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Introductory

Epileptic encephalopathies are a devastating group of epilepsies with a poor prognosis, for
which the majority have unknown etiology. We perform targeted massively parallel
resequencing of 19 known and 46 candidate epileptic encephalopathy genes in 500 patients
to identify novel genes and investigate the phenotypic spectrum of known genes. Overall,
we identify pathogenic mutations in 10% of our cohort. Six of the 46 candidate genes had
one or more pathogenic variants, collectively accounting for 3% of our cohort. We show that
de novo CHD2 and SYNGAP1 mutations are novel causes of epileptic encephalopathies,
accounting for 1.2% and 1% of cases respectively. We also further expand the phenotypic
spectrum for SCN1A, SCN2A, and SCN8A mutations. To our knowledge, this is the largest
cohort of patients with epileptic encephalopathies to undergo targeted resequencing.
Implementation of this rapid and efficient method will change diagnosis and understanding
of the molecular etiologies of these disorders.

Epilepsy is one of the most common neurological disorders with a lifetime incidence of 3%.
Epileptic encephalopathies are a devastating group of epilepsies characterized by refractory
seizures and cognitive arrest or regression associated with ongoing epileptic activity, and
typically carry a poor prognosist. De novo mutations in several known genes are responsible
for some epileptic encephalopathies2. Furthermore, we and others have shown that rare, de
novo copy number variants (CNVs) account for up to ~8% of cases® 4. Despite this recent
progress, making a genetic diagnosis in a patient can be challenging as there is both genetic
heterogeneity for a given epilepsy syndrome and phenotypic heterogeneity for a specific
gene.

The full phenotypic spectrum associated with mutations in known epileptic encephalopathy
genes is not known. Very few studies have investigated the role of any given gene across a
wide spectrum of epileptic encephalopathy syndromes. This makes serial gene testing in the
clinical setting an inefficient and expensive process, after which the vast majority of cases
remain unexplained. Furthermore, it is clear that discovery of additional genes that cause
epileptic encephalopathies is needed to facilitate genetic diagnosis. Here, we take advantage
of a high-throughput targeted sequencing approach to perform comprehensive sequence
analysis of 65 genes (19 known genes and 46 candidate genes) (Supplementary Fig. 1) in
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500 patients with a range of epileptic encephalopathy phenotypes (Table 1). Candidate genes
were selected from epilepsy-associated CNVs (n=33) or because mutations cause associated
neurodevelopmental disorders or other epilepsy syndromes (n=13). Using this approach, we
(i) identify novel epileptic encephalopathy genes and (ii) delineate the phenotypic spectrum
and mutation frequency for both known and novel epileptic encephalopathy genes.

Overall, 91% of the target (65 genes) was sequenced at >25X coverage, required for
accurate variant calling (Supplementary Fig. 2). We achieved 91% sensitivity across 685
variants (161 loci) from 12 samples that had previously undergone exome sequencing and
100% sensitivity for 24 known variants in previously tested patients; these patients were not
included in the discovery cohort.

We detected one or more pathogenic or likely pathogenic mutations in six of our 46
candidate genes, with multiple individuals carrying mutations in either of the two novel
epileptic encephalopathy genes, CHD2 (NM_001271.3, NP_001262.3) and SYNGAP1
(NM_006772.2, NP_006763.2) (Table 1, 2, Fig. 1).

Remarkably, we detected six de novo variants in the candidate gene, CHD2 (Fig. 1,2),
selected from within the critical interval of 15926.1 deletions detected in patients with a
range of epileptic encephalopathies (Supplementary Fig. 3)° . Four mutations lead to
premature truncation of CHD2 (Table 2). Two de novo missense variants disrupt highly
conserved residues within the SNF2-related helicase/ATPase domain (p.Trp548Arg and
p.Leu823Pro), and are predicted to be damaging by both PolyPhen2 and SIFT. CHD2 codes
for a member of the chromodomain helicase DNA-binding family of proteins and is
characterized by the presence of chromatin remodeling, chromo (chromatin organization
modifier) and SNF2-related helicase/ATPase domains. These domains suggest function of
this protein as a chromatin remodeler’. While functional studies in CHD2 are limited,
studies of another CHD protein family member, CHD7, have shown that the helicase
domain is responsible for ATP-dependent nucleosome remodeling, an integral process in
target gene regulation. Furthermore, in vivo studies of human CHD7 mutations within the
helicase domain, which cause CHARGE syndrome, resulted in decreased remodeling
ability8. These results suggest that the two de novo missense mutations described here may
disrupt CHD2 function in a similar manner, while truncating mutations likely result in
haploinsufficiency.

The six patients with CHD2 mutations had distinctive features with a median seizure onset
of 18 months (range 1-3 years, Table 2): myoclonic seizures in all, photosensitivity in three
and all had 1D, ranging from moderate to severe. A de novo CHD2 frameshift mutation was
reported in a proband with ID and absence seizures® and a de novo missense mutation in an
individual with autism spectrum disorder (ASD)0. These results suggest that mutations in
CHD2 contribute to a broad spectrum of neurodevelopmental disorders. Notably, recent
studies implicate de novo mutations in CHDS in patients with ASDL. Interestingly, three
genes of the chromodomain family (CHD2, CHD7, CHD8) have now been implicated in
disorders that impact the neurodevelopmental system. Further studies of this nine-member
gene family will determine the role of each across the spectrum of neurodevelopmental
disorders, and provide exciting new avenues of research.

Nat Genet. Author manuscript; available in PMC 2014 January 01.



1duosnuen Joyiny 1duosnue Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Carvill et al.

Page 4

We identified nine pathogenic or likely pathogenic variants in four of the 13 “epilepsy-
associated’ genes (Fig. 1). We found five truncating variants in SYNGAP1 (Fig. 2). Patients
with SYNGAP1 mutations had median seizure onset of 14 months (mean 14 months, range 6
months to 3 years) (Table 2). They had multiple seizure types, early developmental delay
and subsequent regression. Outcome was poor with moderate to severe ID. SYNGAP1
mutations have been associated with ID and, although most patients have epilepsy, seizures
are typically well controlled® 12-18 Qur study represents the first cases of epileptic
encephalopathies with SYNGAP1 mutations. These observations suggest that epilepsy is a
core feature of both static and progressive encephalopathies associated with SYNGAP1
mutations, and carry important implications for diagnostic testing.

Variants were identified in three additional ‘epilepsy associated genes’. There were two de
novo variants in MEF2C (NM_002397.4, NP_002388.2), a missense variant and a stop-loss
variant (p.*464SerExt*?). Furthermore, we found de novo pathogenic variants in MBD5
(NM_018328.4, NP_060798.2) (Thr157GInfs*4) and GABRG2 (NM_000816.3,
NP_000807.2)(p.Arg323GIn) (Table 2).

We detected a premature truncation mutation (p.Tyr805*) in the CNV candidate gene,
HNRNPU (NM_031844.2, NP_114032.2). The p.Tyr805* change arose as a result of two
consecutive single nucleotide changes ¢.471T>C and c.472A>T (Supplementary Fig. 4) that
occur two amino acids upstream of the termination codon. Neither variant was maternally
inherited; paternal DNA was not available. A recent report identified HNRNPU as a
candidate for the ID and seizure phenotypes of probands with 1g44 microdeletions!®. In
addition, a de novo splice-site variant was identified in a proband with a complex
neurodevelopmental phenotype including epilepsy2°. Collectively, these data suggest that
haploinsufficiency of HNRNPU is associated with epileptic encephalopathy as well as ID,
though further phenotype-genotype correlation will improve our understanding of the
HNRNPU phenotypic spectrum.

We identified 32 variants fulfilling our criteria for pathogenicity and an additional four
variants that are likely pathogenic in ten of 19 known epileptic encephalopathy genes (Fig.
1, Table 1, Table 3). We identified multiple patients with mutations in STXBP1, CDKLS5,
SCN1A, SCN2A, PCDH19 and KCNQ?2, accounting for 69% (36/52) of all mutation-positive
individuals in our cohort. We detected an additional 16 rare variants in six of these 19
known genes for which we were unable to conduct segregation analysis; it is probable that a
number of these variants are also pathogenic (Supplementary Table 1).

The phenotypes identified in patients with mutations in known genes are provided (Table 3),
and for some we expand the known phenotypic spectrum. For example, we identified a
homozygous recessive missense mutation in PNKP in a single proband with unclassified
epileptic encephalopathy. PNKP mutations are associated with early infantile epileptic
encephalopathy comprising microcephaly, early-onset intractable seizures and
developmental delay?L. By contrast, our patient did not have microcephaly (head
circumference 50t centile) or developmental delay but had normal cognition despite
refractory epilepsy with multiple seizure types. Also, three patients with SCN1A mutations
presented with an epilepsy-aphasia phenotype, of which two also had FS+. SCN1A
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mutations are well known to be associated with genetic epilepsy with febrile seizures plus
(GEFS+) but have not previously been reported with epilepsy-aphasia syndromes22 23, |t is
possible that the SCN1A mutation is not responsible for the epilepsy-aphasia syndrome but
equally it could be a modifier predisposing the individual to this group of epileptic
encephalopathies. Further work is warranted to clarify this association, perhaps most
effectively with exome-sequencing in these patients.

We detected five variants in SCN2A, which encodes the a2 subunit of the voltage gated
sodium channel. To date, the majority of SCN2A mutations have been associated with the
self-limited autosomal dominant syndrome of benign familial neonatal-infantile seizures
(BFNIS)24, Previously, only three de novo variants have been reported in patients with
epileptic encephalopathies?® 26, Interestingly our five cases show similar variability in the
range of onset seen in BFNIS with three beginning in the neonatal period (11 hours to 2
days) and two in infancy (6 weeks, 13 months). Two had relatively early offset of seizures at
5 weeks and 7 months. The refractory nature of seizures did not correlate with intellectual
outcome, which ranged from mild (2) to severe (3) intellectual disability. We conclude that
SCNZ2A is an important contributor to the overall burden of epileptic encephalopathies,
accounting for 1% of cases.

We also identified a pathogenic missense mutation (p.Leu1290Val) in SCN8A. To date, only
a single de novo SCN8A mutation (p.Asn1768Asp) has been described in a proband with
severe epileptic encephalopathy and sudden unexplained death in epilepsy?’. Here we
describe a second patient presenting with an epileptic encephalopathy beginning at 18
months. Interestingly, this variant was paternally inherited, though the father was shown to
have somatic mosaicism (13% mutant allele) supporting its pathogenic effect as seen in
other genetic encephalopathies with parental mosaicism?8.

The findings in this large series of patients with hitherto unsolved epileptic encephalopathies
allows us to begin to frame the overall genetic architecture of this group of disorders. We
identified pathogenic or likely pathogenic mutations in 10% of our cohort, with mutations in
16 genes. However, this mutation rate is likely to be an underestimation of the true
contribution of each gene to the overall burden of epileptic encephalopathies. Our cohort
excluded patients with previously identified mutations, and we were unable to conduct
segregation analysis for a subset of variants we identified, some of which are likely to be
pathogenic. Furthermore, as larger numbers of patients with mutations of specific genes are
identified, distinctive epileptic encephalopathy phenotypes are likely to emerge. Taken
together, with up to 8% rare CNVs in epileptic encephalopathy patients in an earlier analysis
of a subset of this series3, we can now collectively ascribe causality for ~18% of all epileptic
encephalopathies of unknown cause.

The genetic heterogeneity of epileptic encephalopathies is considerable; likely pathogenic
variants were found in nine known or novel genes (see Fig. 2). Even the most commonly
mutated genes in our study each account for only up to 1.6% of cases. Notably, we elucidate
new genes found to be commonly mutated in epileptic encephalopathies, with CHD2,
SYNGAP1 and SCN2A accounting for 1-1.2% of cases each, a frequency similar to that of
mutations in SCN1A, STXBP1 and CDKLS5 in our cohort. However, no mutations were seen
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in nine other known genes (ARX, FOXG1, KCNT1, MECP2, PLCB1, SLC25A22, SLC2A1,
SPTAN1, ARHGEF9) in 500 patients. These results suggest that pathogenic mutations in
these genes, while important, are rare causes of epileptic encephalopathies (<0.2% each in
our cohort), or cause only very distinct syndromes that were not prevalent in our cohort.
These findings support a clinical approach to genetic diagnosis that employs large gene
panels or whole exome sequencing, as it will remain difficult and expensive to determine a
priori the causative gene in a given patient.

Notably, mutations in SYNGAP1 and CHD2 have now been described in probands with
epileptic encephalopathy, ID and ASD phenotypes, highlighting the shared genetic basis of
neurodevelopmental disorders. Unbiased approaches such as exome or whole genome
sequencing provide an avenue to gene discovery, but large cohorts will be required to
identify two or more patients with de novo mutations in the same gene® 18. Our results show
the power of targeted resequencing to screen large numbers of patients in a high-throughput
and cost-effective manner. This approach is critical to identify additional patients with
mutations in genes where a single de novo mutation is identified by exome sequencing
approaches, to determine overall mutation frequency in a given phenotype, and to describe
genotype-phenotype correlations. Applying this approach across various
neurodevelopmental disorders will identify additional mutation positive patients for a
specific gene and enhance our understanding of disease mechanisms.

ONLINE METHODS

Patients

This study was approved by the Human Research Ethics Committees of Austin Health and
the University of Washington. Probands with epileptic encephalopathies were recruited from
the epilepsy clinic at Austin Health, the practices of the investigators and by referral for
epilepsy genetics research from around Australia and internationally after informed consent.
The cohort consisted of 500 patients with a diverse range of epileptic encephalopathy
phenotypes. An epileptic encephalopathy was defined as refractory seizures and cognitive
slowing or regression associated with frequent, ongoing epileptiform activity!. Detailed
epilepsy and medical histories were obtained together with the results of investigations
including EEG and MRI studies. Epilepsy syndromes were classified according to the
Organization of the International League Against Epilepsy Commission on Classification!
(Table 1). Some patients had already undergone mutation screening for specific epileptic
encephalopathy genes; none had been screened for all known genes. Patients with a
previously identified disease causing mutation were excluded from this study. Some patients
with known mutations were included as mutation positive controls but were not included in
the 500 cases in the discovery cohort. Furthermore, 369/500 patients had been previously
screened for pathogenic CNVs, either in the research setting (n=257)3, or by clinical testing
(n=112). Probands with pathogenic CNVs were not included in this study.

Gene Selection

We selected 65 genes for sequence analysis (Fig. 1). The “known” gene group included
genes in which mutations are known to cause one or more epileptic encephalopathy
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syndromes (n=19)2 21 25, 27,28, 32-34 \\e also selected two sets of candidate genes for
epileptic encephalopathies. The first set includes 13 “‘epilepsy-associated genes’, more
commonly implicated in patients with non-epileptic encephalopathy forms of epilepsy
(CHRNA7, KCNQ3, GABRD, GABRG2, PRICKLE1, CACNB4, SCN1B) or a related
neurodevelopmental disorder with epilepsy as a comorbid feature (GRIN2B, MBD5,
MEF2C, SYNGAP1, SYN1, ATP1A2)35-39, None are an established cause of epileptic
encephalopathies. We also selected 33 candidate genes, primarily from epilepsy-associated
CNVs, either from published cohorts, case reports or unpublished data3: 4 40 (see
Supplementary Note and Supplementary Table 2 for candidate gene selection).

Sixteen samples that had been previously subject to exome sequencing were included in all
analyses and used to assess the sensitivity of variant calling. We also included 24 probands
with a known variant in a known or candidate gene to further validate our approach.

Target capture and sequencing

We used Molecular Inversion Probes (MIPs) to capture all exon and intron/exon boundaries
(5bp flanking) of target genes (Refseq, hg19 build) (Supplementary Table 3). Detailed
methodology is described elsewherell, Briefly, pooled MIPs were used to capture target
exons from 100ng of each proband’s DNA. PCR was performed using universal primers
with the introduction of unique eight-base barcodes on the tagged reverse primer. Pooled
libraries were subject to massively parallel sequencing using a 101 paired-end protocol on a
Hiseq. The libraries were prepared and sequenced in two batches, comprising a total of 30
(target 1) and 35 (target 2) genes.

Data analysis and variant calling

Raw read data processing and mapping with BWA (See URLSs) was performed as
described!®. Single nucleotide variant (SNV) and indel calling and filtering was performed
using the Genome Analysis Tool Kit (GATK) (see URLS). Variants that did not adhere to
the following criteria were excluded from further analysis: allele balance >0.70, QUAL<30,
QD<5, coverage<25X, clustered variants (window size-10). Variants were annotated with
Seattle seq (see URLS) and the ESP6500 dataset (see URLS) was used to assess variant
frequency in the control population. For dominant (or de novo) models we considered only
variants not present in this control sample set. For recessive candidates, we considered
variants with a frequency in controls of <1%. Only non-synonymous, splice-site or
frameshift (‘damaging’) variants were assessed further. The GATK Depth of Coverage tool
was used to calculate overall depth of coverage for each sample at a threshold of 25X, as
well as the mean percentage (across all samples) of bases covered >25X for each gene.

Rare variant segregation analysis

Where family members were available, segregation analysis was carried out for all rare (not
present in ESP6500 controls), possibly damaging (non-synonymous, essential splice-site or
frameshift) variants for all 65 target genes. This analysis was performed using a ‘MIP-pick’
strategy. We selected and re-pooled only the MIPs that captured the genomic sequence
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harboring the rare variant of interest and performed target enrichment PCR and sequencing
as above for all relevant probands and family members. This approach allowed us to
sequence variants at very high depth and detect somatic mosaicism in parents.

Criteria for pathogenicity of rare variants

For those rare, possibly damaging variants where segregation analysis could be performed,
we required the variant to meet one of the following criteria to constitute a novel pathogenic
variant. Pathogenic variants: (i) arose de novo, (ii) segregated with the disorder, (iii) were
inherited from a parent with somatic mosaicism, or (iv) adhered to a recessive, X-linked or
parent-of-origin mode of inheritance, where applicable (Supplementary Fig. 1).

In certain instances we were unable to determine the inheritance of a rare variant due to the
unavailability of DNA from one or more parent. It is likely that a subset of these variants
also cause disease, though here we report only those variants that are likely to lead to protein
truncation (i.e. splice-site, nonsense, frameshift, stop-loss) as being ‘likely pathogenic’.
Additionally, two missense mutations in known genes (STXBP1, SCN2A) were interpreted to
be ‘likely pathogenic’ based on the high incidence of pathogenic missense mutations in
these genes, which was further supported by the available parent not carrying the variant.
We performed microsatellite analysis using the PowerPlex S5 system [Promega] in all
parents of probands with a de novo mutation to confirm maternity and paternity.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Number of pathogenic mutations

SCN1A

CDKLS STXBP1 CHD2 SYNGAP1 SCN2A MEF2C KCNQ2 PCDH19 HNRNPU MBD5 GABRG2 PNKP

PNPO

SCN8A

|IIIIIIILL[

UBE3A

Figure 1.
Pathogenic and likely pathogenic mutations identified in 500 patients with epileptic

encephalopathies in novel genes (red) and known genes (blue)
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a

b

CHD2
Gly491Valfs*13 Glu1412Glyfs*64

Arg121* Trp548Arg Leu823Pro Arg1644Lysfs*22

Thr604Leufs*19  Asp856Gly

. chromodomain . DEXDc Helicase . ATP Helicase . Coiled coil motif

SYNGAP1
K114Sfs*20 K418Rfs*54  c.2294+1G>A
c.389-2A>T P562L L813Rfs*22

R143*

W267* T878Dfs*60

Q893Rfs*184

V348Afs*70 S738*
¢.510-1G>A
K138fs* N729Tfs*31
K108Vfs*25 Q702%

H95Pfs*5

[ Pleckstrin  [] Protein Kinase C [ RAsGAP ] Coiled coil motif
homology conserved

Figure2.
De novo mutations in novel epileptic encephalopathy genes a) CHD2 and b) SYNGAPL1.

Mutations shown in red were identified in this study. Black entries denote previously
reported variants; for CHD2, in ID (Thr604Leufs*19)° and autism (Asp856Gly)10 and for
SYNGAP1 in ID and/or autism® 14-18 Bold entries indicate pathogenic variants found in
patients with epilepsy. No evident genotype-phenotype correlations exist for mutations in
either CHD2 or SYNGAPL. For both genes, truncating and missense mutations occur in all
three phenotypes (ID/epileptic encephalopathy /autism) without phenotype-specific
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intragenic localization. This suggests that alternative neurobiological conditions and
mechanisms, genetic or otherwise, underlie this heterogeneity.
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Epileptic encephalopathy cohort screened for mutations in 65 novel and known genes

Table 1

Syndrome N Pathogenic or likely

pathogenic variant
(% of syndrome)

ABPE 6 0

Dravet 19 4 (21%)T

ECSWS 10 0

Epileptic encephalopathy not otherwise specified | 173 22 (13%)

EME 5 1 (20%)

EOEE 39 8(21%)

Epilepsy-Aphasia 27 3 (11%)

FIRES 12 0

IS 81 4(5%)

LKS 3 0

LGS 40 5 (13%)

MAE 81 3 (4%)

Ohtahara 4 2 (50%)

TOTAL 500 52 (10%)

Page 14

ABPE = Atypical Benign Partial Epilepsy; ECSWS, = Epileptic encephalopathy with Continuous Spike-and-Wave during Sleep; EME = Early
Myoclonic Encephalopathy, EOEE = Early Onset Epileptic Encephalopathy; FIRES = Febrile Infection-Related Epilepsy Syndrome; IS = Infantile

Spasms; LKS = Landau-Kleffner Syndrome; LGS = Lennox-Gastaut Syndrome; MAE = Myoclonic Atonic Epilepsy

TNote that in 4 of the Dravet syndrome cases included here, SCN1A testing had not yet been undertaken.
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