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Abstract
Background: Genetic risk score (GRS) is an odds ratio (OR)‐weighted and popula-
tion‐standardized method for measuring cumulative effect of multiple risk‐associ-
ated single nucleotide polymorphisms (SNPs). We hypothesize that GRS is a valid 
tool for risk assessment of most common cancers.
Methods: Utilizing genotype and phenotype data from The Cancer Genome Atlas 
(TCGA) and Electronic Medical Records and Genomics (eMERGE), we tested 11 
cancer‐specific GRSs (bladder, breast, colorectal, glioma, lung, melanoma, ovarian, 
pancreatic, prostate, renal, and thyroid cancer) for association with the respective 
cancer type. Cancer‐specific GRSs were calculated, for the first time in these cohorts, 
based on previously published risk‐associated SNPs using the Caucasian subjects in 
these two cohorts.
Results: Mean cancer‐specific GRS in the population controls of eMERGE approxi-
mated the expected value of 1.00 (between 0.98 and 1.02) for all 11 types of cancer. 
Mean cancer‐specific GRS was consistently higher in respective cancer patients than 
controls for all 11 types of cancer (P < 0.05). When subjects were categorized into 
low‐, average‐, and high‐risk groups based on cancer‐specific GRS (<0.5, 0.5‐1.5, 
and >1.5, respectively), significant dose‐response associations of higher cancer‐spe-
cific GRS with higher OR of respective type of cancer were found for nine types of 
cancer (P‐trend < 0.05). More than 64% subjects in the population controls of 
eMERGE can be classified as high risk for at least one type of these cancers.
Conclusion: Validity of GRS for predicting cancer risk is demonstrated for most 
types of cancer. If confirmed in larger studies, cancer‐specific GRS may have the 
potential for developing personalized cancer screening strategy.
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1 |  INTRODUCTION

Cancer is a major public health issue in the United States 
and across the world. Based on the projection of the National 
Institute of Health, an estimated 1 735 350 new cases of can-
cer will be diagnosed in the United States and 609 640 people 
will die from the disease in 2018.1 Although most cancer pa-
tients do not have germline mutations in known major cancer 
susceptibility genes, inherited risk factors play an important 
role in the development of cancer. This notion is supported 
by many genetic studies, including two large twin studies in 
Nordic countries.2,3 In a prospective study of 80 309 mono-
zygotic and 123 382 same‐sex dizygotic twin individuals 
within the population‐based registers of Denmark, Finland, 
Norway, and Sweden,3 Muccia and colleagues found that her-
itability (ie, the proportion of variability in disease risk in a 
population due to genetic factors) of cancer overall was 33%. 
Significant heritability was observed for the cancer types of 
skin melanoma (58%), prostate (57%), nonmelanoma skin 
(43%), ovary (39%), kidney (38%), breast (31%), and corpus 
uteri (27%). In addition to germline mutations in known can-
cer susceptibility genes that account for a small proportion of 
heritability, it is hypothesized that polygenic inheritance (ie, 
many common but small‐effect genetic variants) also contrib-
utes significantly to heritability.

Genome‐wide association studies (GWAS) in the last 
decade have successfully identified several hundreds of can-
cer‐specific risk‐associated SNPs.4,5 Although the biological 
mechanisms for these SNPs are largely unknown at this stage, 
the associations are most likely valid due to the stringent cri-
teria for declaring statistical significance (P < 5 × 10‐8) and 
requirement of validation in independent study populations. 
Individually, these SNPs have a moderate effect on disease 
risk; with odds ratios (OR) typically ranging from 1.1‐1.5. 
However, when more than one risk‐associated SNP is inher-
ited in an individual, they can have a cumulative, clinically 
significant effect on disease risk.6 Polygenic risk scores can 
now identify a substantially larger fraction of the population 
at comparable or greater disease risk than is found by rare 
monogenic mutations.7

Several polygenic risk score methods have been em-
ployed to measure the cumulative effect of multiple risk‐
associated SNPs, including (1) a direct risk allele count, 
(2) an OR‐weighted risk allele count, and (3) using the 
latter approach but with population standardization, com-
monly termed as a genetic risk score (GRS).8 The mean of 
score from the first two methods will vary depending on 
the number of risk‐associated SNPs used in calculation. In 
contrast, because GRS is population standardized for each 
SNP, its expected mean in the general population will al-
ways be 1.00 regardless of the number of SNPs used in 
calculation. Furthermore, GRS values can be simply inter-
preted as relative risk to the general population. These two 

important features of GRS make it easy to implement for 
individual risk assessment.

Published studies to date have consistently demonstrated 
associations of various polygenic risk scores with risk for 
several types of cancer.6,9,10 However, associations using the 
population‐standardized GRS have only been reported for a 
limited number of cancer types such as prostate, breast, and 
colorectal cancer.36,37 We hypothesize that GRS is a valid 
tool for risk assessment of most common cancers. To test 
this hypothesis, we systematically assessed associations of 
11 cancer‐specific GRSs (bladder, breast, colorectal, glioma, 
lung, melanoma, ovarian, pancreatic, prostate, renal, and thy-
roid cancer) with their respective cancer risk. This analysis 
was performed in two large publicly available cohorts: The 
Cancer Genome Atlas (TCGA) with various types of cancer 
patients and the Electronic Medical Records and Genomics 
(eMERGE) Network with a large number of population con-
trols. Results from this study may provide important informa-
tion for GRS to be used for inherited risk assessment.

2 |  METHODS

2.1 | Study subjects and genotyping data
We requested access of these two study cohorts through 
dbGaP. TCGA is a comprehensive and coordinated effort 
by the National Institutes of Health (NIH) to accelerate un-
derstanding of the molecular basis of cancer through the ap-
plication of genome analysis technologies, including SNP 
genotyping. TCGA includes more than 11 000 patients of 33 
types of cancer. In this study, we analyzed 11 types of solid 
tumor cancer where at least six cancer‐specific risk‐associ-
ated SNPs were available. We limited the association anal-
ysis in Caucasians due to most study subjects (85%) being 
of Caucasian decent. Genotyping data from the Affymetrix 
Genome‐Wide Human SNP Array 6.0 are available.

Electronic Medical Records and Genomics is a con-
sortium of five participating sites (Group Health Seattle, 
Marshfield Clinic, Mayo Clinic, Northwestern University, 
and Vanderbilt University) funded by the National Health 
Genome Research Institute (NHGRI) to investigate the use 
of electronic medical record systems for genomic research.43 
The goal of eMERGE is to conduct GWAS in approximately 
19 000 individuals using electronic medical record (EMR)‐
derived phenotypes and DNA from linked biorepositories. 
Genotyping data from the Illumina Human660W‐Quad v1.0 
BeadChip are available. Because subjects in eMERGE were 
not recruited for specific for cancer studies, we treated them 
as population controls. We did not include a subset of co-
hort (N = 1700) that was only approved for dementia study. 
To match race of subjects in TCGA, only Caucasian subjects 
were included in the analysis (79% of eMERGE subjects 
were Caucasians).
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2.2 | Ancestry analysis and SNP imputation
We inferred ancestry information of study subjects in TCGA 
and eMERGE based on available genotyping data in the 
SNP arrays using the ADMIXTURE computer program.44 
Subjects with the estimated proportion of Caucasian ances-
try >60% were considered as Caucasians. We also estimated 
the eigens of these subjects using the EIGENSOFT (Version 
3.0) and plotted the first two eignes of these subjects as well 
as Caucasians, African Americans, and East Asians subjects 
from the 1000 Genome Project.45,46 All Caucasian subjects 
in the TCGA cohort fell in the cluster of Caucasians (Figure 
S1).

For risk‐associated SNPs that were not included in the 
downloaded data file, presumably because they were not 
found on the original genotyping array, imputation was per-
formed using IMPUTE 2.2.2 based on the combined data of 
the 1000 Genomes Project and HapMap3 data.47 A posterior 
probability of >0.9 was applied to all imputed genotypes.

2.3 | Risk‐associated SNPs
Cancer‐specific risk‐associated SNPs were cataloged based 
on GWAS papers of the 11 types of cancer published prior 
to July 1, 2018. The following criteria were used to select in-
dependent and reliable risk‐associated SNPs: (1) discovered 
from GWAS studies of Caucasian subjects, with at least 1000 
cases and 1000 controls in the first stage; (2) confirmed in 
additional stages with combined P < 5 × 10‐8; and (3) inde-
pendent, linkage disequilibrium (LD) measurement (r2 <0.2) 
between any pair of SNPs. Risk‐associated SNPs available 
directly and indirectly (from imputation) in the TCGA and 
eMERGE are presented in Table S1, including 10, 66, 30, 19, 
6, 17, 11, 9, 79, 10, and 6 SNPs for bladder,48,49 breast,52,53 
colorectal,21,59,60 glioma,70,71 lung,73,74 melanoma,78,79 

ovarian,84,85 pancreatic,89,90 prostate,31-33,92 renal,97,98 and 
thyroid cancer,102,103 respectively.

2.4 | GRS calculation
GRS, an OR‐weighted and population‐standardized poly-
genic risk score, was computed using allelic ORs obtained 
from the external studies and allele frequencies in the gno-
mAD (NFE population).8 Briefly, GRS was calculated by 
multiplying the per‐allele OR for each SNP and normalized 
by the expected risk effect of each SNP in the population 
(W).

where, gi stands for the genotype of SNP i in an individual (0, 
1, or 2 risk alleles), ORi stands for the allelic OR of SNP i, 
and fi stands for the risk allele frequency of SNP i. Based on 
the GRS formula, the mean GRS should be 1.00 in the gen-
eral population and GRS can be interpreted as relative risk to 
the general population regardless of the number of SNPs used 
in the calculation.

2.5 | Statistical analysis
The Wilcoxon rank sum test was used to compare mean 
cancer‐specific GRS in respective cancer patients and con-
trols. Subjects were categorized into low‐, average‐, and 
high‐risk groups based on their respective cancer‐specific 
GRS (<0.5, 0.5‐1.5, and >1.5, respectively). The trend of 
increasing OR for cancer among subjects in low‐, average‐, 

GRS=

n
∏

i=1

OR
gi

i

Wi

Wi = f 2

i
OR2

i
+2fi

(

1− fi
)

ORi+

(

1− fi
)2

Cancer type/control 
group Sample size (N)

Age at diagnosis 
(Mean ± SD) Male (%)

Bladder 343 69 ± 10 74.34%

Breast 827 60 ± 13 0.00%

Colorectal 387 68 ± 13 52.97%

Glioma 992 52 ± 16 58.76%

Lung 908 67 ± 9 60.90%

Melanoma 450 59 ± 16 61.78%

Ovarian 531 60 ± 12 0.00%

Pancreatic 163 66 ± 11 55.21%

Prostate 421 62 ± 7 100.00%

Renal 453 62 ± 12 67.11%

Thyroid 387 49 ± 16 27.39%

eMERGE 13 427 – 47.72%

T A B L E  1  Key demographic and 
clinical information of study subjects
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and high‐risk groups was tested using a proportion trend 
test. All statistical tests were performed using R package 
(Version 3.5.2).

3 |  RESULTS

A total of 5871 Caucasian patients diagnosed with one of the 
11 types of cancer in the TCGA and 13 427 Caucasian con-
trols from eMERGE were included in this analysis. The key 
demographic and clinical information for these study sub-
jects are presented in Table 1. For breast and ovarian cancer, 
only female patients were included and for prostate cancer, 
only male patients were included.

The mean cancer‐specific GRSs approximated the ex-
pected value of 1.00 in the population controls of eMERGE 
for all 11 types of cancer (Table 2); the mean GRSs ranged 
from 0.98 (glioma bladder, and thyroid cancer) to 1.02 (mela-
noma, ovarian, and pancreatic cancer). Mean cancer‐specific 
GRS values were significantly higher among respective can-
cer patients in TCGA than controls in eMERGE for all 11 
types of cancer (P < 0.05) (Table 2).

Subjects were then categorized into low‐, average‐, and 
high‐risk groups for each type of cancer based on their re-
spective cancer‐specific GRS (<0.5, 0.5‐1.5, and >1.5, re-
spectively). Compared to subjects with average‐risk, subjects 
classified as high‐risk had OR >1 for their respective type 
of cancer in 10 types of cancer; nine of which reached sta-
tistically significant level (P < 0.05) (Table 3). Conversely, 
compared to subjects with average‐risk, subjects classified as 
low‐risk had OR <1 for their respective type of cancer in 10 
types of cancer; seven of which reached statistically signifi-
cant level (P < 0.05). A significant dose‐response association 

of higher cancer‐specific GRS with higher odds ratio of re-
spective type of cancer was found for nine types of cancer 
(P‐trend < 0.05).

We further estimated the proportion of high‐risk subjects 
in the population controls of the eMERGE cohort. At the 
individual cancer type level, the proportion of subjects that 
were classified into high‐risk ranged from 2.75% (lung can-
cer) to 16.15% (prostate cancer) (Table 4). When all 11 types 
of cancer were tallied together, 64% (61% in male, 66% in fe-
male) of subjects were classified as high‐risk for at least one 
type of cancer. 49.50% (49.52% in male, 49.47% in female) 
of subjects were classified as low‐risk for at least one type of 
cancer, and 84.55% (83.85% in male, 85.19% in female) of 
subjects were classified as either high‐risk or low‐risk for at 
least one type of cancer.

4 |  DISCUSSION

This is the first systematic evaluation of cancer‐specific and 
population‐standardized GRS for risk assessment of multi-
ple types of cancer and the first study to examine this risk in 
publicly available study cohorts (TCGA and eMERGE). In 
a recently published seminal study, Fritche and colleagues 
studied multiple types of cancer in a large phenome‐wide 
association study (PheWAS) and demonstrated that the top 
quartiles of cancer‐specific polygenic risk score were signifi-
cantly higher than the bottom quartile for six types of cancer 
(breast, prostate, melanoma, basal cell carcinoma, squamous 
cell carcinoma, and thyroid cancer), with OR >2.9 There are 
many similarities in method, approach, and results between 
the study described here and their study. Both studies used 
polygenic risk score methods, adopted multicancer approach, 
and found evidence that cancer‐specific polygenic risk scores 

Cancer type SNPs (N)

Mean of GRS (95% CI)

PCases Controls

Bladder 10 1.04 (1‐1.08) 0.98 (0.97‐0.98) 3.77E‐03

Breast 66 1.15 (1.11‐1.2) 1.01 (1‐1.03) 1.48E‐14

Colorectal 30 1.08 (1.04‐1.12) 1 (0.99‐1.01) 8.29E‐06

Glioma 19 1.22 (1.18‐1.26) 0.98 (0.97‐0.99) 1.39E‐37

Lung 6 1.01 (0.99‐1.02) 0.99 (0.98‐0.99) 1.16E‐02

Melanoma 17 1.2 (1.14‐1.26) 1.02 (1.01‐1.03) 5.99E‐11

Ovarian 11 1.12 (1.08‐1.16) 1.02 (1.01‐1.03) 1.45E‐04

Pancreatic 9 1.13 (1.07‐1.18) 1.02 (1.02‐1.03) 1.45E‐04

Prostate 79 1.3 (1.21‐1.38) 0.99 (0.98‐1.01) 2.07E‐18

Renal 10 1.09 (1.06‐1.12) 1.01 (1‐1.01) 8.66E‐10

Thyroid 6 1.09 (1.04‐1.15) 0.98 (0.98‐0.99) 3.64E‐05

CI, confidence interval; GRS, genetic risk score.

T A B L E  2  Cancer‐specific genetic risk 
score in cases and controls
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are strongly associated with respective cancer risk for multi-
ple types of cancer. However, there is also a major difference 
in how the two studies actually calculated the polygenic risk 
score, which can have major implications in interpretation 
and translation.

Our method uses a population‐standardized GRS ap-
proach. While this difference—population‐standardized 
versus not—does not affect the performance comparison be-
tween cases and controls in a study cohort because the score 
ranking order of subjects is the same in both methods,8 the 
score values of nonpopulation‐standardized methods—for 
example, top 25%—are not practically meaningful for indi-
viduals seen in a clinic. In contrast, because GRS is relative 
risk to the general population, its values are meaningful for 
individual subjects and can be used directly to stratify indi-
viduals’ risk. There are two additional advantages for popu-
lation‐standardized GRS. First, with the expected mean GRS 
value of 1.00 in the general population, it provides an objec-
tive tool to assess the performance of GRS. Deviation from 
this property signifies a poor performance of GRS. Second, 
with GRS, the values represent risk compared to the general 
population, making it straightforward to identify high‐risk 
subjects based on subjects’ GRS values.

In this study, we found that the mean cancer‐specific GRSs 
were significantly higher in respective cancer patients than 
controls for all 11 evaluated types of cancer. When subjects 
were categorized into low‐, average‐, and high‐risk groups 
based on their cancer‐specific GRSs (<0.5, 0.5‐1.5, and 
>1.5, respectively), a significant dose‐response association 
of higher cancer‐specific GRS with higher odds ratio of the 
respective type of cancer was found for eight types of cancer. 
Furthermore, we found that the mean GRS values approxi-
mated their expected value (1.00) in the population controls of 
eMERGE for all 11 types of cancer. A significant proportion 
of subjects (64%) can be classified as high risk (GRS >1.5) for 
at least one type of cancer in the population controls.

The statistical association of GRS with cancer risk from 
study populations provides broad‐sense validity for its risk 
stratification. Broad‐sense validity is necessary but insuf-
ficient to warrant GRS as a testing tool for individual risk 
assessment. For individual risk assessment, the validity of 
specific GRS values (we refer to as narrow‐sense validity) 
must be met for several reasons. First, in individual testing, 
only GRS values of test subjects are available, not the per-
centiles of GRS that are determined based on all subjects in 
a study cohort. Clinicians treat patients not cohorts. Second, 
GRS values, not percentiles, are used directly to estimate an 
individuals’ relative and absolute disease risk including life-
time risk. For example, if a test result provided a prostate 
cancer GRS value of 1.8 for a 61‐year‐old Caucasian man, 
we would report that the subject has a 1.8‐fold increased 
risk for prostate cancer compared to the general population 
and a 29.6% remaining lifetime risk by age 85 years based T
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on his GRS values, current age, and age‐specific incidence 
and mortality data of Non‐Hispanic Whites from SEER data 
(2011‐2015).106,107 Therefore, additional evidence related to 
the narrow‐sense validity is needed before GRS can be used 
in individual risk assessment.

There are important clinical utilities for risk assessment 
using GRS. For cancer types where a population screening is 
recommended, such as prostate, breast, colorectal, and lung 
cancer, primary care physicians can incorporate GRS to de-
velop a personal screening strategy for the need, timing, and 
frequency of cancer screenings. This personalized approach is 
likely to maximize the potential benefits and minimize the po-
tential harms of cancer screening.109,110 For example, studies 
from Frampton et al, showed that personalized screening strat-
egy based on polygenic risk score have the potential to greatly 
reduce the number of individuals screened while still detecting 
nearly as many cases.37,38 For other types of cancer, medical 
geneticists and specialists can use GRS to supplement other 
known risk factors, such as family history and high‐penetrance 
genes, to better determine the risk for diagnostic workup.

GRS can be used to supplement family history for a bet-
ter and more comprehensive assessment of an individuals’ 
risk. These two risk factors have been previously shown to 
be independent measures of inherited risk. For example, in 
prostate cancer, family history and a high GRS (>1.4) can 
identify 17% and 24% of men with high risk for prostate can-
cer, respectively, in the Prostate Cancer Prevention Trial.40 
The combination of family history and/or GRS can identify 
36% of men at high risk for prostate cancer. The observed 
prostate cancer risk was 29%, 33%, and 31% for family his-
tory alone, GRS alone, and combination of family history and 
GRS, respectively. GRS has an advantage over family history 
in that it is an objective measurement of disease risk not sus-
ceptible to various issues related to the collection of family 
history and recall bias. Furthermore, accurate collection of 

family history is challenging. For example, family history in-
formation of specific cancer was not available in these two 
important study cohorts (TCGA and eMERGE).

The precise reason for weaker associations of GRS with 
some types of cancer is unknown but may be due to a number 
of factors, including fewer numbers of risk‐associated SNPs 
available in this study, and existence of different subtypes 
of cancer where risk‐associated SNPs and etiology could be 
different. For example, in the lung cancer cohort, 6, 9, and 
15 SNPs were reported to be associated with squamous cell, 
adenocarcinoma, and overall lung cancer, respectively, and 
some of these SNPs are overlapped. In this study, we calcu-
lated lung cancer GRS using risk‐associated SNPs reported 
in any type of lung cancer. This approach was taken because 
of the limited number of patients available for each subtype 
of cancer (456 squamous cell lung cancer patients and 452 
adenocarcinoma lung cancer patients) and only six risk‐asso-
ciated SNPs in any type of lung cancer were available in both 
SNP arrays in the TCGA and eMERGE.

A number of additional limitations are noticed in this 
study. First, the study was limited to Caucasians only, due 
to the fact that vast majority of study subjects in the TCGA 
(85%) and eMERGE (79%) are of Caucasian decent. A sim-
ilar type of analysis should be performed for other racial 
groups. Second, the sample sizes of patients in TCGA are 
relatively small, especially for bladder, colorectal, pancreatic, 
and thyroid cancer (<400). The smaller sample size reduced 
statistical power in this study. Larger population cohorts and 
biorepositories, with known case‐control status of multiple 
cancer phenotypes in various racial groups, are needed to 
replicate and substantiate our findings. For example, data 
from the PheWAS of Michigan Genomics Initiative can be 
used to assess GRS performance of multiple types of cancer.9 
Third, only a subset of established risk‐associated SNPs were 
available in this analysis because genotype data was extracted 

T A B L E  4  Proportion of subjects in each risk category in eMERGE

Cancer type Sample size (N) Low‐risk (GRS <0.5)
Average‐risk 
(GRS:0.5‐1.5)

High‐risk 
(GRS >1.5)

Bladder 13 427 2.08% 91.20% 6.73%

Breast 7020 15.16% 69.43% 15.41%

Colorectal 13 427 5.12% 84.34% 10.55%

Glioma 13 427 16.37% 69.25% 14.38%

Lung 13 427 0.10% 97.15% 2.75%

Melanoma 13 427 9.14% 76.43% 14.43%

Ovarian 7020 4.56% 83.45% 11.99%

Pancreatic 13 427 2.97% 86.71% 10.32%

Prostate 6407 19.88% 63.96% 16.15%

Renal 13 427 1.49% 92.36% 6.15%

Thyroid 13 427 7.92% 82.07% 10.01%

GRS, genetic risk score.
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from two earlier versions of SNP arrays (Affymetrix Genome‐
Wide Human SNP Array 6.0 and Illumina Human660W‐
Quad v1.0 BeadChip). This limitation further reduced the 
statistical power of our study. Today, low‐coverage (~2x) 
whole‐genome sequencing (WGS) is a cost‐effective option 
for obtaining all common variants in the genome, including 
risk‐associated SNPs to be identified in the future.113

In summary, this study provides additional evidence sup-
porting the use of polygenic risk scores for risk stratification 
and, specifically, the validity of GRS in predicting cancer 
risk for several types of cancer. If confirmed in larger studies, 
cancer‐specific GRS may be used for individual risk assess-
ment to develop personalized cancer screening strategy.
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