mode); Figure S7: 1H NMR spectrum of compound C2 (400 MHz, DMSO-d6).
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31. Molnar, M.; Tomić, M.; Pavić, V. Coumarinyl thiosemicarbazides as antimicrobial agents. Pharm. Chem. J.
2018, 51, 1078–1081. [CrossRef]

32. Ma, J.; Zhang, G.; Han, X.; Bao, G.; Wang, L.; Zhai, X.; Gong, P. Synthesis and biological evaluation of
benzothiazole derivatives bearing the ortho-hydroxy-N-acylhydrazone moiety as potent antitumor agents.
Arch. Pharm. (Weinh.) 2014, 347, 936–949. [CrossRef]

33. Prateeptongkum, S.; Duangdee, N.; Thongyoo, P. Facile iron(III) chloride hexahydrate catalyzed synthesis of
coumarins. ARKIVOC 2015, 2015, 248–258. [CrossRef]

34. Shen, Q.; Shao, J.; Peng, Q.; Zhang, W.; Ma, L.; Chan, A.S.C.; Gu, L. Hydroxycoumarin derivatives: Novel
and potent α-glucosidase inhibitors. J. Med. Chem. 2010, 53, 8252–8259. [CrossRef] [PubMed]

35. Liu, L.; Zhang, M.; Zhou, L.; Zhu, J.; Guan, S.; Yu, R. Biotransformation of 3,4-cyclocondensed coumarins by
transgenic hairy roots of Polygonum multiflorum. Afr. J. Pharm. Pharmacol. 2012, 6, 3047–3054. [CrossRef]

36. Lizzul-Jurse, A.; Bailly, L.; Hubert-Roux, M.; Afonso, C.; Renard, P.Y.; Sabot, C. Readily functionalizable
phosphonium-tagged fluorescent coumarins for enhanced detection of conjugates by mass spectrometry.
Org. Biomol. Chem. 2016, 14, 7777–7791. [CrossRef] [PubMed]

37. Smitha, G.; Reddy, C.S. ZrCl4-catalyzed Pechmann reaction: Synthesis of coumarins under solvent-free
conditions. Synth. Commun. 2004, 34, 3997–4003. [CrossRef]

38. Dubovik, I.P.; Garazd, M.M.; Khilya, V.P. Modified coumarins. 14. Synthesis of 7-hydroxy-
[4,3′]dichromenyl-2,2′-dione derivatives. Chem. Nat. Compd. 2004, 40, 358–365. [CrossRef]

Sample Availability: Samples of the compounds are available from the authors.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s11094-018-1743-3
http://dx.doi.org/10.1002/ardp.201400230
http://dx.doi.org/10.3998/ark.5550190.p008.947
http://dx.doi.org/10.1021/jm100757r
http://www.ncbi.nlm.nih.gov/pubmed/21053896
http://dx.doi.org/10.5897/AJPP11.858
http://dx.doi.org/10.1039/C6OB01080F
http://www.ncbi.nlm.nih.gov/pubmed/27470182
http://dx.doi.org/10.1081/SCC-200034821
http://dx.doi.org/10.1007/s10600-005-0006-1
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Results and Discussion 
	Materials and Methods 
	General Analytical Procedures 
	Substrates 
	Biotransformation Assays 
	Isolation and Purification of the Derivatives 

	References

