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The global annual incidence of brain tumors is approximately seven out of

100,000, accounting for 2% of all tumors. The mortality rate ranks first among

children under 12 and 10th among adults. Therefore, the localization and

segmentation of brain tumor images constitute an active field of medical

research. The traditional manual segmentation method is time-consuming,

laborious, and subjective. In addition, the information provided by a single-

image modality is often limited and cannot meet the needs of clinical

application. Therefore, in this study, we developed a multimodality feature

fusion network, MM-UNet, for brain tumor segmentation by adopting a multi-

encoder and single-decoder structure. In the proposed network, each encoder

independently extracts low-level features from the corresponding imaging

modality, and the hybrid attention block strengthens the features. After fusion

with the high-level semantic of the decoder path through skip connection, the

decoder restores the pixel-level segmentation results. We evaluated the

performance of the proposed model on the BraTS 2020 dataset. MM-UNet

achieved the mean Dice score of 79.2% and mean Hausdorff distance of 8.466,

which is a consistent performance improvement over the U-Net, Attention U-

Net, and ResUNet baseline models and demonstrates the effectiveness of the

proposed model.

KEYWORDS

brain tumor (or Brat), medical image segmentation, multimodality fusion, hybrid
attention mechanism, dilated convolution
Introduction

The brain tumor is the general term for the malignant proliferation of abnormal cells

in the brain (1). The continuous expansion of brain tumors compresses the brain nerves,

resulting in severe consequences such as headache, nausea, absentmindedness, and even

death (2). To treat such diseases, the location of brain tumors must be accurately located,
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which is impossible without the use of medical image analysis.

Manually marking medical images is a cumbersome and error-

prone task; thus, establishing an accurate and reliable

segmentation method to improve the efficiency of clinical

diagnosis and support decision-making is imperative (3, 4).

With the continuous development of the deep learning (DL)

theory and algorithms in recent years, the data processing ability

and generalization ability of neural networks have improved

immensely (5, 6). Combining the DL theory with the specific

task of medical image analysis, the method of realizing medical

image semantic segmentation has been extensively studied (7).

Owing to the unique advantages offered by convolutional neural

networks (CNNs) in image processing, the U-Net (8) series,

Attention-UNet (9), and ResUNet (10) have exhibited excellent

results in certain medical image segmentation tasks and have a

bright application prospect.

Because the structure of human organs does not vary

considerably among individuals and the semantics are

straightforward, the low-level features that refer to detailed

information in the image and serve as the basis for

segmentation are indispensable for medical segmentation. In

addition, medical images have the characteristics of complex

gradients. Moreover, it is vital to obtain the high-level semantics

built on low-level features and use them for the recognition and

detection of target or object shapes in images with richer

semantic information. They serve as the basis for accurate

segmentation and positioning. The successful brain tumor

segmentation models developed in recent years are all single-

modality models based on deep neural networks (7). However,

in practical clinical applications, we often encounter scenarios

that require multimodality medical images to assist doctors in

making decisions jointly. Imaging examination methods widely

used in clinical practice include computed tomography (CT),

magnetic resonance imaging (MRI), and positron emission

tomography (PET) (11). They employ different imaging
Frontiers in Oncology 02
principles to obtain the biological structure and metabolic

indexes of human organs, tissues, and cells and provide

patient information to the attending doctors from diverse

perspectives to improve the accuracy of clinical diagnosis.

Single-modality networks pose the limitation that they cannot

learn the complementary imaging modality characteristics and

cross-modal interdependence (12). To overcome this limitation,

certain multimodality medical segmentation networks have been

developed (11, 13). However, some problems are encountered;

for example, the edge description is not sufficiently fine and is

insensitive to changes in the target size. Although some modules

have been proposed and applied to feature extraction from

feature maps, such as Deeplab V3+ (14), they do not take into

account that the image becomes very small after multiple rounds

of downsampling and that the location and size of the image

need to be improved.

To solve the aforementioned problems, in this study, we

developed a feature fusion network based on the multi-encoder

and single-decoder structure, namedMM-UNet,whichextracts the

corresponding features from multiple imaging modalities of

medical images. The brain tumor segmentation pipeline for MM-

UNet is shown in Figure 1. In addition, we developed a channel–

space hybrid attention block (HAB) to filter the extracted features

and remove the redundant information to further improve the

network’s ability to utilize the multimodality information

comprehensively. Moreover, the encoder often adopts the pooled

downsampling method for feature extraction, which may lead to

the dilution of the edge details of the segmented region; its negative

impact on semantic segmentation cannot be ignored (15). To

compensate for the information loss caused by pooled sampling,

we introduced dilated convolution (16) with various rates,

combined diverse receptive fields without changing the size of the

feature map, and depicted the target area at multiple scales to

accurately capture the boundary of organs and improve the

segmentation accuracy of the model (17, 18).
FIGURE 1

Illustration of brain tumor segmentation pipeline for MM-UNet.
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In summary, the main contributions of the papers are listed

as follows: (I) We developed a multi-encoder and single-decoder

brain tumor segmentation network called MM-UNet for brain

tumor image segmentation. (II) We devised a feature fusion

block based on hybrid attention to capture imaging modality

features from the two dimensions of channel and space to better

focus on the key information in the feature map. (III) We

developed a dilated pooling module to capture multiscale

information and refine the segmented edge. (IV) We validated

the effectiveness of the proposed model on the BraTS 2020

dataset (19), demonstrating improvements over many

baseline models.
Related work

In medical image segmentation, medical images are labeled

at the pixel level. However, the various sizes and shapes of

human tissues and organs and the unique imaging methods of

medical images pose challenges (20, 21). Many methods based

on DL have shown promising adaptability (22). The fully CNN

(FCN) (23) was one of the earliest attempts to use CNNs for

image segmentation. Because the network cancels the fully

connected layer, the size of the input image is no longer

limited; this considerably widens the adaptation range of the

model. The single–encoder-decoder structure in the classical U-

Net model adopts the skip connection, which combines the low-

level features and high-level semantic information of the same

scale feature map (8). Obtaining a large number of medical data

is difficult. However, the U-Net model does not require a large

amount of data; thus, it has been widely used in medical image

segmentation (24).

Although single-modality networks yield satisfactory results,

the amount of information available in single-modality images is

limited, which cannot comprehensively and systematically

reflect the physiological structure of patients (25). To meet the

requirements of clinical applications, multimodality

segmentation networks have been designed (26). Dolz et al.

(27) proposed a multimodality model for the positioning and

segmentation of the intervertebral disc, wherein each MRI

modality is processed by different paths to make full use of the

unique information of each model; in addition, a close

connection is adopted between each path so that the model

can learn the connection between different imaging modalities

independently. Cai et al. (28) proposed a multimodality model

for the fusion of MR and CT images that can fuse the features of

different imaging modalities without supervision. Xue et al. (29)

proposed a method for realizing the interaction between two

modal information generated in multimodality CT (PET-CT).

They used different encoders for the two modal information and

eliminated the misleading features by sharing the downsampling

block between the two encoders to realize feature interaction

between multiple imaging modalities. Chartsias et al. (30)
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proposed a multi-input–multi-output FCNN model for MRI

synthesis. They fully extracted unique information from each

input imaging modality by using a single shared decoder and loss

function for each imaging modality. Aygün et al. (31) proposed a

multimodality CNN method for brain tumor segmentation by

adopting a separate learning method and combination for each

imaging modality to improve the network performance. Fang

et al. (32) proposed a multimodality brain tumor segmentation

framework and mixed fusion of specific imaging modality

features. They proposed a new feature fusion scheme that

supports the input of a different number of imaging modalities

and captures the relevant information of each imaging modality

feature through the attention mechanism. For a multimodality

medical segmentation network, an appropriate feature fusion

strategy must be established (25, 33). The model proposed in the

current study adopts a layer-level fusion strategy because it can

combine low-level features and high-level semantics without

introducing too many parameters, thereby preventing an

increase in the complexity of the model.

In addition to selecting the location of feature fusion,

determining the complex relationship between modalities to

help the segmentation network learn more valuable

information is the focus of many medical segmentation

models. He et al. (34) proposed ST-Net, which superimposes

consecutive video frames into a super-image, performs two-

dimensional (2D) convolution on the super-image to obtain

local spatiotemporal relationships, and then applies temporal

convolution to local spatiotemporal feature maps to establish a

global spatiotemporal relationships model. They added a spatial

transformer module to preserve the spatially critical

information. Oktay et al. (9) added a soft attention mechanism

module to the U-Net model. By reweighting and aggregating the

information, they selectively ignored part of the information to

avoid the interference of irrelevant content. Sinha et al. (35) used

the attention mechanism for feature maps of different sizes and

proposed the position attention module to capture long-distance

dependence so that the model can learn more extensive and rich

context information. Hu et al. (36) proposed SE-Net; they added

a squeeze-and-excitation (SE) block structure to the network to

adaptively extract channel features through the interdependence

between channels. Experimental results revealed that, when the

SE block is combined with ResNet, the network can learn feature

weights according to loss and yields the best results on multiple

datasets. Chen et al. (37) used the SE block for medical image

segmentation and used this structure in skip connections to

learn the channel weights to adaptively learn the contribution of

different feature maps to the final segmentation result. They

found that this attention structure is effective for medical

segmentation tasks. The soft attention mechanism performs

reweighted aggregation calculation on the remaining

information by selectively ignoring part of the information

(38); this characteristic is crucial in multimodality image

segmentation tasks. Therefore, in the current study, we
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proposed a soft attention mechanism module for multimodality

image segmentation.

In the medical image segmentation task, accurately locating

lesions of various sizes and with irregular edges and contours is

challenging (39). The commonly used segmentation algorithms

generally use pooled downsampling followed by upsampling to

restore the image size so that each pixel can obtain a sizeable

receptive field to locate. This process inevitably leads to the loss of

imagedetails.Thus, dilated convolution is introduced toexpand the

receptive field while keeping the spatial resolution unchanged to

alleviate the loss of image details caused by the downsampling

operation. Yu et al. (40) proposed a network that combines dilated

convolution and residual structure to alleviate the problem of

spatial feature loss caused by reduced resolution. They

demonstrated that networks with dilated structures outperform

residual networks without dilated convolutions. Inspired by this,

MorenoLopez et al. (41) employed this dilated residual network for

brain tumor segmentation to solve the problem of downsampling

loss of resolution and provide efficient multiscale analysis for

prediction tasks. They further demonstrated the effectiveness of

this structure for brain tumor segmentation through ablation

experiments. Chen et al. (42) proposed the ASPP (Atrous Spatial

Pyramid Pooling) structure by using the spatial pyramid pooling

operation in the target detection model for reference, set dilated

rates to capture the multiscale information in the feature map in

parallel, and employed global pooling to retain the image-level

features. Yang et al. (43) used this ASPP structure for instance-level

human analysis to adapt to the problem of large differences in the

proportions of different parts of the humanbody and tobetter learn

the connections betweendifferentparts. In addition, inspired by the

structure of ASPP, Ni et al. (44) added a SE pyramid pooling block

between the encoder and the decoder and increased the size of the
Frontiers in Oncology 04
receptive field and the ability of multiscale feature fusion; this

approach yielded satisfactory performance on several medical

segmentation datasets. We imitated this structure and introduced

similar modules into the model as an intermediary to connect the

two downsampling processes.
Method

U-Net (8) offers many advantages in medical image

segmentation. Inspired by the structure of U-Net, we

developed a multi-encoder and single-decoder model. The

network structure is shown in Figure 2. Each independent

encoder path extracts features from the image of the

corresponding imaging modality. Before downsampling, the

feature map is transmitted to the channel–space HAB, which

suppresses the features with a small amount of information to

highlight the image focus and further integrates with the decoder

path’s high-level semantics through skip connection. After two

rounds of downsampling using the encoder, the feature map is

transmitted to the dilated convolution block (DCB) to combine

multiscale receptive fields for characterizing brain tumors of

various sizes. The decoder gradually restores the high-level

semantics after four rounds of downsampling and fusion by

the encoder to the pixel-level segmentation results.
Encoder and decoder

The encoder is used to extract the features of each input

imaging modality and obtain independent potential features.

The model has four inputs; each encoder takes the image of its
FIGURE 2

Proposed MM-UNet network architecture.
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corresponding imaging modality as the input and performs

continuous downsampling after residual convolution (45). In

the residual convolution, two successive 3×3 convolutions are

performed to learn the residual, and 1×1 convolution is

performed to keep the number of original input channels the

same as the residual for element-level addition. The ReLU

operation is performed after the 3×3 convolution operation in

the residual convolution. The results are transmitted to the

corresponding hybrid attention module and the lower

sampling layer. Each round of downsampling changes the

picture size to half of the original. We used 2×2 max pooling

to achieve downsampling. After the above process is repeated

four times in the encoder, the characteristic diagram with a total

downsampling rate of 16× is outputted. Corresponding to the

encoder structure, the decoder also has a four-layer structure.

The features of each layer of the encoder are inputted to the

hybrid attention module before downsampling, fused with the

mask corresponding to other imaging modalities, and then

transmitted to the decoder through skip connection to fuse

with the features after upsampling again. We adopted channel-

level concatenation as the imaging modality fusion method.

After fusion, the number of characteristic channels becomes

four times that of the original, and the size remains unchanged.

The residual convolution input in the decoder is obtained by the

channel-level concatenation of the fusion feature of skip

connection with the feature of the previous layer. The residual

results are added at the element level with the results of the

previous layer; then, upsampling is performed to transfer to the

next layer. The 2×2 deconvolution implementation used for

upsampling changes the picture size to twice the original size.

Therefore, after four rounds of downsampling and four rounds
Frontiers in Oncology 05
of upsampling, the final output picture size is consistent with the

original picture. At the end of the network, the number of

picture channels is changed into the number of classification

categories through one 3×3 convolution. We show the settings of

layers in each encoding and decoding stage of the MM-UNet in

Table 1.
Hybrid attention block

The HAB successively obtains the mask along the channel

and spatial dimensions and then multiplies it with the input

feature map for adaptive feature optimization. As shown in

Figure 2, for the feature map f∈RC×H×W with the number of

input channels C, height H, and widthW, we used global average

pooling (GAP), global max pooling (GMP), and global range

pooling (GRP) calculated by maximum pooling minus

minimum pooling to obtain the average value, maximum

value, and range of the feature map’s transverse and

longitudinal sections, respectively, which reflect the features of

the input image in the channel and spatial dimensions. As shown

in Equations (1) and (2), in the channel attention part, the

feature map obtained using three types of pooling operations is

transmitted to the multilayer perceptron layer with shared

parameters, and then, the element addition and sigmoid

normalization are performed to generate the channel mask. In

the spatial attention part, the feature map obtained using three

types of pooling operations is used to perform a channel-level

concatenation operation, followed by a 7×7 convolution and

sigmoid normalization to produce the spatial mask, as shown in

Equation (3). Finally, the feature map is multiplied with the two
TABLE 1 Details of operations performed, and settings of layers in each encoding and decoding stage of the proposed network.

# Stages Encoder path # Output features and
Feature size

Decoder path # Output features and
Feature size

1 Input 4@160*160*1 Conv2D [output Layer] [1*1] 160*160*4

Conv2D [3*3, BatchNorm, ReLU] Conv2D
[3*3,BatchNorm, ReLU]

4@160*160*32 Conv2D [3*3, BatchNorm, ReLU] Conv2D
[3*3, BatchNorm, ReLU]

160*160*128

Max Pooling [2*2] 4@80*80*32 Upsampling (Deconvolution layer) [2*2,
strides = 2*2]

160*160*256

2 Conv2D [3*3, BatchNorm, ReLU] Conv2D
[3*3, BatchNorm, ReLU]

4@80*80*64 Conv2D [3*3, BatchNorm, ReLU] Conv2D
[3*3, BatchNorm, ReLU]

80*80*256

Max Pooling [2*2] 4@40*40*64 Upsampling (Deconvolution layer) [2*2,
strides = 2*2]

80*80*512

3 Conv2D [3*3, BatchNorm, ReLU] Conv2D
[3*3, BatchNorm, ReLU]

4@40*40*128 Conv2D [3*3, BatchNorm, ReLU] Conv2D
[3*3, BatchNorm, ReLU]

40*40*512

Max Pooling [2*2] 4@20*20*128 Upsampling (Deconvolution layer) [2*2,
strides = 2*2]

40*40*1,024

4 Conv2D [3*3, BatchNorm, ReLU] Conv2D
[3*3, BatchNorm, ReLU]

4@20*20*256 Conv2D [3*3, BatchNorm, ReLU] Conv2D
[3*3, BatchNorm, ReLU]

20*20*1,024

Max Pooling [2*2] 4@10*10*256 Upsampling (Deconvolution layer) [2*2,
strides = 2*2]

20*20*2,048

5 Multimodal Fusion 10*10*1,024 Conv2D [3*3, BatchNorm, ReLU] Conv2D
[3*3, BatchNorm, ReLU]

10*10*2,048
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masks successively to obtain the enhanced version, as shown in

Equation (4). F in the equation represents the feature map of the

intermediate process.

MLP Fð Þ = f2 ReLU f1 Fð Þð Þð Þ (1)

Mc Fð Þ = s MLP GAPc Fð Þð Þ +MLP GMPc Fð Þ +MLP GRPc Fð Þð Þð Þð (2)

Ms Fð Þ = s f3 GAPs Fð Þ;GMPs Fð Þ;GRPs Fð Þ½ �ð Þð Þ (3)

FHAB fð Þ = f ∗Mc fð Þð Þ ∗Ms f ∗Mc fð Þð Þ (4)
Dilated convolution block

The DCB uses multiple dilated rate convolution cores for

feature extraction. We referred to the concept of inception

structure (46), superimposed small convolution kernels to

simulate the receptive field coverage of large convolution

cores, and added GAP to retain the global features of the

feature map. The structure of the module is illustrated in

Figure 2.

FDCB fð Þ = f5 f1 fð Þ; f2 fð Þ; f3 fð Þ; f4 fð Þ;GAP fð Þ½ �ð Þ (5)

The process of DCB can be expressed by Equation (5), where

f1 represents 1×1 convolution, f2 and f3 represent 3×3

convolutions with dilated rates of 1 and 3, respectively, and f4
represents 3×3 convolution with a dilated rate of 2 superimposed

twice continuously. To ensure that the number of output

channels is the same as the number of input channels, a

convolution operation f5 of size 1×1 is performed at the end.
Experimental setup and
result analysis

Data preparation

We conducted experiments on the BraTS 2020 dataset (47)

to verify the effectiveness of the proposed model. The dataset

contains 369 patients in the training set and 125 patients in the

validation set. It includes multimodal scans of patients with

high-grade gliomas and low-grade gliomas. The data for each
Frontiers in Oncology 06
patient include four MRI image modalities: T1, T1c, T2, and flair

(19). The labeled tumors are divided into three nested regions:

(a) enhanced tumor region (ET), (b) region composed of

enhanced tumor and necrosis (TC), and (c) complete region

composed of all tumor tissues (WT). In the experiment, we

cropped the 3D image size from 250×240×155 to 160×160×128

and select edits 2D slice, 160×160×1 image as the input to

remove some unnecessary background information to pay better

attention to the core area of the image.
Implementation details

The proposed network was implemented in PyTorch with an

Nvidia RTX 3090. Considering the resources occupied by the

network training process and the running speed, we set the batch

size to 8 and trained 15 epochs by using the Adam optimizer (48)

with a learning rate of 0.00001. The optimizer and learning rate

can ensure that the network converges in a short time to achieve

the training purpose. The computational requirements of the

proposed model are presented in Table 2. Because we aimed to

realize the multi-classification segmentation task of sample

imbalance, we used a combination of Dice loss (49) and focal

loss (50) with the weight of 0.1 and 0.9, respectively, as the loss

function. For each classification category, we calculated the loss

value of each image.

LDice = 1 −
2oN

i yiy
0
i + ϵ

oN
i yi +oN

i y
0
i + ϵ

(6)

LFocal =oN
i −yi 1 − y0ið Þ g log y0i

� �

− 1 − yið Þy0ig log 1 − y0i
� �

(7)

LSea = aLDice + bLFocal (8)

The loss functions can be expressed using Equations (6) to

(8), where N is the number of image pixels, yi and y
0
 i are,

respectively; the ground truth and predicted value of the pixel i;

and g is a modulating factor in the focal loss, which increases the

weight of inaccurately classified samples in focal loss compared

to cross-entropy loss. When calculating the Dice loss, a very

small constant ϵ is added to prevent the divisor from being 0.

The final loss value of this point is the average value of the loss

value of each category at this point.

We employed the “Dice score” (DSC) and “Hausdorff

distance (95%)” (Hausdorff95) obtained from the MICCAI

official website to evaluate the model, as shown in Equations

(9) and (10), where TP, FP, and FN represent the number of

true-positive, false-positive, and false-negative pixels,

respectively. We used the Euclidean distance to calculate d in

the Hausdorff distance. Hausdorff100 refers to picking the

largest of these distances, and Hausdorff95 refers to picking
TABLE 2 Computational needs of our proposed method on BraTS
2020 dataset.

Method Params/M FLOPs/G

Baseline 110.1 69.8

Baseline + Dilated Convolution Block 110.8 70.9

Baseline + Hybrid Attention Block 110.7 69.8

Our Method 111.4 71.0
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the distance in the 95th percentile. In addition, according to the

scoring rules of BraTS, if there is no enhancing tumor in the

ground truth of a case, but there is in the predicted results, then

the Dice score is 0; otherwise, the score is 1. Therefore, the false

positive of enhancing tumors has a great impact on the average

score. To avoid the influence of such prediction results on the

experimental results, we remove these special values from the

obtained data and average the remaining data for calculation.

DSC =
2TP

2TP + FP + FN
(9)

Hausdorff 100 = max d y, y0
� �

, d y0, y
� �� �

(10)
Experiment results

Toverify the improvement in the segmentationperformanceof

the proposed model, we designed ablation experiments to test the

effectiveness of each block and the synergy between them. We

regarded the imaging modality without HAB and DCB as the

baseline. As can be seen from Table 3, the Dice scores of baseline

methods in ET, WT, and TC were 71.4%, 84.1%, and 73.7%,

respectively, whereas the corresponding Hausdorff distances were

6.554, 12.645, and 8.349, respectively.When the DCBwas added to

thenetwork, theET score improved considerably,which shows that

the multimodality information improves the depiction of the

internal details of the lesion area. Moreover, the WT and TC

values decreased slightly. As shown in Figure 3, this is due to the

small proportion of WT and TC regions in many images in the

dataset. Employing only a few rounds of downsampling leads to a

great loss of edge information difficulty in restoration. When we

introduced the HAB alone, the Dice score increased by 0.6%, and

the Hausdorff distance decreased to 1.199 on average, which

demonstrates the importance of the multimodality information

for the edgecontour.Although theperformanceof the twoblocks in

different indicators has advantages and disadvantages, when they

were used together in the network, most indicators improved

in consistency.

To validate the performance of the proposed model, we

compared the segmentation results of the proposed model with

that of the original U-Net, Attention U-Net, and ResUNet

models because they are commonly employed for medical
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image segmentation. Table 4 presents their segmentation

results on the BraTS 2020 dataset for comparison. The

proposed model exhibited superior performance compared

with the three aforementioned models in terms of each

specific index. To evaluate the model performance intuitively,

we randomly selected some visual segmentation results from the

BraTS 2020 dataset. As can be seen in Figure 3, the original U-

Net model exhibited inferior performance for densely

distributed area segmentation. Although Attention U-Net and

ResUNet roughly divided the structure of overlapping areas, they

failed to accurately capture some prominent edge parts because

of the lack of multiscale information obtained by the network.

The proposed model yielded more accurate results for the

location of the lesion area, and the edge contour was more

explicit. Moreover, its segmentation result was remarkably close

to the manually marked ground truth. The control experiment

results on DCB and loss function are presented in Table 5.
Discussion

Brain tumor segmentation is an important part of medical

image processing, its purpose is to assist doctors to make accurate

diagnosis and treatment, and it has important practical value in the

field of clinical brain medicine. Segmentation of brain tumor

images remains a challenging topic due to the high variability in

the size, shape, and location of brain tumors, as well as limited and

unbalanced brain tumor image data.

To address the above problems, we designed and implemented a

segmentation network based on amulti-encoder and single-decoder

structure, named MM-UNet, for multimodal brain tumor image

segmentation. We devised a feature fusion block based on hybrid

attention to better focus on the key information in the feature map.

We developed a dilated poolingmodule that enablesmodels to focus

onmorevaluable information.Toverifywhether theproposedmodel

has the ability to address the above problems, we conducted ablation

and contrast experiments. Experimental results showed that the

network is better than U-Net, Res U-Net, and Attention U-Net

that are commonly used in medical segmentation.

Although some solutions to these problems have been

proposed in the field of image segmentation, they still have

problems. After the image is subjected to successive

downsampling operations, the image size is changed and the
TABLE 3 Ablation study of our proposed method on BraTS 2020 dataset.

Method DSC Hausdoff95

ET WT TC ET WT TC

Baseline 0.714 0.841 0.737 6.554 12.645 11.035

Baseline + Dilated Convolution Block 0.765 0.789 0.728 6.586 11.253 15.174

Baseline + Hybrid Attention Block 0.739 0.832 0.738 6.993 8.597 11.046

Our Method 0.762 0.850 0.765 6.389 8.243 10.766
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existing modules are not suitable for small image sizes. We

redesigned a feature extraction module and explored the effect of

this module on the model performance at different positions.

Furthermore, our proposed attention module incorporates more

information to provide more choices for the network. Our model

may play a role in future clinical diagnosis, as this structure

could help physicians better locate tumor regions of different

sizes in brain tumor image analysis and to more clearly delineate

the boundaries of these tumor regions.

Some problems were encountered during the construction of

themodel andduring the experiments.Weperformed somecontrol

experiments to analyze the factors thatmay affect the experimental

results to determine the optimal solution for the proposed network.

For the HAB, the sequence of placing the channel and space parts

affected the segmentation accuracy of the model. We refer to the

structure of the convolutional block attention module and adopt

the placement sequence of the channel followedby space.However,

parallel placement of the two parts produced superior performance

in the case of some indicators, as can be seen in Figure 3; thismay be

because the image data of specific patients are consistent in the

dimensions of channel and space; the two are equally crucial for

segmentation precision, and the use of serial sequence leads to

interactions between them.
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In addition,we experimentally studied the positionof theDCB.

The DCB is typically placed at the intersection of the encoder and

decoder as a bridge between them. The position where we placed

the DCB yielded a higher segmentation accuracy, as can be seen in

Figure 3. Thismay be because the closer we are to the bottomof the

encoder, the smaller the feature map outputted by the convolution

block, which is equivalent to expanding the receptive field in a

disguised form.Theperceptionof large-scale brain tumor areaswas

our primary aim; thus, we ignored small areas and details. Selecting

the best position may be related to the number of rounds of

downsampling using the encoder and the size of the input image.

We selected the appropriate position according to the

characteristics of the brain tumor area; however, this affects the

accuracy of the segmentation in some cases.

As the training target indicator of the model, the loss

function has a considerable effect on the change direction of

the parameters. The performance of the model may vary for

training performed under the guidance of different loss

functions. Although the pure Dice loss can match the

evaluation index well, it is unfavorable for gradient

backpropagation and makes the training unstable. Therefore,

we used the combination of Dice loss and focal loss because of

their flexibility in dealing with unbalanced sample datasets and
FIGURE 3

Sample segmentation results. Column 1, input images; column 2, brain tumor ground truth (GT) images; column 3, segmented results of U-Net;
column 4, segmented results of Attention U-Net; column 5, segmented results of Res U-Net; column 6, segmented results of our method (ET,
blue; TC, yellow + blue; and WT, green + yellow + blue).
TABLE 4 Comparative results on BraTS 2020 dataset.

Method DSC Hausdoff95

ET WT TC ET WT TC

U-Net 0.707 0.825 0.732 9.035 12.174 14.361

Attention U-Net 0.710 0.809 0.703 13.983 22.887 22.799

ResUNet 0.723 0.813 0.738 6.613 9.075 11.225

Our Method 0.762 0.850 0.765 6.389 8.243 10.766
frontiers
in.org

https://doi.org/10.3389/fonc.2022.950706
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhao et al. 10.3389/fonc.2022.950706
smoothing the training curve. We compared the results with that

of the model trained using a pure Dice loss function, and the

results are shown in Figure 3, verifying our conjecture.
Conclusions

In this study, we developed a multimodality fusion network

based on the hybrid attention mechanism for brain tumor

segmentation. In the proposed model, the encoders extract the

image features of diverse imaging modalities, which are refined

by the HAB and fused with the features obtained in the

upsampling stage. In addition, the DCB is used to describe the

multiscale features to generate more accurate segmentation

results. The experimental results revealed that, compared with

other models such as U-Net, the proposed model achieves

superior results, as can also be seen intuitively from the

segmentation graph.
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