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Review of in silico
studies dedicated to the
nuclear receptor family:
Therapeutic prospects and
toxicological concerns

Asma Sellami, Manon Réau, Matthieu Montes
and Nathalie Lagarde*

Laboratoire GBCM, EA 7528, Conservatoire National des Arts et Métiers, Hésam Université,
Paris, France
Being in the center of both therapeutic and toxicological concerns, NRs are

widely studied for drug discovery application but also to unravel the potential

toxicity of environmental compounds such as pesticides, cosmetics or

additives. High throughput screening campaigns (HTS) are largely used to

detect compounds able to interact with this protein family for both

therapeutic and toxicological purposes. These methods lead to a large

amount of data requiring the use of computational approaches for a robust

and correct analysis and interpretation. The output data can be used to build

predictive models to forecast the behavior of new chemicals based on their in

vitro activities. This atrticle is a review of the studies published in the last decade

and dedicated to NR ligands in silico prediction for both therapeutic and

toxicological purposes. Over 100 articles concerning 14 NR subfamilies were

carefully read and analyzed in order to retrieve the most commonly used

computational methods to develop predictive models, to retrieve the

databases deployed in the model building process and to pinpoint some of

the limitations they faced.

KEYWORDS

nuclear receptors, in silico, endocrine disrupting chemicals, docking, pharmacophore
model, QSAR
1 Introduction

Nuclear receptors (NRs) are a large family of transcription factors. They are involved in a

wide variety of biological and physiological processes such as growth, metabolism,

reproduction, cell proliferation, differentiation, development and homeostasis (1, 2). The

NRs superfamily is composed of 48 members in humans and is divided in 7 subgroups. Apart
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from SHP and DAX, all the NRs share the overall same architecture

comprising 5 domains, named A to E, each of which playing a

specific role. The E domain is a structurally conserved allosteric

signaling region forming the ligand binding domain LBD. This

domain includes 12 helices and 4 b‐strands that create a buried

hydrophobic ligand‐binding pocket (LBP) able to interact with

small molecules ligands. The LBD and in particular the helix H12,

called the activation function helix (AF‐H), change conformation

upon ligand-binding facilitating the interaction of the LBD with co-

activators or co-repressors proteins. The DNA binding domain (C

domain) of the activated NR can bind to a specific DNA sequence

and recruit co-regulator proteins that either promote or repress the

DNA transcription and therefore, specific gene expression (1).

Although the mechanism of action of NRs is very well-

adjusted, dysfunctions of their signaling pathways have been

linked with diseases such as cancers, diabetes or auto-immune

disorders. NRs biology and ability to interact with small

lipophilic molecules in the LBD have led to their emergence as

a major class of therapeutic drug targets for these diseases,

accounting for more than 10% of FDA-approved drugs (1–5).

However, exogenous ligand binding may also cause

dysfunctions of NRs pathways. As such, some (candidate) drugs

side effects are related to their unforeseen interaction with NRs

like nifedipine and the antifungal clotrimazole who are able to

activate PXR (6). More recently, a category of compounds called

the endocrine disrupting chemicals (EDCs), have been associated

with NRs, especially the sex hormones receptors such as Estrogen

Receptors (ER) and Androgen Receptors (AR). Although the

concept has been introduced since 1958, the scientific outline

has evolved to settle in 2012 on a definition proposed by the

Endocrine society (7). EDCs are environmental compounds that

can be found in fumes, cosmetic additives or pesticides that can

enter the human body due to their high lipophilicity (8). They can

affect the endocrine system through several mechanisms (8) (9)

including “direct” and “indirect” mechanisms. In the “direct”

mechanism, EDCs bind to human NRs (hNRs) LBD and

dysregulate the functioning of the endocrine system either by

excessively activating or repressing the associated biological

activity (7, 9). In the “indirect” mechanism, EDCs can alter not

only the synthesis, metabolism, transportation and fate of

hormones in the body but also the hormone-receptors

expression, the signal transduction as well as the epigenic

behind (8). Up to 2019, more than 1000 suspected EDCs have

been reported (10). It is to note that EDCs can also affect other

protein families than the NRs (11–13). For this review, we will

focus on the NRs related “direct” mechanism of action.

Identifying hNRs binders, i.e. compounds able to bind to hNRs,

is important for both therapeutic and toxicologic purposes: to

discover new therapeutic compounds for several NRs-related

diseases, to predict potential off-target effects, to guarantee the

safety of novel synthesized molecules and to identify potential

EDCs in the exposome. In silico methods emerge as an asset to

achieve this goal. The construction of predictive models of NRs
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ligand binding using in silico methods (14–16) enable to prioritize

compounds that should be biologically evaluated to reduce the time,

cost and technical issues associated with the experimental tests of a

large number of compounds.

Previous reviews mostly focused on specific NRs as potential

drug discovery targets (17, 18) while other evaluated models

dedicated to EDCs prediction (7, 19). Herein, we present an

exhaustive review of 89 in silico initiatives carried out on NRs on

both therapeutic and toxicologic levels and published between 2010

and 2020. We provide a summary in order to 1) enumerate them in

a referential, 2) list the available NRs-related data that can be used

in modeling approaches and 3) learn from previous experiences to

enable the elaboration of more accurate predictions.
2 General overview

This review focuses on 14 NRs subfamily members for which

publications falling within the scope of our review were retrieved. 89

articles were carefully selected, read and analyzed. For each collected

model, several aspects were identified including 1) the NR for which

the model was developed, 2) the computational method used to

build the model, 3) the DB used for the model training, testing and

validation, 4) the level of reproducibility 5) if the study was

prospective or retrospective, and 6) the purpose of the study

(toxicological or therapeutic). The result of our bibliographic

search is presented in Table 1–4 and point 2) to 4) are detailed in

a following paragraph in this review.

In total, in this review, we identified 38 projects dedicated to the

identification of therapeutic compounds, 44 to the prediction of

toxicological compounds and 3 projects addressing both purposes.

Distribution of publications related to each studied NR are depicted

in Figure 1. The in silico methods used to construct the models are

divided into two approaches: Ligand-Based (LB) and Structure-

Based (SB) (Figure 2). The reviewed studies are also classified

according to their study design into prospective and retrospective

studies. Prospective studies are based on compounds for which no

biological data is available for the query target. These compounds

are subjected to virtual screening protocols in order to assess if they

can be considered as potential NRs modulators. The obtained

predictions are then validated by experimental assays. In

retrospective studies, models that are developed aim at correctly

forecasting the already known data activities. The models can then

be used to achieve predictions for compounds with unknown

activities as long as they remain within the activity domain. The

reviewed papers were perfectly balanced in terms of study design as

43 model were retrospective and 43 were prospective with the latter

including a majority of LB methods.

3 Studied nuclear receptors

In addition to the IUPAC classification, NR can be

distinguished according to structural differences, functions,
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TABLE 1 Review of the different initiatives dedicated to Steroid Hormones nuclear receptors.

Receptor methods Approach Database Reproducibility Prospective
or

Retrospective

Application Year Ref

AR COMPARA both 1,746 compounds from ToxCast/Tox21 Medium retrospective Toxicological 2020 (20)

AR QSAR : Machine learning
methods (kNN, lazy IB1, and
ADTree methods)

LB In house data (292 compounds) and collection
from literature (231 compounds)

Medium prospective Toxicological 2010 (21)

AR Docking and 3D QSAR
(CoMSIA)

both Collected from the literature (76 compounds) Medium retrospective Toxicological 2013 (22)

AR Docking, MD, and 3D QSAR
(Comsia)

both In house database of flavonoids (21 compounds) Medium retrospective Toxicological 2016 (23)

AR Docking SB Collected from the literature (20 bisphenols
compounds)

Medium retrospective Toxicological 2016 (24)

AR Docking SB EPA (1689 compounds) Medium prospective Toxicological 2017 (25)

AR Docking + molecular
dynamics

SB NR-List BDB (3233 compounds) Medium retrospective Toxicological 2018 (26)

AR QSAR : Machine learning
methods (Bernoulli Naive

Bayes, RF, NNN)

LB COMPARA calibration set (1689 compounds from
EPA) and external validation set (3882 compounds

from EPA)

High retrospective Toxicological 2019 (27)

AR QSAR : machine learning
methods (ANNs,SVM,DT)

LB CoMPARA dataset (1689 compounds from EPA),
EDKB (202 compounds)

Medium retrospective Toxicological 2019 (28)

AR Docking and LB
Pharmacophore

both NR-DBIND (812 compounds), Tox21 (5690
compounds)

High retrospective Both 2019 (29)

AR QSAR : Machine learning
(Bayesian models, RF, kNN,

SVM, naïve Bayesian,
AdaBoosted DT) and DL

LB Toxcast (8645 compounds) High retrospective Toxicological 2020 (30)

AR, ER QSAR: KNN + Local method
( lazy learning) + RF

LB METI (900 compounds), EDKB (87 compounds) Medium prospective Toxicological 2010 (31)

AR, ER QSAR: ML (kNN, DT, NB
SVM)

LB Collected from the literature (1157 compounds in
the training set and 121 compounds in the external

validation set)

High retrospective Toxicological 2014 (14)

AR, ER QSAR: ANN LB Collected from the literature (879 compounds for
ER, 930 compounds for AR)

High Retrospective Toxicological 2015 (32)

AR, ER 3D QSAR and bayesian
statistics

LB Toxcast (1853 compounds) + 42 compounds Medium retrospective Toxicological 2016 (33)

AR, ER
alpha

Hierarchical charactarestic
fragments, docking and MD

simulations

both ToxCast/Tox21 and ChEMBL (2458 compounds
for ER, 2843 compounds for AR)

Medium prospective Toxicological 2020 (34)

AR, GR Similarity LB Toxcast (7027 compounds for AR, 7329
compounds for GR)

High retrospective Toxicological 2020 (35)

ER CERAPP both Collected from the literature (1677 compounds) Medium retrospective Toxicological 2016 (36)

ER QSAR: ANN LB Collected from the literature (174 compounds) Medium Both Toxicological 2010 (37)

ER QSAR (single task an multi
task learning KNN) and

docking

both Collected from the literature including EDKB and
ChEMBL (QSAR data sets: 546 compounds for
ERa, 137 compounds for ERb; docking data sets:

106 binders/ 4018 decoys for ERa, 80 binders/ 2000
for ER b)

Medium Both Toxicological 2013 (38)

ER QSAR:machine learning
methods (LDA / CART/

SVM)

LB Toxcast (1814 compounds) and Tox21 (8303
compounds)

Low retrospective Toxicological 2013 (39)

ER Docking SB EPA (1677 compounds) Medium retrospective Toxicological 2015 (40)

ER Docking and QSAR :machine
learning methods (LDA,
decision tree, SVM)

both Collected from the literature (440 compounds) Medium retrospective Toxicological 2016 (41)

ER QSAR: Machine learning
(Bernoulli Naive Bayes,

LB Collected from the literature (1677 compounds
from the CERAPP data set, 7351 compounds from

High retrospective Toxicological 2018 (42)

(Continued)
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tissue specificity, DNA binding motifs or the knowledge or not

about an endogenous ligand. For this review, we divided the

studied NR into three groups according to their structural

similarities and function in three groups. 1) steroid hormones

receptors, (Table 1) 2) RXR and its partners (Table 2) 3)

monomeric orphan receptors (Table 3) (107, 108).
3.1 Steroid hormones receptors

The NR belonging to this class are all activated by an

endogenous ligand presenting a steroid core. Upon binding to

their native ligand, steroid hormones receptors undergo
Frontiers in Endocrinology 04
conformational changes leading to their homodimerization

and subsequently to DNA binding. The reviewed articles

dedicated to the steroid hormone receptors are listed in Table 1.
3.1.1 Estrogen receptors

Two isoforms of ER exist, namely ERa and ERb. Both
isoforms exhibit similar affinity for their native ligand, 17b
Estradiol, but differential expression in the body and unique

roles in estrogens action in vivo (55). Indeed, ERa’s effects are
prominent in the mammary gland, uterus and in the preservation

of skeletal homeostasis and the regulation of metabolism, while
TABLE 1 Continued

AdaBoost Decision Tree, RF,
SVM) and deep learning

(DNN) methods

Tox21, 3474 compounds for ERa, 2775 compounds
for ERb)

ER QSAR: Machine learning
method (GkNN)

LB ToxCast and CERAPP databases (1677
compounds)

Low retrospective Toxicological 2018 (43)

ER QSAR: Machine learning
method (Bayesian models)

LB "Toxcast2019" and two publications Medium Both Toxicological 2020 (44)

ER QSAR: Machine-learning
(BNB, kNN, RF, and SVM)
and deep learning (DNN)

methods

LB ToxCast and Tox21 (7576 compounds) Medium retrospective Toxicological 2020 (45)

ER
alpha

3D QSAR + 2D QSAR :
machine learning methods

(PLS, SVR, LR)

LB In house (68 raloxifene's derivatives) Low prospective Therapeutic 2013 (46)

ER
alpha

Docking SB Ligands extracted from cristallographic complexes
(66 compounds) and DUD-E's set (106 binders,

4018 decoys)

Medium retrospective Therapeutic 2014 (47)

ER
alpha

Docking and aggregated
potential field similarity

both NCTRER binding database, ChEMBL, DUD (1691
active and 4785 inactive/decoy compounds) and

Tox21 for prospective screening

Medium prospective Toxicological 2014 (48)

ER
alpha

Docking SB Drug-Bank Database and collection from literature
(105 compounds)

Medium prospective Therapeutic 2019 (49)

ER
alpha

QSAR : Machine learning
(RF)

LB EABD (3308 compounds) and Toxcast (1641
compounds)

Medium retrospective Toxicological 2015 (50)

ER
alpha
and ER
beta

QSAR: ANN LB Collected from the literature (170 compounds) Low retrospective Toxicological 2011 (51)

ER beta LB Pharmacophore modeling
and QSAR (MLR)

LB Collected from the literature (119 compounds) and
NCI list of compounds for prospective screening

Medium prospective Therapeutic 2010 (52)

ER beta LB pharmacophore modeling
and docking

both Maybridge and Enamine Low prospective Therapeutic 2014 (53)

ER beta docking and MD simulations SB 18 ligands from crystal structures, 40 compounds
collected from the literature and 2570 DUD decoys,
400000 compounds from commercial databases for

prospective screening

Medium prospective Therapeutic 2014 (54)

ER beta QSAR: Machine learning
methods (Naïve bayes, KNN,

RF, SVM)

LB CHEMBL20 (356 active compounds and 107
inactive compounds) + 249 DUD-E decoys

Medium retrospective Therapeutic 2016 (55)

ER beta QSAR: Machine learning
(RF)

LB EADB (2492 compounds) and ToxCast (1805
compounds)

Medium retrospective Both 2017 (56)

PR Docking, MD, Binding
energy calculation

SB Collected from the literature (12 compounds);
ZINC db (20000 compounds) for prospective

screening

High prospective Therapeutic 2018 (57)
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TABLE 2 Review of the different initiatives dedicated to RXR and its partners NR.

Receptor methods Approach Database Reproducibility Prospective
or Retro-
spective

Application Year Ref

FXR SB pharmacophores SB ChEMBL (221 compounds); NCI
database (247041 compounds) for

prospective screening

Medium prospective Therapeutic 2011 (58)

FXR SB pharmacophores SB in-house Chinese Herbal Medicine
database (10216 compounds) for

prospective screening

Low prospective Therapeutic 2011 (59)

FXR LB Pharmacophore and
free energy calculations

LB ChemBridge (~520000 compounds)
for prospective screening

Low prospective Therapeutic 2015 (60)

FXR QSAR: Machine learning
methods (SVM, C4.5 DT,
k-NN, RF, NV), MoSS

and SARpy

LB Tox21 (688 compounds), ChEMBL
(460 compounds), D3R CG2 (76

compounds)

Low retrospective Toxicological 2018 (61)

FXR QSAR: Machine Learning
(counter-propagation

artificial neural network,
kNN)

LB ChEMBL (896 compounds), Asinex
(3383942 compounds) for
prospective screening

Medium prospective Therapeutic 2018 (62)

LXR SB pharmacophore and
shape similarity

both Collected from the literature 41
compounds + 67059 decoys from
Derwent World Drug Index); NCI
database (250761 compounds) for

prospective screening

Medium prospective Therapeutic 2012 (63)

LXR self-organizing maps
(SOM)

LB ChEMBL (458 compounds);
DrugBank (1280 compounds) for

prospective screening

Low prospective Therapeutic 2017 (64)

LXR beta 2D fragment-based
HQSAR and HQSSR

(structure selectivity) and
Docking

both Collected from the literature (62
quinolines and cinnolines)

Medium prospective Therapeutic 2012 (65)

LXR alpha
and LXR
beta

Docking and MD SB ChEMBL database + DecoyFinder
(769 compounds for LXRa, 570
compounds for LXRb); MolMall
subset of the ZINC (~20000
compounds) for prospective

screening

High prospective Therapeutic 2018 (66)

LXR beta QSAR (MLR) and
Docking

both Collected from the literature (53
compounds with dual activity LRa/

b)

Medium prospective Therapeutic 2018 (67)

PPAR
alpha and
PPAR
gamma

2D-, 3D-QSAR and
docking

both In-house library (22 compounds) Medium prospective Therapeutic 2013 (68)

PPAR
alpha and
PPAR
gamma

QSAR, SB
pharmacophore

modelling and docking

both In-house library (46
phenylpropanoic acid derivatives)

Medium prospective Therapeutic 2016 (69)

PPAR
alpha and
PPAR
gamma

docking and MD SB Asinex (292,724 compounds) for
prospective screening

Medium prospective Therapeutic 2018 (70)

PPAR
alpha and
PPAR
gamma

docking, binding energy
calculations, MD

SB ChemDiv database (7476
compounds) for prospective

screening

Low prospective Therapeutic 2019 (71)

PPAR
alpha and

Docking and MD SB Ligand Expo components database Medium prospective Therapeutic 2020 (72)

(Continued)
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TABLE 2 Continued

Receptor methods Approach Database Reproducibility Prospective
or Retro-
spective

Application Year Ref

PPAR
gamma

PPAR
gamma

LB Pharmacophores and
3D QSAR

LB Collected from the library (88
compounds)

Medium retrospective Therapeutic 2010 (73)

PPAR
gamma

QSAR :Machine learning
methods (MLR, SVM and
Bayes Network Toolbox
(BNT)), docking and MD

both Traditional Chinease Medicine
(TCM) database (9,029 compounds)

High prospective Therapeutic 2014 (74)

PPAR
alpha and
PPAR
gamma

Docking and MD SB Compounds collected from the
literature (51 compounds + 3600
DUD decoys); "clean-leads" ZINC's
subset for prospective screening

(740000 compounds)

Low prospective Therapeutic 2015 (75)

PPAR
gamma

SB and LB
pharmacophore-, shape
similarity and docking

both Collected from the literature (51
partial agonists, 14 agonists + 812

inactives from ToxCast and
literature); Maybridge database

(52000 compounds) for prospective
screening

Low prospective Therapeutic 2016 (76)

PPAR
gamma

docking and MD SB Zbc subset of ZINC database
(180313 compounds)

Low prospective Therapeutic 2018 (77)

PPAR
gamma

Docking, binding energy
calculations and MD

simulations

SB Seaweed Metabolite Database (1110
compounds)

Medium prospective Therapeutic 2021 (78)

CAR docking,SB and LB
pharmacophore, QSAR

(SVM)

both Collected from the literature (392
compounds)

Low retrospective Therapeutic 2017 (79)

CAR, PXR Docking SB Collected from the literature (106
compounds)

Medium retrospective Toxicological 2017 (80)

PXR Docking and QSAR
(Bayesian classification)

both Toxcast (308 compounds) medium prospective Toxicological 2010 (81)

PXR QSAR : C5.0 LB In-house collection (202
compounds) and collection from the

literature (434 compounds)

High retrospective Both 2012 (82)

PXR QSAR: partial logistic
regression(PLR)

LB Collected from the literature (631
compounds)

medium retrospective Both* (PXR
activation is an
unwanted side

effects of
drugs)

2012 (83)

PXR QSAR, similarity LB Prestwick Chemical Library (1120
compounds)

Low prospective Both* (PXR
activation is an
unwanted side

effects of
drugs)

2015 (84)

PXR SB Pharmacophore and
docking

SB Binding DB (266 compounds);
PubChem (820 herbs compounds)

for prospective screening

Medium prospective Both* (PXR
activation is an
unwanted side

effects of
drugs)

2015 (85)

PXR SB Pharmacophore SB Collected from the literature (18
compounds), Mitsubishi Tanabe

Pharma Corporation (68
compounds), NPC (2816

compounds)

Low retrospective Both* (PXR
activation is an
unwanted side

effects of
drugs)

2017 (86)

TR Docking and MD
simulations

both Collected from the literature (16
HO-PBDEs compounds)

Medium retrospective Toxicological 2016 (87)

(Continued)
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TABLE 2 Continued

Receptor methods Approach Database Reproducibility Prospective
or Retro-
spective

Application Year Ref

TR QSAR (C4.5 ,SVM and
Random Forest)

LB Collected from the literature (258
compounds)

Medium retrospective Toxicological 2019 (88)

TR beta Docking and MD SB DUD-E (7556 compounds), in-house
indoor dust contaminant inventory

(485 compounds)

Medium retrospective Toxicological 2016 (89)

TR beta 3D QSAR, Docking and
MD

both Collected from the literature (33
compounds)

Medium retrospective Therapeutic 2015 (90)

TR beta Docking and QSAR (PLS) both Collected from the literature (18
HO-PBDEs compounds)

Medium prospective Toxicological 2010 (91)

VDR de novo design, docking,
MD, free energy

calculation

both Fragments extracted from 6 VDR
agonists collected from the literature

Low prospective Therapeutic 2012 (92)

VDR Docking, LB
Pharmacophores, 3D

QSAR, MD

both ChEMBL (478 compounds) Medium retrospective Therapeutic 2020 (93)

VDR LB pharmacophore,
molecular docking,
binding free energy
calculation, Density

Functional Theory (DFT)
study and MD

both Binding database (31 compounds);
for prospective screening: Life

chemicals, Enamine, MayBridge, and
TCM

Low prospective Therapeutic 2020 (94)

Sellami et al. 10.3389/fendo.2022.986016
the activation of ERb impacts the immune and central nervous

systems. Moreover, ERb exerts an anti-proliferative and pro-

apoptotic activity that counteracts ERa’s actions towards cell

growth and proliferation (54, 55). The established link between

impairment of these ER pathways and diseases such as breast and

endometrial cancers, osteoporosis, metabolic and cardiovascular

diseases (55, 109) explains the number of published in silico

studies with a therapeutic scope (8 up to the 23 ER-related

reviewed studies). Additionally, ER are a well-known target for
Frontiers in Endocrinology 07
EDCs, and it has been shown that exposure to these chemicals

increase the risk of breast cancer and immune diseases

development (18). Consequently, several projects focused on

this hNR as a central component of toxicological pathways

including EDCs. It is the case of CERAPP, a large-scale

screening project initiated by the US Environmental Protection

Agency (EPA) (36). The project gathers models from American as

well as European research groups to develop in silico models to

evaluate thousands of chemicals for ER-related activity and
TABLE 3 Review of the different initiatives dedicated to monomeric orphan receptors.

Receptor methods Approach Database Reproducibility Prospective
or Retro-
spective

Application Year Ref

ERR Combination of
QSAR models

LB Tox21 (5077 compounds for ERR agonism,
6526 compounds for ERR inhibition); HMDB
(3092 compounds) and EU pesticides dataset
(888 compounds) for prospective screening

high prospective Toxicological 2019 (95)

ERR molecular
similarity and

docking

both KEGG COMPOUND database (10739
compounds)

high prospective Therapeutic 2013 (96)

LRH-1 Docking SB ZINC database (5.2 million compounds) for
prospective screening

Low prospective Therapeutic 2013 (97)

RORgt docking and
similarity

both ChEMBL (502 compounds); Specs commercial
database (116495 compounds) for prospective

screening

Medium prospective Therapeutic 2018 (98)

RORgt SB
pharmacophore
and Docking

SB Asinex Gold–Platinum (289174 compounds) Medium prospective Therapeutic 2020 (99)
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prioritize them for further testing. CERAPP models, like most of

the ER focused models reported in the literature, do not

differentiate the two ER isoforms during the development of the

models. It is to note that this distinction is crucial for therapeutic

projects as many ligands display different affinities for each

isoform (110). Designing selective ERb ligands could help

reducing ER related side effects besides exerting the desired

estrogenic activity. Niu et al. (55), succeeded in building

machine leaning models with high accuracies (77.10 to 88.34%)

and AUCs greater than 0.8 that performed equally on an external

validation dataset composed of ERb selective agonists. It is to note

that the negative data used for this study consisted of generated

decoys rather than selective ERa ligands. Another particularity we

could notice for ERmodels, was the predominance of Quantitative

Structure Activity Relationship (QSAR) models based on machine

learning (ML) algorithms. The most used ML algorithms

were random forest, SVM and Naïve Bayes. Other

computational approaches comprise molecular docking and

pharmacophore modelling.
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3.1.2 Androgen receptors

Modulated by dihydrotestosterone and testosterone, AR is

involved in several physiological processes such as the male

sexual differentiation, the development and maintenance of

musculoskeletal and cardiovascular systems, as well as

functionality of female ovarian follicles and ovulation (29,

111). The malfunctioning of these receptors is linked to

several diseases including prostate, testicular and ovarian

cancers, impaired reproduction system development and

neuromuscular diseases (29, 112). Despite this large

therapeutic potential, the 23 models and projects identified for

AR during this review process were for a large majority

conducted in the EDCs risk assessment perspective. Among

them, the CoMPARA project (20) is the AR counterpart of the

CERAPP project and falls under the Endocrine Disruptor

Screening Program of the U.S. Environmental Protection

Agency (EPA). The 25 international research teams forming

the CoMPARA consortium used a common training set of 1,746
TABLE 4 Review of the different initiatives dedicated to projects targeting several NR.

Receptor methods Approach Database Reproducibility Prospective
or Retro-
spective

Application Year Ref

AhR, AR, CAR, ER, ERR,
FXR, GR,PPARd, PPARg,
PR, PXR, RAR, ROR, RXR,
TR, VDR

QSAR : Deep learning
method (molecular

image-based method)

LB Tox21 Data
Challenge 2014

(~7000
compounds / NRs)

Low prospective Toxicological 2020 (100)

AhR, AR, ER, PPARg QSAR: Machine
learning (RF) and Deep
Learning (Deep Neural
Network) methods

LB Tox21 (10255
compounds

curated from the
original 12707
compounds)

Medium retrospective Toxicological 2016 (101)

AhR, AR, ER, PPARg QSAR :Deep learning
method (DNN)

LB Tox21 (8694
compounds

curated from the
original 12707
compounds)

Medium retrospective Toxicological 2016 (102)

AhR, AR, ER, PPARg QSAR: Machine
learning (RF and SVM)/
Molecular similarity/ SB

Pharmacophore
modeling

LB Tox21 (~7000
compounds / NRs)

High retrospective Toxicological 2018 (103)

AR, ER alpha, ER beta, GR,
PPAR alpha, PPAR beta,
PPAR gamma, PR, RXR
alpha, and TR alpha and TR
Beta

Docking SB DUDE-E,
ChEMBL

High retrospective Toxicological 2014 (104)

AR, ER,GR, PPAR gamma,
TR

QSAR : Machine
learning methods

(SVM, RF)

LB Tox21 (7248
compounds)

High retrospective Toxicological 2019 (19)

AhR, AR, ERa, ERb, GR,
LXR, MR, PPAR gamma, PR,
TR alpha, TR beta

Virtual Tox Lab
software (docking and

mQSAR)

both Collected from the
literature (1016
compounds)

Medium prospective Toxicological 2012
and
2014

(12,
105)

AR, GR, MR, PPAR alpha,
PPAR beta, PPAR gamma,
PR, RAR alpha, RXR alpha,
TR beta, VDR

Docking SB Collected from the
literature (157
compounds)

High retrospective Therapeutic 2010 (106)
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chemicals compiled from a data set of 11 ToxCast/Tox21 HTS in

vitro assays to generate 91 predictive QSAR models for AR

binding, agonist, and antagonist activity predictions. The

resulting models were evaluated using non-overlapping

curated literature data. Finally, all predictions were combined

into consensus models with an average accuracy of 80%. In

complement to the CoMPARA project, several computational

LB models, obtained using deep learning and QSAR methods,

were described in the literature. SB methods such as docking and

MD were also used, albeit to a lesser extend because of a lack of

AR structural data. In fact, there is no AR antagonist-bound

crystal structure yet available in the PDB which can impair the

prediction of AR antagonist molecules and the development of

AR SB models. However, some groups managed to overcome

this issue and relied on molecular dynamics simulations to

generate AR structures in antagonist conformations that led to

a vast improvement for the docking of AR antagonists (26).
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3.1.3 Progesterone receptor

PR is expressed primarily in female reproductive tissues and

in the central nervous system as two isomers, PRa and PRb.
Both isomers present identical structures except for the A/B

domain but they target distinct gene networks in progesterone-

responsive cells (113). PR is activated by binding its endogenous

ligand, the progesterone. PR regulates a wide range of biological

function in a context- and cell-specific manner including the

development and differentiation processes in normal and

malignant female tissues, in particular in patients suffering

from breast cancer (114). Selective progesterone modulators

(SPRMs) have thus been developed as drug candidates for

breast cancer therapies (57). Moreover, PR is suspected to be

involved in endocrine disruptor toxicity pathway as bisphenols

and some pesticides have been characterized with a PR activity

(107). The reviewed models reflect the involvement of this NRs
FIGURE 1

Number of publications related to each studied hNR subfamily described in the review.
FIGURE 2

Distribution of the computational approach (SB: structure-based, LB: ligand-based and both: combination of SB and LB methods) in the
reviewed publications for the different hNR.
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in both aspects. Three in silico endocrine disruptors prediction

tools (12, 100, 104, 105) include PR models. In particular, a

prediction model of PR agonist compounds was constructed

using a deep learning approach (100) and the Tox21 data. This

model was associated with high prediction performance as

measured by a Matthew correlation coefficient superior to 0.8

and an AUC value of 0.95. A structure-based prospective virtual

screening to identify new PR inhibitors was also conducted (57)

but no experimental validation of the results was provided.
3.1.4 Glucocorticoid receptors

Besides their well-known anti-inflammatory, anti-

proliferative, pro-apoptotic and anti-angiogenic roles,

glucocorticoids are involved in several other physiological

processes affecting the nervous, cardiovascular, immune and

respiratory systems (115, 116). Additionally, GR is incriminated

in several toxicological pathways resulting in decreased male

fertility and depression (35) and are a potential target for EDCs

(19). GR is thus a relevant target for both therapeutic and

toxicologic compounds. There are several isoforms of GR

distributed through various tissues. GRa and GRb present a

similar sequence that differs only in the C-terminal region,

whereas GRg, GR-A, and GR-P are less characterized. It has

been shown that GRb negatively regulate the action of GRa as

well as exerting its own. The remaining isoforms are associated

to glucocorticoids insensitivity (115). In this review, only one

therapeutic project was identified (106) whereas, 4 projects with

toxicological applications for GR were found. Both SB, LB and

their combination were applied to identify GR ligands. None of

these projects did the distinction between all isoforms despite the

difference in affinities towards glucocorticoids (115). It is to note

that all the available GR structures in the PDB include the same

mutation in helix 5 from a Phenylalanine residue to a Serine to

overcome solubility problems during the crystallization

experiments (117). However, this mutation is not located in

the ligand binding site.
3.2 RXR and its partners

RXRa presents the particularity of forming heterodimers

with one third of the 48 human NR (107) and is thus able to

regulate a wide range of biological functions in a cell and tissue-

specific manner (118). This class of NR can be subdivided in

permissive heterodimers that can be activated by ligands of

either RXR or its partner in the dimer (PPARs, LXRs, FXR, PXR

and CAR) and non permissive heterodimers that generally

require the RXR to be unbound in order to be activated by the

native ligand of the dimer partner (TRs, RARs) (107). The

reviewed articles focusing on RXR and its partners are

presented in Table 2.
Frontiers in Endocrinology 10
3.2.1 Retinoid X receptor alpha

As previously mentioned, RXRa can form heterodimers

with several NR partners, but it can also be assembled and

activated as an homodimer (108). A synthetical RXRa ligand,

bexarotene, is notably marketed for the treatment of cutaneous T

cell lymphoma (119). RXRa ligands have also demonstrated

neuroprotective properties and are considered for the design of

drug candidates for Alzheimer disease treatment (120). No study

specifically dedicated to RXRa ligands prediction was identified

during this review. However, 3 articles presenting models for

several NRs including RXRa were available. Among them, two

studies used SB methods. However, one of this study (106) is

more focused on the comparison the performance of single and

ensemble docking approaches with an active RXR data set

limited to 11 compounds. In the other SB study, the RXR

DUD-E data set (121) was used with a single docking

approach to select the RXRa structure. Overall good

performance in predicting RXR ligands was obtained with an

AUC value close to 0.8 and an early enrichment factor value

EF1% of 8.6. The third study presents a RXRa agonist ligands

prediction model developed using a LB deep learning approach

(100). The model was trained on the Tox21 database and was

associated with an AUC value similar to those obtained in the

previous study with the docking approach.
3.2.2 Peroxisome proliferator-activated
receptors

Since the cloning of the first PPAR from the rat liver in 1990,

the subfamily of PPAR has been enlarged and currently counts

three members PPARa, PPARd and PPARg. Each isoform is

differentially expressed in tissues and associated with different

biological functions (122): PPARa is mainly expressed in the

liver and regulates lipid metabolism (123); PPARg is mainly

expressed in adipose tissues and controls adipogenesis and

carbohydrate metabolism (124); PPARd is ubiquitously

expressed and involved in atherosclerosis, pathologies of the

nervous system, embryonic, organ and tissue development and

metabolism of lipid and glucose (122). PPARd is the less studied
receptor of this group (75) while PPARa and PPARg have been
extensively investigated as therapeutic targets especially in

metabolic diseases like type 2 diabetes (T2D) (68, 71, 78, 125,

126). Recently, PPARg has also been proposed as a therapeutic

target for ovarian cancer (77) and Alzheimer Disease (AD) (78).

In this review, 11 models and projects dedicated to PPARs have

been identified. The implication of this receptor in several

pathologies explains the fact that all project specific to PPAR

fall under the therapeutic application. Indeed, 8 studies

described prospective virtual screening protocols combining

several in silico methods for the prediction of dual PPARa/g
agonist ligands with therapeutic applications for T2D (70–72)
frontiersin.org

https://doi.org/10.3389/fendo.2022.986016
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Sellami et al. 10.3389/fendo.2022.986016
and of PPARg ligands (74–78). However, experimental

validation was achieved for only 3 of these studies (75–77),

which limits the evaluation of the protocols performance. The

protocol presented by Kaserer et al. for PPARg partial agonist

ligands prediction (76) is of particular interest since a

retrospective study was first achieved to select optimal models

for the prospective screening. This protocol combines 3

pharmacophore models (associated with EF and AUC values

of 6.5 and 0.92 respectively in the retrospective evaluation), 5

shape-based models (associated with EF and AUC values of 11.0

and 0.83 respectively in the retrospective evaluation), and a

docking protocol (associated with EF and AUC values of 2.2 and

0.65 respectively in the retrospective evaluation). The top-ten

ranked compounds by the three methods (29 compounds) were

biologically evaluated and 9 novel PPARg ligands were

identified. Retrospective studies were also conducted on the

PPARa/g using 2D, 3D-QSAR, and docking (68) and to

understand the structural factors responsible for PPARg
agonistic activity using a combined pharmacophoric/3D-QSAR

approach (75). As PPARg data is available from the Tox21

program, several studies trying to model the Tox21 data for a

large panel of NRs also present PPARg dedicated models (19,

100–103). All of these models were associated with high

predictive power with AUC values comprised between 0.8

and 0.9.
3.2.3 Human pregnane X receptor

Due to its flexibility and the relative bulkiness of its binding

site in comparison with other NRs (80), PXR activity can be

modulated by binding to a wide range of endogenous

compounds, from bile acids to steroid hormones but also

xenobiotics, such as drugs or environmental chemicals

(pesticides, phenols, cosmetics, phytoestrogens) that can

dysregulate normal physiological functions (127–129). PXR is

responsible for the modulation of the expression of enzymes and

transporters associated with the metabolism and transport of

several drugs. Thus, PXR can mediate drug-drug interactions

either by reducing the therapeutic efficacy or by increasing the

concentration of reactive metabolites leading to toxicity (86).

PXR may also lead to the so called “cocktail effect” that is the

adverse effects caused by several chemicals present at the same

time exhibiting low individual toxicities (83, 129). In this sense,

it is important to identify compounds that activate PXR to avoid

such effect and modify the drug design during early stages.

Several projects focused on developing models able to identify

PXR agonists: Torimoto-Katori et al. (86), designed a

pharmacophore with high accuracies (over 0.7) yet with lower

sensitivities suggesting that reinforcing the methods with other

in silico methods could help achieve better performances. This

was done by Cui et al. (85), who combined pharmacophore and

docking method to detect ingredients from herbs able to activate
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PXR in order to avoid herb-drug effects. Pharmacophore models

achieved similar performances as the model described before

with sensibilities equal to 0.54 and specificities of 0.8.

Interes t ing ly , adding docking methods on top of

pharmacophore models enhanced the performances to a

detection rate of 0.6 i.e. the ratio of positive hits among all the

database compounds. Three other groups built QSAR models to

identify potential activators of PXR. The first one (84), achieved

performances of R² = 0.64 and was applied to identify 16 novel

activators of PXR. Dybdahl et al. (83), built a model associated

with a sensitivity of 82% and a specificity of 85% that was used to

identify potential PXR activators in a database of environmental

chemicals. Interestingly, these molecules were also linked to

cause adverse effects such genotoxicity or teratogenicity

for examples.
3.2.4 Liver X receptor

LXR presents two isoforms (LXRa and LXRb) that are both
ubiquitously expressed (65, 67, 130–132). LXR serves primarily

as a reverse cholesterol transporter within the lipid metabolism,

protecting cells from cholesterol excess (66, 67) and is involved

in many physiological processes. Thus, LXR represents a

promising therapeutic target for cardiovascular diseases,

dyslipidemia and cancer treatment (66). However, it has been

shown that LXRa activation can lead to undesired lipogenic

effects like increased hepatic lipogenesis or liver steatosis

whereas LXRb activation does not and can even reduce them

(67). Designing LXRb selective compounds to treat dyslipidemia

appears as a promising strategy yet difficult to achieve due to the

high similarity between both isoforms LBD. For this reason, only

two projects among the reviewed ones were dedicated to the

identification of LXRb selective agonists whereas the remaining

two others did not make any distinction. Both projects used a

virtual screening workflow based on a combination of LB and SB

methods. In the first article, Chen et al. (67) built a selective LB

model using an association of Kohonen maps and stepwise

multiple regression. The model relied on the structures of

newly reported dual agonists and was associated with R2 equal

to 0.837 and 0.843 for train and test set respectively. This model

was then used to perform predictions of potential selective

ligands from the ZINC database falling within the applicability

domain of the model. A promising compound was found with a

predicted pEC50 = 7.0 for LXRb and pEC50 = 6.095 for LXRa
and was used as template to design potential inhibitors. The

latter molecules were incorporated to a docking analysis to better

understand the underlying mechanism of the selective activity.

Similarly, the second article (65) was also a combination of LB

(QSAR) and SB (docking) methods to firstly unravel new

selective LXRb ligands and then analyze the interaction mode

using docking studies. No toxicological study related to LXR was

collected during our bibliographic search.
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3.2.5 Constitutive androstane receptor

CAR is involved in regulation of the transcription of genes

encoding for the metabolism of xenobiotic and steroid (133). It is

highly expressed in the liver and to less extend the small

intestine. Although structurally similar to other NR, the LBD

of CAR contains particular residues and motifs and thus present

an original conformation. The CAR LBD in its unbound form

present a similar conformation to those of other NR when bound

to their endogenous ligands. Thus, in the absence of ligand CAR

can recruit coactivators. CAR agonist compounds, referred to as

“phenobarbital alike”, can increase coactivator recruitment and

thus promote the expression of cytochrome P450 enzyme and

other proteins involved in metabolism of xenobiotic

compounds. Besides the agonist compounds, inverse agonists,

such as the androstane metabolites, are also able to bind to CAR

LBD. Upon binding to CAR, these compounds inhibit the CAR

constitutive activity through the release of coactivators (134,

135). CAR is considered to be a sensor to several xenobiotics

including EDCs such as phthalates and triclocarban but it is also

considered as an interesting therapeutic target for metabolic

diseases such as type 2 diabetes (79, 80). Only few attempts to

develop in silico models for CAR were found (79, 80, 100). One

therapeutic study was conducted with the dual objective of

predicting CAR agonist compounds and collecting knowledge

about CAR/ligand interactions. To do so, Lee et al. (79)

d e v e l op ed a mach in e - l e a rn i n g mode l b a s ed on

pharmacophoric descriptors with good predictive power with

accuracy values equal to 0.875 and 0.854 for the training and test

sets, respectively and MCCs values equal to 0.744 and 0.701 for

the training and test sets, respectively. Additionally, the group

identified the critical elements involved in the binding affinity

with CAR. Additionally, two toxicological studies that aim to

understand the effect of EDCs on the CAR were also retrieved.
3.2.6 Farnesoid X receptor

FXR is expressed in the liver, the kidney, the intestine, and

the adrenal glands. It regulates the metabolism of glucose and

lipids and the maintenance of the bile acids homeostasis. It is

thus a suitable therapeutic target for the prevention and

t r ea tment o f me tabo l i c s yndrome , dy s l i p idemia ,

atherosclerosis, and type 2 diabetes (59). Additionally, some

exogenous compounds able to bind to FXR can induce the

dysfunction of the receptor and are suspected to be responsible

for liver toxicity and hepato-biliary injuries (61). In this review, 4

in silico models dedicated to the identification of FXR

modulators for the treatment of hepatic and metabolic

disorders have been analyzed. As a limited number of diverse

known FXR modulators was available, SB methods used to be

elected to identify potential therapeutic compounds. 3 studies

present the generation of FXR SB pharmacophore models and
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their use in prospective screening in combination with

experimental testing to identify FXR agonist hits (57, 59, 60).

For example, in the study of Schuster et al. (58), a set of SB

pharmacophore models was generated and theoretically

evaluated by calculating the enrichment factors using several

data sets. The combination of all pharmacophore models was

able to retrieve 87.8% of a list of FXR actives but the performance

obtained varied according to the model and to the data set

studied. EF values were used to produce pharmacophore models

ranking for each data set and the 3 most suitable pharmacophore

models were selected accordingly for prospective screening. In

complement, 3 LB approaches were described in the literature.

The Tox21 FXR agonism and antagonism assay data were used

in 2 different studies to obtain respectively FXR disruptors

model using machine learning methods (61) and separated

FXR agonism and FXR antagonism models using a deep

learning approach (100). Both studies present high predictive

accuracy with area under the ROC curve values reaching 0.8.

The third study focus on different machine learning methods

(counter-propagation artificial neural network, similarity of 3D

pharmacophore feature distributions method and k-nearest

neighbor learner) that were optimized and combined to

identify new FXR modulators molecular frameworks (62). This

ensemble machine learning approach was used in a prospective

screening of 3 million commercially available compounds and

enable the discovery of 4 new experimentally validated FXR

agonist and 2 FXR antagonist compounds with original

molecular frameworks.
3.2.7 Thyroid hormones receptors

TR, are regulated endogenously by the thyroid hormones

(TH) that play major role in metabolism and growth processes

(136). The 2 isoforms, TRa and TRb, are expressed differently in
tissues and play different roles in the TH signaling (137). Despite

the great potency of TR as therapeutic target in the field of

dyslipidemia and liver diseases, the development of TR

modulators has been limited by selectivity problems and

associated undesirable side effects on heart and bone. TRa
activation being associated with the cardiac effects of TH, TRb
selective compounds are currently investigated for the treatment

of metabolic and brain disorders (138). Several environmental

chemicals have also been documented as TR modulators, some

of them being suspected to be EDCs. It is notably the case of

Hydroxylated polybrominated diphenyl ethers that present

structural similarity with endogenous TH and may interfere

with the TH binding to TR (87). TR are thus largely studied in

the EDCs context (139, 140). In this review, 10 models dedicated

to TR are listed, including 3 models specifically developed for

TRb and 4 tools to predict potential EDCs that include SB (12,

104, 105) and LB (19, 100) models for a panel of NRs and not

only TR. It is to note that these LB initiatives trained their model
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using the TR Tox21 dataset and that the associated performance

was among the lowest of all studied receptors. Among the TR

focused studies, Zhang et al. (89) presented a virtual screening

protocol combining ensemble docking andMM-GBSA rescoring

to identify TRb ligands. This protocol was developed and

evaluated using the TRb DUD-E data set and was associated

with an AUC value of 0.865 and an EF10% value of 7.418. This

protocol was then applied in a prospective virtual screening of an

indoor dust contaminants inventory but as it was developed

using the TRbDUD-E dataset, it could also be applied to identify

potential TRb binders for therapeutic applications. Among the

remaining studies, it is to note that one was dedicated to the

classification of TR agonist and antagonist compounds using ML

methods but was not applicable to the classification of TR

binders and TR non binders (88), and 2 studies using QSAR

models were associated with good predictive performance of

TRb agonist compounds (90) and TRb binders (91) respectively,

but both suffer from a limited (<30) number of compounds

included in the training and test sets.
3.2.8 Vitamin D receptor

VDR is expressed in various tissues especially in the

gastrointestinal tract and the kidneys. It plays a major role in

the regulation of vitamin D thus controlling the calcium

homeostasis, the bone mineralization and remodeling and

immune pathways. Additionally, VDR is responsible for the

detoxification of both endogenous ligands and xenobiotics. The

natural ligand of VDR is the active form of vitamin D called D3.

It has been reported in several studies that the lack of Vitamin D

leads to hypocalcemia and hypophosphatemia resulting in

chronic kidney disease (CKD) also found in patients under

chronic hemodialysis, mineral-bone disorders, osteoporosis

and cancer (92, 94, 141, 142). In this review, we collected 3

articles that aimed at identifying novel VDR modulators for

therapeutic purpose. 2 articles both used a combination of LB

(pharmacophore‐based 3D‐QSAR models) and SB (docking and

molecular dynamics) methods to identify respectively VDR

inhibitors (93) and VDR agonists (94). Both models are

associated with good correlation value (R²=0.8869 and

R²=0.8676 respectively) and predictive score on the training

set (Q²=0.8870 and Q²=0.8523 respectively). However, the low

diversity and limited number of compounds used to train the

model in the first study (93) and the difficulty to understand and

thus reproduce the protocol used in the second one (94) may

limit the applicability of these 2 models. In the third study (92),

de novo design, docking and molecular dynamics was used to

design new potential VDR agonists. However, except a

redocking evaluation of D3, the performance of the protocol

was not assessed retrospectively and no experimental test was

conducted to validate the predicted hits. Additionally, one article
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(100) used data from the Tox21 initiative to build deep learning

toxicological models for 35 NRs including VDR.
3.3 Monomeric orphan receptors

The members of this category of NR are characterized by an

incomplete knowledge about their endogenous ligands and their

ability to be activated as a monomer (or homodimer) by

opposition to the orphan receptor that are partners to RXR

(108). 3 NR studied during this review process and acting as

monomers belong to this category (Table 3).
3.3.1 Estrogen related receptors

ERR are orphan receptors, i.e. no endogenous ligands have yet

been characterized for the ERR. They do not bind any natural

hormones, not even estrogen despite their names (which has been

chosen regarding the high sequence similarity in the DNA-

binding domain between ERR and ER) but they do bind some

synthetic estrogenic compounds (143). ERR are present in the

human body under three main isoforms, ERRa, ERRb and ERRg
that modulate cartilage development, mitochondrion organization

and T-cell activation and differentiation. ERRa has particularly

been investigated due to its tight similarity with ERa. Common

DNA regions can be activated by both ERRa and ERa (144) and

they shared common co-activators which may explain the fact

that ERRa is involved in estrogen-related diseases. However, the

lack of known endogenous ligand has impaired the establishment

of protein-ligand interaction profile and the discovery of synthetic

ligands. However, the Tox21 program has provide a huge amount

of binding and activity data for ERR that could be used to build

prediction models. Klimenko et al. (95), proposed a ligand-based

(LB) approach to identify ERRa agonists by combining QSAR

models. Each QSAR model is specific of a particular biological

endpoint aiming at identifying potential ERRa agonists. The

models were selected according to the balance between several

statistical parameters i.e sensitivity, specificity, Accuracy, balanced

accuracy, PPV and NPV. Other investigated ERRa ligands are

inverse agonist and antagonist compounds that can be used for

cancer patients with resistance to hormonal therapy. In order to

identify such compounds, Chitrala et al. (96) used a library from

KEGG COMPOUNDS, containing an ensemble of metabolic

compounds, pharmaceutical and environmental compounds.

This library was pre-filtered to select 8 compounds presenting a

similarity score greater than 0.3 with an antagonist compound co-

cristallized into the ERRa binding site. The ERRa structure in its

antagonist conformation was then used to dock these compounds.

Unfortunately, no biological evaluation of the proposed hit

compound was achieved.
frontiersin.org

https://doi.org/10.3389/fendo.2022.986016
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Sellami et al. 10.3389/fendo.2022.986016
3.3.2 Liver receptor homolog 1

LRH-1, also called NR5A2, plays an essential role in the well-

functioning of the liver, the pancreas and the intestines by

controlling the level of cholesterol, bile acids and pancreatic

enzymes. LRH-1 is also involved in cell differentiation and

associated with key developmental pathways. However,

dysregulated LRH-1 activity and unexpected re-activation of

the previously mentioned developmental pathways has been

linked with breast, endometrial, intestinal and pancreatic

malignancies (97). Limited data is available for LRH-1. In

particular, LRH-1 is still classified as an orphan receptor, but

several studies pointed out phospholipid species as possible

endogenous ligands. This has impacted the development of

LRH-1 modulators and of in silico models dedicated to LRH-1.

Only one article dedicated to LRH-1 was found during the

review process (97). This article published in 2013 presents a

prospective structure-based screening with the aim of

identifying the first synthetic LRH-1 antagonist compound.

Using a docking method, 2 new LRH-1 antagonists were

discovered and proposed to be used as a probe to help

decipher LRH-1 mechanism of action.
3.3.3 Retinoic acid-related
orphan receptor

Three subtypes of ROR exist, namely RORa, RORb and

RORg with its two isoforms, RORg1 and RORgt (RORg2). Each
subtype presents a different pattern of expression, RORa being

highly expressed in the brain, RORb in the central nervous

system, RORg1 in the liver, the adipose tissue, the kidney, the

small intestines, and the skeletal muscles and RORgt being

exclusively expressed in cells of the immune system (145, 146).

RORs are implicated in several key physiological functions. In

particular, RORgt plays a major role in the differentiation of T-

helper 17 (TH17) cells that produce the cytokine IL-17, itself

involved in several diseases such as psoriasis, multiple sclerosis,

rheumatoid arthritis and type 1 diabetes (98, 99). Additionally,

the inhibition of RORgt stimulates the AR gene transcription

and can be a strategy to follow for prostate cancer treatment

(99). Identifying RORgt modulators emerges as a promising

therapeutic strategy for all these conditions. However, until very

recently, the known RORgt modulators were all sharing the same

scaffold and efforts have been made towards the discovery of new

RORgt modulators with original scaffolds. Two articles (98, 99)

described SB in silico approaches to identify potent inverse

agonists of RORgt that can be used in auto-immune diseases

treatment. In the first article, docking and negative image-based

methods (NIB) were both first evaluated retrospectively with

RORgt experimental data extracted from the ChEMBL database

to define docking score threshold and cutoff similarity value,

respectively. These 2 methods were then used in parallel to
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screen a collection of more than 100000 molecules commercially

available. Experimental tests validated as RORgt inverse agonists
11 up to the 34 predicted consensus hit compounds with an

original scaffold.
3.4 Projects targeting several NR

Besides articles that were solely dedicated to a specific NR

presented above, other projects focused on ensemble of NRs to

provide more global NRs ligand identification models. Except

one article (106), all these projects fall under a toxicological

scope with the aim of identifying potential EDCs and

understanding their mechanism of action. The most targeted

NR combination is ER and AR due to extensive literature and

data available. For example, Li et al. (31) studied the ability of

some EDCs to present a dual activity by interacting with both

AR and ER. To do so, they constructed ER binding models using

a QSAR approach and these models were used to screen a

database of AR antagonist compounds. It is to note that some of

these projects are made available as webservers and software (12,

103–105). Open VirtualToxLab (105) is a software that estimates

the toxicological potential of the screened compounds by relying

on an automated combination of flexible docking and free

energy calculations. Open VirtualToxLab focuses on 16

biological targets among which are 9 NR: AR, ERa, ERb, GR,
LXR, MR, PPARg, PR, TRa, TRb. The proof of concept of this
software was established with a series of 2564 compounds

yielding accurate predictions [C.f. Table 2 of (105)]. Endocrine

disruptome (104) is a freely available open-source project that

allows users to test the ED potential of their compounds against

14 NR involved in several biological processes: AR, ER a, ER b,
GR, PPARa, PPARb, PPARg, PR, RXRa, and TRa and TRb.
This webserver is based on docking models elaborated for each

NR individually. The major drawback of this tool is the use of

DUD-E decoys to validate the protocol. These decoys are

putative inactive compounds, and not experimentally validated

inactive compounds, which may bias the evaluation of the

performance of the models. ProTox-II (103) is a webserver

predicting the potential toxicity of small molecules by using 33

models of different toxicity endpoints. Among these endpoints

are AhR, AR, ER and PPARg signaling pathways. The models for

each one of these NRs performed with high accuracy on the

Tox21 dataset [C.f Table S2 of (103)].
3.5 Related receptors: Aryl hydrocarbon
receptors

Although AhR does not belong to the NR superfamily, this

receptor displays functional and structural similarities with the

members of this family, particularly the presence of a DBD and a

LBD activated upon ligand binding (147). During the review
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process, we noticed that AhR is often associated with other NR

in toxicological studies and in the EDCs context and we decided

to list also the in silico studies dedicated to this receptor (Table

S1). AhR is expressed in various tissues such as the lung, liver,

kidney, skin, sleen and placenta. It can be activated by several

hazardous chemicals such as polycyclic aromatic hydrocarbons

(PAHs) and persistent organic pollutants (POPs) especially

dioxins and polychlorinated biphenyls (PCBs). These

chemicals result from combustion and are massively found in

the air (148). Due to its pivotal role as an environmental

pollution sensor and mediator, AhR emerges as a major target

for toxic compounds which is illustrated by the predominance of

reported toxicological projects (8 toxicological among 10 in

total). Most of the data used in these projects are collected

from the literature and these studies are in their large majority

dedicated to specific chemical series of environmental

compounds that have been proved experimentally to be able to

interact with AhR (71, 149, 150). The corresponding models are

associated with high predictive power, but their applicability

domain is relatively limited. Additionally, data from the Tox21

project was also used with both SB and LB methods. However,

the application of SB methods is limited by the fact that the 3D

structure of this receptor has not been solved yet. A preliminary

homology modelling step is thus necessary in all the studies

relying on SB methods to obtain a model of the AhR LBD. AhR

belongs to the PAS-domain protein group (151) and usually the

structure of the PAS-B of the Hypoxia Inducible Factor 2 a
(HIF-2a) is used (152, 153) sharing 31% of sequence similarity

and 52% identity with the target considered as the highest

sequence identity and similarity. More recently, potential

therapeutic applications of AhR modulation have emerged.

AhR activation has been shown to be involved in

hematopoiesis and inflammation process especially the

production of inflammatory cytokines whereas AhR repression

has been shown to be beneficial in anti-cancer therapies

especially for glioblastomas and breast cancers (154). Two

therapeutic projects were analyzed in this review, the first

being a LB model aiming to discover new AhR antagonists.

For this purpose, Parks et al. used successively the Rapid Overlay

of Chemical Structures (ROCS) and the electro-static overlap to

identify one compound that yield promising experimental

results in three in vitro and in vivo AhR-dependent assays

(154). The second therapeutic project applied a SB protocol to

decipher the molecular mechanisms behind the AhR activation

or inhibition (152). In this article, several entries for the template

protein were used to simulate the flexibility and plasticity of the

binding domain and homology models were selected and used to

perform the docking of 10 representative AhR agonists from

different chemical classes. The outcome of docking coupled with

MD simulations allowed the analysis of the predominant poses

and thus the description of ligand binding and the identification

of the interacting residues within AhR.
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4 Studied methods and associated
data

4.1 Computational methods

Along this review process, we analyzed models dedicated to

the identification of NRs ligands obtained with a very large

spectrum of in silico methods categorized in two approaches i.e

SB and LB as shown in Figure 3.
4.1.1 Molecular dynamics simulations
MD simulations are used to study the dynamic of a

biological system as a function of time. The movements of the

system are computed through the integration of Newton’s

equation of motion. MD simulations can thus be used to

consider the conformational changes associated with the NRs

LBD. Indeed, the NRs LBD is characterized by its

hydrophobicity and flexibility allowing binding of ligands of

different sizes and shapes. NRs structures are subject to various

modifications occurring after several events such as the DNA

transcription or the binding of the ligand (15). The helix H12 is

known to modify its orientation according to the bound-ligand

profile. MD can thus be used to span the NRs flexibility and

deliver unbiased theoretical structures, but also to assert the

stability of a ligand-protein complex and study the time of

residence of the ligand. In the reviewed articles, MD has been

used for several projects relevant to AR, ER, LXR, PPAR, TR and

VDR always in complement of another computational method

such as QSAR (74, 150) or pharmacophore models (93, 94) and

frequently prior or after docking simulations (66, 75, 152).

4.1.2 Docking
Protein-ligand docking is a SB method used to predict the

ability of a compound to interact with a target. Docking methods

used a search algorithm that generate multiple potential

conformations of the molecular complex and a scoring

function to rank them. Docking can be used to propose

structural hypotheses on the dominant binding mode of a

compound, to screen large libraries of compounds and to rank

them according to docking scores. In this way, docking is used to

prioritize and reduce the number of compounds that should be

experimentally tested (156). Docking methods can be applied to

any target for which an experimental 3D structure is available.

Consequently, docking methods were largely employed to

develop predictive models of NR-ligand interactions and for

each of the 14 reviewed NR subfamily, at least one project using

a docking method was available. However, the docking protocol

used must be finely tuned for each NR. A first important

criterion is the rational selection of the initial docking

structure(s) since the NRs LBDs undergo significant

conformational changes upon ligand binding, dependent of the
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pharmacological profile of the ligand. NRs agonist compounds

tend to stabilize the interactions between the residues of helix

H12 and other helices (H3, H5 and H11) of the LBD, creating a

lid shape of the H12 over the ligand. In contrast, other

compounds (antagonists or partial agonists) are not able to

stabilize the previous interactions and the observed

repositioning of the H12 is different. The choice of an agonist-

bound or antagonist-bound structure may thus impact the

docking performances in predicting NRs ligands binding (15).

This is particularly important for docking protocols aiming to

discover therapeutic compounds targeting the NRs as a specific

pharmacological profi le is usually targeted and the

corresponding agonist- or antagonist-bound structure should

be selected. In contrast, EDCs can present different

pharmacological profiles and it is thus important to evaluate

both type of structures to ensure that the screening is able to

retrieve all EDCs regardless of their pharmacological profile. In

the reviewed articles, two main docking approaches have been

listed: single and an ensemble structure docking. In the ensemble

structure docking approach, a ligand is successively docked

against several protein conformations (Multiple PDB entries or

snapshots extracted from MD simulations or a gaussian

transformation of the atom localization) and the results are

post processed to only keep the best score among all the

structures. This approach provides a better picture of the

protein flexibility but is more computationally and time

expensive and it is not always associated to enhanced docking

performances (157).
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4.1.3 Pharmacophore modeling
A pharmacophore model is defined by the IUPAC as “an

ensemble of steric and electronic features that is necessary to

ensure the optimal supramolecular interactions with a specific

biological target and to trigger (or block) its biological response”

(158). Two types of pharmacophore models exist (1): LB

pharmacophore models established upon the superimposition

of known active molecules and the retrieval of the common

chemical features that are necessary for the bioactivity (2); SB

pharmacophore models based on the structure of a protein or

more usually of a complex protein-ligand by probing the

possible interactions in the macromolecule binding site (159).

In total, 17 reviewed articles used pharmacophore

modelling. The generated pharmacophore models are in a

large majority combined with other computational models

(QSAR and docking models) and only two publications

present a protocol combining SB and LB pharmacophores (76,

79). It is to note that both LB and SB pharmacophores taken

individually have a predictive power limited by the data used to

train the model, defining their applicability domain. The

protocol combining pharmacophore models with other in

silico methods are described in the reviewed articles and may

help overcoming this limit.

4.1.4 QSAR models
QSAR (Quantitative Structure Activity Relationship) is a LB

method relying on statistical models to predict the biological

activity of compounds. Since their introduction, QSAR models
FIGURE 3

Structure-based (SB) and Ligand-based (LB) screening methods (155).
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have known several evolutions from simplistic linear and

classification models to the use of more elaborated algorithms

like artificial neural networks (ANN) and deep learning (DL). In

total, 48 of the reviewed articles used QSAR models with the

majority (19) adopting classical 2D machine learning methods

like Random Forest or SVM. The remaining studies present

models obtained using ANN (4), DNN (3) or 3D QSARmethods

such as CoMFA and CoMSIA (7). The classical QSAR models

rely on a set of descriptors that encode chemical structures,

describe physiochemical properties and that can be obtained

from quantum chemical calculations (14, 88). Because a huge

number of predefined descriptors can be generated, it is

important to correctly select the ones that will accurately

translate the link between the chemical structure and the

associated activity (160). A classical approach is illustrated in

the publication of Wang et al. (88) in which QSAR models

dedicated to the identification of agonist and antagonist ligands

of TR are presented. In this study, the software Dragon was used

to initially generate over 1600 descriptors. This number was then

reduced by discarding the descriptors highly correlated and

selecting only those directly related to the structure, intuitive

and easy to understand. Conversely, DL methods emancipate

from descriptors computation and selection. Instead, DL

methods ensures automatic feature extractions during the

training phase. DL methods are thus particularly adapted for

areas where existing predefined descriptors have not been

crafted yet like macrocycles or the modeling of therapeutic

peptides (161). However, DL methods also present some

drawbacks, the first being the so-called “black box effect”. DL

methods compared to more simplistic algorithms are not easily

understandable and deciphering the molecular mechanisms

associated with the prediction may be a tough task. Moreover,

DL requires higher computing resources which can be a

limiting factor.

Similarly to the pharmacophore models, QSAR models’

predictions are only accurate for compounds that are similar

to the ones used to train them (21, 45, 162). An applicability

domain (AD) can thus be defined with descriptors used to build

the QSAR model (21, 25).. Implementing the AD has proven to

enhance the confidence in the models by reducing the number of

false negatives (25). However, prediction will only be achieved

for compounds that are within the limit of the AD, i.e. within a

defined descriptors similarity threshold with their nearest

neighbors of the training set (45). In order to enhance the

chemical space for which prediction can be made, QSAR

models can be combined with other ones with complementary

ADs or with a SB model such as docking (67, 68, 74, 81).

4.1.5 Data splitting
An important step prior the generation of LB models is to split

the available ligands data into train and test set (160). The stake of a

good data split is to obtain a test set that is somehow representative
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of the training set chemical space. In most of the reviewed article,

data was split randomly as it is commonly done to avoid biased

evaluation of the model. However, this randomness may lead to an

uneven distribution of active and inactive compounds between the

train and the test set especially if the active/inactive ratio is initially

low. In this sense, Capuzzi et al. (101) build QSAR models relying

on two sets of databases: (1) the native Tox21 set of data with a ratio

of active: inactive equal to 1:10 and (2) a balanced set generated

down-sampled from the inactive data of the Tox21 native dataset

i.e. for each active compounds an equivalent inactive was selected

either randomly or based on the highest Tanimoto score within the

inactive pool of compounds. It is to note that using the balanced set

leads to a decrease in the accuracy of the model in comparison to

when they used the native (unbalanced) dataset. Randomly splitting

datamay also result in a test set that is not representative of the train

especially when the initial data are structurally diverse. Wang, Xing

et al. (88) used self-organizing map (an ANN algorithm) to project

an ensemble of structurally diverse compounds on a low

dimensionality grid. This helped visualizing the space and the

selection of a test set representative of the overall dataset and lead

to average accuracies of 83.1–97.2%. In other studies, the trade-off

between randomness and unbiased subdivision was achieved with

bootstrapping. Several splits were done, and models were built an

evaluated with the associated train/test output. The split with the

best results was kept for the followingmodel optimization (29, 163).

4.1.6 Combinations of methods
It is to note that each computational method has limitations.

For example, QSAR methods are not suited on their own to be

used for HTS. They are more efficient at generating focused data

and requires exhaustive model training and validation steps.

Moreover, QSAR and pharmacophores modelling share the

common particularity of being only efficient on molecules

falling within a domain of applicability (162). A crucial point

in the docking workflow is the choice of the scoring function as

no universal scoring function exists yet (164). Each individual

method can be at the origin of new structural information that

can be combined to enable a better understanding of the

mechanism of action. A solution to overcome each method

limitations and take advantage of their complementarity is to use

a combination of methods (28, 165, 166). Computational

methods can be combined in integrative approaches using

hierarchical or consensus screening (27–29, 48, 60, 100, 163)

(for further references c.f. Table 1–4).
4.2 Databases

A chemical database (DB) is an organized collection of

compounds with relevant information on their chemical

structures together with activity data collected from in vivo

and/or in vitro experiments and sometimes in silico predicted
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activities. Several DB dedicated to NR exist and we decided in

this review, to focus on the ones available in open access as

presented in Table 5.

In silico studies focusing on NR are numerous and the

choice of the databases to use to construct predictive models

depends on the aim of the project. Moreover, and especially

for drug design projects, some research teams chose to use in

house databases i.e. a collection of compounds issued as a

result of experimental work in the laboratory. These

databases can be composed of one or several chemical series

originating from a single hit or a known drug scaffold or, in

some cases focused libraries. Finally, some projects rely on

several existing databases, either to combine the molecules

resulting in larger databases for the same purpose

(therapeutic or toxicological) or use a database for the

training step and another for the external validation. For

example, Réau et al. (29) developed a docking and a

pharmacophore modeling strategy for identifying AR

agonist compounds relying on the NR-DBIND data and

used as an external validation set the compounds from the

tox21 challenge.
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4.2.1 Assay consideration
In the scientific literature, biological data available for NRs

ligands represent various assays endpoints sometimes measured

from different laboratories and companies. Indeed, two main

assays were used in the reviewed studies to assess NRs ligands

potency: binding assay and gene reporter assay (34). These

assays attributed to each compound a quantitative value that

may vary according to the laboratory in charge of the

experiment. In the in silico modelling field, the experimental

data are used to compute predictive models for molecules with

no related experimental information. For some methods such as

QSAR, the numerical value associated with the experimental test

can directly be integrated to construct the models. For other

method, such as docking and pharmacophoric modeling, these

data usually need to be converted into a binary variable with 2

possible values: “active compounds” and “inactive compounds”.

This is necessary to optimize and select the prediction models

able to distinguish between both categories. Indeed, to evaluate

the predictive power of a model, the number of correctly

predicted active and inactive (TP and TN) as well as the

number of wrongly predicted compounds (FP and FN) are
TABLE 5 Example of databases including or dedicated to nuclear receptors.

Database Link Composition Specific to NR only

Binding DB https://www.bindingdb.org/bind/index.jsp As of November 8, 2021, BindingDB contains
2,369,418 binding data for 8,634 protein targets
and 1,023,385 small molecules

No

ChEMBL https://www.ebi.ac.uk/chembl/ manually curated database: 2.1 M compounds No

Drugbank https://go.drugbank.com/ 14,585 drugs and several targets like enzyme, transporters and carriers No

ZINC
database

https://zinc.docking.org/ contains over 230 million purchasable compounds in ready-to-dock, 3D
formats.

No

Tox21 https://tripod.nih.gov/tox21 The list of ToxCast and Tox21 chemicals suspected to be a hazard for human
and environmental health and associated
information for 9,403 unique substances.

No

ToxCast https://www.epa.gov/chemical-research/
toxcast-chemicals

No

DUD-E http://dude.docking.org/ 22,886 active compounds and their affinities against 102 targets, an average of
224 ligands per target and
50 decoys for each active having similar physico-chemical properties but
dissimilar 2-D topology.

No

DSSTox https://comptox.epa.gov/dashboard/
chemical-lists/tox21sl

launched in 2004, currently exceeds 875K substances spanning hundreds of
lists of interest.

No

EDKB https://www.fda.gov/science-research/
endocrine-disruptor-knowledge-base/
accessing-edkb-database

Data for more than 3200 chemicals Yes (ER and AR)

EABD https://www.fda.gov/science-research/
bioinformatics-tools/estrogenic-activity-
database-eadb

18,114 estrogenic-activity data points collected for 8,212 chemicals tested in
1,284 binding assays, reporter-gene assays, cell-proliferation assays, and in-
vivo assays in 11 different species.

Yes (ER)

NR-DBIND http://nr-dbind.drugdesign.fr/ 15,116 positive and negative interactions data are provided for 28 NRs
together with 593 PDB structures

Yes

NR-List
BDB

http://nrlist.drugdesign.fr/ 9,905 compounds and 339 structures of the NRLiSt BDB Yes

ONRLDB https://academic.oup.com/database/article/
doi/10.1093/database/bav112/2433243

∼11 000 ligands, of which ∼6500 are unique. Yes

NURA https://www-sciencedirect-com.proxybib-pp.
cnam.fr/science/article/pii/
S0041008X20303707?via%3Dihub

bioactivity data for 15,247 molecules and 11 NRs Yes (ERa andb, PPARGag,
and d, AR, GR,PR, FXR,
RXR and PXR)
frontiersin.org

https://www.bindingdb.org/bind/index.jsp
https://www.ebi.ac.uk/chembl/
https://go.drugbank.com/
https://zinc.docking.org/
https://tripod.nih.gov/tox21
https://www.epa.gov/chemical-research/toxcast-chemicals
https://www.epa.gov/chemical-research/toxcast-chemicals
http://dude.docking.org/
https://comptox.epa.gov/dashboard/chemical-lists/tox21sl
https://comptox.epa.gov/dashboard/chemical-lists/tox21sl
https://www.fda.gov/science-research/endocrine-disruptor-knowledge-base/accessing-edkb-database
https://www.fda.gov/science-research/endocrine-disruptor-knowledge-base/accessing-edkb-database
https://www.fda.gov/science-research/endocrine-disruptor-knowledge-base/accessing-edkb-database
https://www.fda.gov/science-research/bioinformatics-tools/estrogenic-activity-database-eadb
https://www.fda.gov/science-research/bioinformatics-tools/estrogenic-activity-database-eadb
https://www.fda.gov/science-research/bioinformatics-tools/estrogenic-activity-database-eadb
http://nr-dbind.drugdesign.fr/
http://nrlist.drugdesign.fr/
https://academic.oup.com/database/article/doi/10.1093/database/bav112/2433243
https://academic.oup.com/database/article/doi/10.1093/database/bav112/2433243
https://www-sciencedirect-com.proxybib-pp.cnam.fr/science/article/pii/S0041008X20303707?via%3Dihub
https://www-sciencedirect-com.proxybib-pp.cnam.fr/science/article/pii/S0041008X20303707?via%3Dihub
https://www-sciencedirect-com.proxybib-pp.cnam.fr/science/article/pii/S0041008X20303707?via%3Dihub
https://doi.org/10.3389/fendo.2022.986016
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Sellami et al. 10.3389/fendo.2022.986016
used to compute metrics such as sensitivity, sensitivity and

enrichment for example. The binarization of the data is a

crucial but not straightforward step because a threshold must

be defined to separate the data. Additionally, because various

biological endpoints are considered, the concordance between

the thresholds of activities defined for each assay should be

assessed. Lunghini et al. (167) defined the “degree of agreement”

parameter to pinpoint the differences between various assays

used to label compounds that interact with ER and AR in the

context of EDCs models. To do so, they performed multiple

pairwise comparisons of various binding assays result among 4

data sources for ER binding compounds and 3 data sources for

AR binding compounds. The degree of agreement was calculated

as the average number of sources agreeing on a given label for

each compound. Their analysis showed that there is a lack of

concordance between experiments for 42% of the compounds.

This study highlighted the danger of merging assays with

different biological meanings (167) and considering the

positive outputs as interacting compounds regardless of the

mechanism of action. However, it is a commonly used

protocol, often driven by the lack of appropriate data or the

blurry definition of the mechanism of action. This is especially

the case in the toxicological context of the study related to EDCs

and in this review, we came across several studies performing the

merging of data obtained from different assays and different

sources. Some studies, aware of this issue, also developed various

approaches to limit the associated bias. Sakkiah et al. (56)

calculated the concordance between the train and the test set

since originated respectively from binding and amplification

assays. Manganelli et. al (28), compared the train and the test

data to define concordance and exclude a part of the data that

falls under a “dangerous” segment. Finally, Zhang et al. (128)

normalized the activity of their test set to their training data

when constructing their models.
4.2.2 Data balance
Along with active compounds, it is also important to

construct, optimize and evaluate NRs prediction models to

include negative data (168). Positive data are usually resulting

from biological or cellular in vivo assays but, negative data has

long been constituted by presumed inactive compounds (121).

Since negative data have a crucial impact in influencing the

performance of a model (168), recent efforts have been made to

include carefully selected and experimentally validated inactive

compounds [NR-DBIND (169)]. An additional issue is the

proportionality between active and inactive compounds in DB.

When collecting data from scientific literature, very few inactive

compounds are retrieved. Conversely, in databases presenting

high throughput screening results, inactive compounds usually

outnumbered the active ones. In this case, the active substances

represent a low proportion out of all tested chemicals (95). A
Frontiers in Endocrinology 19
performant model is dependent on clean, diverse and accurate

data (95, 165), and unbalanced data (either in favor of the active

or the inactive counterpart) can impact prediction models

building (55). Clustering methods can be used to select smaller

subsets of representative active or inactive compounds. For

example, Another solution is the use of a structural similarity

filter based on fingerprints and the application of a similarity

metric cutoff (for example Tanimoto) in order to select sparse

compounds to scour the entire chemical space (170). In the case

of unbalanced data sets, the classical metrics are not the best

suited to evaluate the predictive power of a model. In this case

some metrics like the MCC and the F1 score can help in

assessing the ability of a model to correctly predict each

category of compound.
4.3 Level of reproducibility

Reproductible science is a quality standard that the scientific

community values as it helps producing high quality, reliable

and efficient research project (171). It has been proven that

reproducibility together with methods, reporting, dissemination,

evaluation and incentives are key elements for the scientific

process (172). However, it has also been asserted that the field of

preclinical research suffers from the inability to replicate findings

published in high-profile journals (171). Although it is difficult

to exactly replicate results in biology systems due to their

inherent variability, some recommendations on good practice

could be listed to alleviate the trustworthiness of the scientific

work and the validity of the major conclusions (171).

Reinforcing the policies on data and code sharing is one of

these recommendations (171, 173).

Through this review, we decided to evaluate this point in the

NRs in silico research field. For each reviewed model, the level of

reproducibility was graded according to the availability of

databases and the model procedure’s parameters and/or code.

The “high” grade was used to describe models providing both

components within the article, the “medium” was associated

with articles with partial available data. Finally, the

reproducibility was described as “low” for models where no

data were available. For most of the reviewed articles’

reproducibility was rated “medium” (52 out of 89 articles) and

only a low proportion was described to have a “high”

reproducibility (16 out of 89). These results focused on the

NRs are in concordance with other large-scale studies (173). For

example, in a study of 2011, the analysis of 500 papers published

in the top 50 journals across scientific fields showed that only 9%

of these papers enclosed full primary data (171). The

reinforcement of collaborations between research teams

following the example of COMPARA (20) and CERAPP (36)

consortiums or the Tox21 challenge (174) can improve the

reproducibility since it creates accountability in exchange of a
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benchmarked data (172). However, according to our

classification, no particular tendency was observed over the 10

year covered by this review neither towards increase of the

number of articles labeled with “high” reproducibility nor

towards decrease of the number of articles associated with

“low” reproducibility.
5 Conclusion

Nuclear receptors are a large family of transcription factors

involved in several biological process and their impairment result in

several pathologies. Moreover, this protein family can be targeted by

toxic compounds leading to the disruption of the normal

functioning of NRs and especially the disruption of the endocrine

system by a family of compounds called endocrine disrupting

chemicals or EDCs. Being in the center of both therapeutic and

toxicological concerns, NRs are widely studied to find new cures but

also to unravel the potential toxicity of environmental compounds

such as pesticides, cosmetics or additives. In the last decades and

with the emergence of bioinformatics and virtual screening

techniques, computational models dedicated to NR were

developed. The computational capabilities were put to use to

interpretate and analyze the experimental data and build

predictive models to unravel new drug hit and forecast potential

toxicants. This article is a review of the studies dedicated to NR

ligands prediction for both therapeutic and toxicological purposes,

published in the last decade. 89 articles concerning 14 NR

subfamilies were carefully read and analyzed in order to retrieve

the most commonly used computational methods to develop

predictive models, to retrieve the databases deployed in the model

building process. Some issues facing themodel building process were

addressed like the assays endpoint discrepancies and data balance

were also addressed and how authors managed to overcome them.

This review emerged from the need to identify most of the in silico

initiatives undertaken on NR and can be used as a starting point for

future investigations on the subject not only to appreciate the

importance of NR in both therapeutic and toxicological fields, but

also to learn from previous experiences, encourage the elaboration of

more accurate predictions and motivate collaborations.
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29. Réau M, Lagarde N, Zagury JF, Montes M. Hits discovery on the androgen
receptor: In silico approaches to identify agonist compounds. Cells (2019) 8
(11):1431. doi: 10.3390/cells8111431

30. Zorn KM, Foil DH, Lane TR, Hillwalker W, Feifarek DJ, Jones F, et al.
Comparison of machine learning models for the androgen receptor. Environ Sci
Technol (2020) 54(21):13690–700. doi: 10.1021/acs.est.0c03984
Frontiers in Endocrinology 21
31. Li J, Gramatica P. QSAR classification of estrogen receptor binders and pre-
screening of potential pleiotropic EDCs. SAR QSAR Environ Res (2010) 21(7–
8):657–69. doi: 10.1080/1062936X.2010.528254

32. Rybacka A, Rudén C, Tetko IV, Andersson PL. Identifying potential
endocrine disruptors among industrial chemicals and their metabolites–
development and evaluation of in silico tools. Chemosphere (2015) 139:372–8.
doi: 10.1016/j.chemosphere.2015.07.036

33. Bhhatarai B, Wilson DM, Price PS, Marty S, Parks AK, Carney E. Evaluation
of OASIS QSAR models using ToxCastTM in vitro estrogen and androgen receptor
binding data and application in an integrated endocrine screening approach.
Environ Health Perspect (2016) 124(9):1453–61. doi: 10.1289/EHP184

34. Tan H, Wang X, Hong H, Benfenati E, Giesy JP, Gini GC, et al. Structures of
endocrine-disrupting chemicals determine binding to and activation of the
estrogen receptor a and androgen receptor. Environ Sci Technol (2020) 54
(18):11424–33. doi: 10.1021/acs.est.0c02639

35. Allen TEH, Nelms MD, Edwards SW, Goodman JM, Gutsell S, Russell PJ. In
silico guidance for in vitro androgen and glucocorticoid receptor ToxCast assays.
Environ Sci Technol (2020) 54(12):7461–70. doi: 10.1021/acs.est.0c01105

36. Mansouri K, Abdelaziz A, Rybacka A, Roncaglioni A, Tropsha A, Varnek A,
et al. CERAPP: Collaborative estrogen receptor activity prediction project. Environ
Health Perspect (2016) 124(7):1023–33. doi: 10.1289/ehp.1510267
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59. Grienke U, Mihály-Bison J, Schuster D, Afonyushkin T, Binder M, et al.
Pharmacophore-based discovery of FXR-agonists. part II: Identification of
bioactive triterpenes from ganoderma lucidum. Bioorganic Medicinal Chem
(2011) 19(22):6779–91. doi: 10.1016/j.bmc.2011.09.039

60. Sindhu T, Srinivasan P. Identification of potential dual agonists of FXR and
TGR5 using e-pharmacophore based virtual screening. Mol Biosyst (2015) 11
(5):1305–18. doi: 10.1039/C5MB00137D

61. Chen Y, Yang H, Wu Z, Liu G, Tang Y, Li W. Prediction of farnesoid X
receptor disruptors with machine learning methods. Chem Res Toxicol (2018) 31
(11):1128–37. doi: 10.1021/acs.chemrestox.8b00162

62. Merk D, Grisoni F, Schaller K, Friedrich L, Schneider G. Discovery of novel
molecular frameworks of farnesoid X receptor modulators by ensemble machine
learning. ChemistryOpen (2019) 8(1):7–14. doi: 10.1002/open.201800156

63. von Grafenstein S, Mihaly-Bison J, Wolber G, Bochkov VN, Liedl KR,
Schuster D. Identification of novel liver X receptor activators by structure-based
modeling. J Chem Inf Model (2012) 52(5):1391–400. doi: 10.1021/ci300096c

64. Heitel P, Achenbach J, Moser D, Proschak E, Merk D. DrugBank screening
revealed alitretinoin and bexarotene as liver X receptor modulators. Bioorganic
Medicinal Chem Letters (2017) 27(5):1193–8. doi: 10.1016/j.bmcl.2017.01.066
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