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Abstract Mitochondria play important roles in cellular processes and disease, yet little is known

about how the transcriptional regime of the mitochondrial genome varies across individuals and

tissues. By analyzing >11,000 RNA-sequencing libraries across 36 tissue/cell types, we find

considerable variation in mitochondrial-encoded gene expression along the mitochondrial

transcriptome, across tissues and between individuals, highlighting the importance of cell-type

specific and post-transcriptional processes in shaping mitochondrial-encoded RNA levels. Using

whole-genome genetic data we identify 64 nuclear loci associated with expression levels of 14

genes encoded in the mitochondrial genome, including missense variants within genes involved in

mitochondrial function (TBRG4, MTPAP and LONP1), implicating genetic mechanisms that act in

trans across the two genomes. We replicate ~21% of associations with independent tissue-matched

datasets and find genetic variants linked to these nuclear loci that are associated with cardio-

metabolic phenotypes and Vitiligo, supporting a potential role for variable mitochondrial-encoded

gene expression in complex disease.

DOI: https://doi.org/10.7554/eLife.41927.001

Introduction
Mitochondria are involved in a wide range of fundamental cellular processes, including cellular

energy production, thermogenesis, lipid biosynthesis and cell death, and mutations in both nuclear

and mitochondrial DNA (mtDNA) encoded genes have been linked to an array of different diseases

(Taylor and Turnbull, 2005; He et al., 2010; Nunnari and Suomalainen, 2012; Hudson et al.,

2014; Idaghdour and Hodgkinson, 2017). Most of the genes encoded in the mitochondrial genome

are transcribed as one strand of RNA, and post-transcriptional processes are therefore particularly

important for gene regulation. After transcription, poly-cistronic mitochondrial RNA is processed

under the ‘punctuation model’ whereby transfer RNAs (tRNAs) that intersperse protein-coding

regions are recognized for cleavage and the release of gene products (Ojala et al., 1981;

Sanchez et al., 2011). Various processes including RNA modifications (Helm et al., 1998;

Helm et al., 1999; Agris et al., 2007), further cleavage events (Mercer et al., 2011;

Rackham et al., 2012), RNA degradation (Sasarman et al., 2010; Rackham et al., 2011) and trans-

lation rates then ultimately determine the levels of mitochondrial proteins available for utilization in

the electron transport chain. Across tissues, different cell types have specific physiological require-

ments and thus variable energy demands. In mammals it has been shown that mitochondrial DNA

replication (Herbers et al., 2019) and segregation (Jokinen et al., 2010), mitochondrial DNA copy

number (Wachsmuth et al., 2016) and the abundance of nuclear-encoded mitochondrial proteins

(Mootha et al., 2003) vary across cell types, perhaps as a way to match local energy requirements,

however it is unclear whether regulation of the mitochondrial transcriptome varies across tissues.
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Understanding these processes is important, since many mitochondrial disorders are thought to be

tissue specific (Koppen et al., 2007; Hämäläinen et al., 2013).

Although the mitochondrial genome is transcribed, processed and translated within the mito-

chondria, almost all of the proteins required for these processes are coded for in the nuclear

genome. Previous work has shown that the expression of a large number nuclear genes correlates

with mitochondrial encoded gene expression (Mercer et al., 2011; Barshad et al., 2018), pointing

to strong links between the two genomes, yet there is still not a complete understanding of which

nuclear genes are directly involved in regulating the mitochondrial genome and how this might vary

in different tissues, as well as whether nuclear genetic variation drives variation in these processes

across individuals. Despite the wide-ranging impact of mitochondrial dysfunction on health and dis-

ease, to our knowledge only a single mitochondria-focussed study has been carried out comparing

nuclear genome-wide genetic variation with mitochondrial encoded gene expression, which analysed

two sets of ~70 samples and was underpowered to detect genetic variation acting across two

genomes (Wang et al., 2014). More recently, studies have shown links between mitochondrial

genome mutations and nuclear gene expression, identifying 11 significant associations

(Kassam et al., 2016), as well as associations between single nucleotide polymorphisms (SNPs) in

mitochondrial RNA-binding proteins and haplogroup-specific mtDNA encoded gene expression pat-

terns in LCLs (Cohen et al., 2016), providing good evidence for regulatory links between the two

genomes. In general, genetic variation associated with the expression of distal genes (trans

eLife digest Mitochondria are like the batteries of our cells; they perform the essential task of

turning nutrients into chemical energy. A cell relies on its mitochondria for its survival, but they are

not completely under the cell’s control. Mitochondria have their own DNA, separate from the cell’s

DNA which is stored in the nucleus. It contains a handful of genes, which carry the code for some of

the important proteins needed for energy production.

These proteins are made in the mitochondria themselves, and their levels are tweaked to meet

the cell’s current energy needs. To do this, mitochondria make copies of their genes and feed these

copies into their own protein-production machinery. By controlling the number of gene copies they

make, mitochondria can control the amount of protein they produce. But the process has several

steps. The copies come in the form of a DNA-like molecule called RNA and, at first, they contain

several genes connected one after the other. To access each gene, the mitochondria need to cut

them up. They then process the fragments, fine-tuning the number of copies of each gene. This

process – called gene expression – happens in the mitochondria, but they cannot do it on their own;

they need proteins that are coded within the DNA in the cell nucleus.

Genes in the cell nucleus can affect gene expression in the mitochondria, changing the cell’s

energy supply. Scientists do not yet know all of the genes involved, or how this might differ between

different tissues or among different individuals. To find out, Ali et al. examined more than 11,000

records of RNA sequences from 36 different human cells and tissues, including blood, fat and skin.

This revealed a large amount of variation in the expression of mitochondrial genes. The way the

mitochondria processed their genes changed in different cells and in different people. To find out

which genes in the nucleus were responsible for the differences in the mitochondria, the next step

was to compare RNA levels from the mitochondria to the DNA sequences in the nucleus. This is

because changes in the DNA sequence between different people – called genetic variants – can also

affect how genes work, and how genes are expressed. This comparison revealed 64 genetic variants

from DNA in the cell nucleus that are associated with the expression of genes in the mitochondria.

Some of these had a known link to genetic variants involved in diseases like the skin condition

vitiligo or high blood pressure.

So, although mitochondria contain their own DNA, they rely on genes from the cell nucleus to

function. Changes to the genes in the nucleus can alter the way that the mitochondria process their

own genetic code. Understanding how these two sets of genes interact could reveal how and why

mitochondria go wrong. This could aid in future research into illnesses like heart disease and cancer.

DOI: https://doi.org/10.7554/eLife.41927.002
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expression quantitative trait loci (eQTLs)) has been more difficult to find due to the large statistical

burden when comparing large numbers of variants and genes, and very few significant associations

have been replicated in independent datasets (Innocenti et al., 2011; Kirsten et al., 2015;

GTEx Consortium et al., 2017).

Here we aim to characterize variation in mitochondrial encoded gene expression across >11,000

RNA sequencing libraries for 36 different tissue/cell types. We also aim to identify genetic links

between the mitochondrial and nuclear genomes through the detection of trans-genome eQTLs, not

only to evidence occasions where genetic mechanisms act at long range across different genetic

regions, but also to identify novel genes and genetic variation in the nuclear genome that are associ-

ated with fundamental processes taking place in human mitochondria.

Results
To characterize levels of mitochondrial encoded RNA across a large number of individuals and tis-

sues, we obtained raw RNA sequencing data for 13,261 samples from five independent sequencing

projects, covering 36 different tissue/cell types, including multiple independent datasets obtained

from whole blood, subcutaneous adipose, skin (not sun exposed) and lymphoblastic cell lines (LCLs).

For each dataset, sequencing data were processed consistently using the same stringent mapping

and filtering pipeline (see Materials and methods), removing poor quality samples at each stage,

leaving a total of 11,371 high quality samples for comparison (Figure 1A), allowing us to focus on

biological rather than technical variation. Following this, expression levels were quantified as the

number of transcripts per million reads (TPM) per sample for 13 protein-coding genes and two ribo-

somal RNAs encoded in the mitochondrial genome.

Variation in mitochondrial gene expression
Overall, despite their polycistronic origins, there is significant variation between mean expression

levels of the 15 mitochondria-encoded genes within each dataset (one-way ANOVA, p<2e-16 in all

cases), highlighting the influence of post-transcriptional events in generating variation in transcript

abundance along the mitochondrial transcriptome in all tissues. On average across samples and

datasets, MTCO3 and MTCO2 show the highest median expression levels and MTRNR1 the lowest.

Hierarchical clustering of log median expression values per dataset shows the consistency of the

data, as the same tissue types from independent sequencing datasets generally tend to cluster

together (Figure 1A). Whole blood, LCL and skin datasets group by tissue type, however subcutane-

ous adipose data do not; this may be a consequence of the large heterogeneity in cell type composi-

tion observed across these datasets (Glastonbury et al., 2018). High-energy tissues (for example

heart and brain tissues) also tend to cluster together and appear to show similar patterns of mito-

chondrial encoded gene expression.

In general, the rank order of mitochondrial-encoded gene expression levels between tissues is

broadly similar (spearman rank rho >0.5 for 894/903 pairwise comparisons of independent datasets)

with genes that show high relative expression levels in one tissue tending to show high relative

expression levels in others tissues, however there are gene specific patterns. Standardized median

MTRNR2 expression levels are highly variable, showing higher relative expression in whole blood

and sub regions of the brain compared to other tissue types, whereas MTND4L, MTND5 and

MTATP8 have low variance across tissue types and show relatively low standardized expression

(Figure 1B). Across individuals within each tissue, mitochondria-encoded genes show similar vari-

ance to comparable nuclear genes; on average across genes and datasets, the coefficient of varia-

tion of mitochondrial encoded TPM values is higher than 443 of the top 1000 most highly expressed

nuclear genes and distributions of coefficients of variation overlap (Figure 1C). However, there are

differences across tissues; mitochondrial encoded genes in sub-regions of the brain generally show

low variation in gene expression across individuals, and expression variance in whole blood is gener-

ally high. Collectively these results point to significant variation in the expression of genes along the

mitochondrial genome, across tissues and across individuals.

Nuclear control of mitochondrial gene expression
To identify nuclear genetic variation associated with mitochondrial encoded transcript abundance,

we obtained genotyping data for the same samples for which we had RNA sequencing data and
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then performed per tissue and dataset association analyses between nuclear genetic variants (with

MAF >5%) and the expression levels of fifteen mitochondrial encoded genes within a linear model,

controlling for ancestry, sex, batch (where applicable) and probabilistic estimation of expression

residuals (PEER factors) (Stegle et al., 2010) obtained from RNA sequencing data. For whole blood,

subcutaneous adipose, non-sun exposed skin and LCLs where we had multiple independent data-

sets, we defined discovery and replication datasets.

Across all tissues, we identify a total of 64 trans-genome eQTLs (unique peak genetic variant-

gene expression pairs) for mitochondrial encoded gene expression at FDR 5% (range of FDR cor-

rected p-values: 0.046 – 8 � 10�26, Supplementary file 1, example association shown in Figure 2A

and C). For each significant association, we also calculate point-wise empirical P-values (as well as

gene-level and tissue-level family-wise error rates) via permutation analysis, and find that these

closely match raw P-values (see Materials and methods and supplementary file 1). In total, fourteen

out of the fifteen mitochondrial encoded genes have at least one nuclear genetic variant associated

with its expression; MTATP8 shows no significant associations, MTND1 has the most with seven

independent associations. We also observe five instances where a peak nuclear variant is associated

with the expression of multiple mitochondrial-encoded genes within a tissue, perhaps indicating a

shared influence on mitochondria RNA processing. However, mitochondrial encoded genes associ-

ated with the same genetic variant are no more likely to be located closer to each other along the

mitochondrial genome than random (p=0.29, bootstrapping versus same number of random chosen

Figure 1. Variation in the expression of mitochondrial-encoded genes across datasets. (A) Hierarchical clustering of median expression levels per gene

across all datasets where WBL = Whole Blood, SAD = Subcutaneous Adipose, LCL = Lymphoblastoid cell lines, SKN = Non sun exposed skin,

SKE = Sun exposed skin, VAD = Visceral omentum adipose, ADG = Adrenal gland, AOR = Aorta, CAR = Coronary artery, TAR = Tibial artery,

ACB = Anterior cingulate cortex (BA24) (Brain), CGB = Caudate basal ganglia (Brain), CHB = Cerebellar Hemisphere (Brain), CEB = Cerebellum (Brain),

COB = Cortex (Brain), FCB = Frontal cortex (BA9) (Brain), HIB = Hippocampus (Brain), HYB = Hypothalamus (Brain), NAB = Nucleus accumbens (basal

ganglia) (Brain), PBB = Putamen basal ganglia (Brain), BRE = Breast mammary tissue, SCO = Sigmoid colon, TCO = Transverse colon,

GEJ = Gastroesophageal junction, EMC = Esophagus mucosa, EMS = Esophagus Muscularis, AAH = Atrial appendage (Heart), LVH = Left ventricle

(Heart), LUN = Lung, SMU = Skeletal muscle, TNV = Tibial Nerve, PAN = Pancreas, SFI = Transformed fibroblasts, STO = Stomach, TES = Testes and

THY = Thyroid, Multi-dataset tissues on the x-axis are shown in red (whole blood), orange (subcutaneous adipose), green (lymphoblastoid cell lines) and

blue (non-sun exposed skin). (B) Standardized expression levels of each mitochondrial-encoded gene across all independent datasets, (C) Coefficient of

variation across individuals for the expression levels of mitochondrial encoded genes and the top 1000 most highly expressed nuclear genes in all

datasets. Range of coefficient of variation is restricted to between 0 and 1.5 as this contains the majority of the data.

DOI: https://doi.org/10.7554/eLife.41927.003
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genes). For the 49 unique peak genetic variants remaining after removing duplicate variants with

multiple associations, four are missense mutations, 32 intronic, 12 intergenic and one falls in a 3’

UTR region.

To ensure that trans-genome eQTLs are not driven by alignment errors that are a consequence of

sequence similarity between the nuclear and the mitochondrial genomes, we tested for the presence

of nuclear mitochondrial DNA segments (NUMTs) in the regions surrounding each peak nuclear

genetic variant. NUMTs are mitochondrial DNA sequences that have transposed into the nuclear

genome over evolutionary time scales, and as such often retain moderate to high sequence similarity

with the mitochondrial genome. For the 64 trans-genome eQTLs, we find only two occurrences

where at least 50 bp (the smallest read length in our analysis) of the mitochondrial encoded gene is

present within a NUMT that is within 1 MB of the corresponding peak nuclear genetic variant, and

we observe ~4 and~15 mismatches per 100 bp in these sequences compared to the corresponding

mitochondrial encoded sequence. Additionally, for each peak nuclear genetic variant that is associ-

ated with the expression of a mitochondrial-encoded gene, we also tested whether any 50 bp seg-

ment of the mitochondrial-encoded gene also mapped to a nuclear gene (following the approach

defined in Saha and Battle, 2018) that has its transcription start site within 1 MB of the correspond-

ing peak nuclear variant; we find no such occurrences. As such, alignment errors are unlikely to be

driving the detection of trans-genome eQTLs for mitochondrial encoded gene expression.

RNA levels of mitochondrial-encoded genes are likely driven by a number of features including

mitochondrial copy number, polycistronic transcription rates and post-transcriptional events.

Although all of these processes are important in a biological context, after detecting initial
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Figure 2. Associations between the expression of MTND1 and rs2304694 in whole blood data. (A) Genome-wide association analysis for the

expression of MTND1 in whole blood data from the discovery datasets (meta-analysis of CARTaGENE, TwinsUK and GTEx data), (B) Genome-wide

association analysis for the expression of MTND1 in whole blood data from the replication dataset (NIMH data), (C) Expression of MTND1

(Log10(TPM +1)) versus non-reference allele frequency of rs2304694 in the four independent whole blood datasets.

DOI: https://doi.org/10.7554/eLife.41927.004

The following figure supplement is available for figure 2:

Figure supplement 1. QQ plots for associations between nuclear genetic variants and mitochondrial gene expression for discovery associations that

replicate at the nominal 5% level.

DOI: https://doi.org/10.7554/eLife.41927.005
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associations we focussed on the effects of post-transcriptional processing in driving variation in mito-

chondrial encoded gene expression. To do this, we controlled for variable mitochondrial copy

Table 1. Associations where a suggestive causal nuclear gene is implicated.

‘Missense mutation’ denotes that the nuclear genetic variant associated with the expression of a mitochondrial-encoded gene is a mis-

sense mutation, ‘Mediation (Mitochondrial Gene)’ denotes that the expression of a nearby nuclear gene known to play a role in mito-

chondrial processes explains a significant proportion of the association between a nuclear genetic variant and the expression level of a

mitochondrial encoded gene, and ‘Mediation (other nuclear gene)’ denotes a similar result whereby the nuclear gene identified is

thought to have no known role in mitochondrial processes (see Materials and methods).

Tissue Peak SNP MT gene Missense mutation Mediation (Mitochondrial Gene) Mediation (other nuclear gene)

Whole Blood rs7558127 MTND6 NA PNPT1 NA

Whole Blood rs6973982 MTCO2 NA TBRG4 NA

Whole Blood rs11085147 MTCO2 LONP1 NA NA

Whole Blood rs2304693 MTCYB TBRG4 NA NA

Whole Blood rs74025341 MTCYB NA NA SLC7A6OS,ZFP90

Whole Blood rs7158706 MTND2 NA NA PPP2R3C

Whole Blood rs10172506 MTND5 NA PNPT1 NA

Whole Blood rs74863981 MTCO1 NA NA UBOX5,TGM3,LZTS3

Whole Blood rs76125482 MTND3 NA FASTKD1 NA

Whole Blood rs6973982 MTND4 NA NA RP4-647J21.1,CCM2

Whole Blood rs11008009 MTND4 NA MTPAP NA

Whole Blood rs2304694 MTND1 TBRG4 NA NA

Whole Blood rs1692120 MTND1 NA NA MYRF

Whole Blood rs6973982 MTATP6 NA NA CCM2

Whole Blood rs589809 MTATP6 NA NA FLT1

Whole Blood rs375640557 MTCO3 NA NA CCDC104

Whole Blood rs6973982 MTCO3 NA TBRG4 NA

Whole Blood rs10165864 MTRNR2 NA PNPT1 NA

Whole Blood rs66892251 MTRNR2 NA MTPAP NA

Whole Blood rs61988269 MTRNR1 NA MRPP3 NA

Subcutaneous Adipose rs2304694 MTND6 TBRG4 NA NA

Subcutaneous Adipose rs2304694 MTND5 TBRG4 NA NA

Subcutaneous Adipose rs2304694 MTND1 TBRG4 NA NA

Subcutaneous Adipose rs12579998 MTND1 NA MRPS35 NA

Subcutaneous Adipose rs2304693 MTCO3 TBRG4 NA NA

Skin (Not sun exposed) rs2304693 MTCO2 TBRG4 NA NA

Skin (Not sun exposed) rs2304693 MTCO3 TBRG4 NA NA

LCLs rs7559561 MTCO2 NA LRPPRC NA

LCLs rs2304694 MTCO2 TBRG4 NA NA

LCLs rs1047991 MTND3 MTPAP NA NA

LCLs rs2304694 MTND4 TBRG4 NA NA

LCLs rs10205130 MTND1 NA LRPPRC NA

LCLs rs35739334 MTND1 NA TBRG4 NA

LCLs rs2304694 MTCO3 TBRG4 NA NA

LCLs rs2304694 MTRNR2 TBRG4 NA NA

LCLs rs2304694 MTND4L TBRG4 NA NA

DOI: https://doi.org/10.7554/eLife.41927.006
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number and polycistronic transcription rate by recalculating TPM values for each mitochondrial gene

and sample using the number of mitochondrial reads rather than the total RNA sequencing library

size. Repeating association analyses as before, 63/64 associations remain significant at FDR 5%

(Supplementary file 2). Since mitochondrial encoded gene expression values are represented as a

proportion of the total reads mapping to the mitochondrial genome in this analysis, this suggests

that post-transcriptional processes play a significant role in these associations.

To identify whether genetic associations are tissue specific, for the 64 significant associations we

tested whether the same peak variant-gene pair was significant with the same direction of effect in

each of the other tissue types (at p<0.05, corrected for the number of variants and the number of tis-

sues, we used the nearest variant in LD (r2 >0.8) if the same variant was not present, or the nearest

variant with r2 >0.5 otherwise). In total, 22 of the 64 associations are significant in more than one tis-

sue, with 8 of the associations being observed in at least three other tissue types

(Supplementary file 3, Supplementary file 6). Lowering the p-value threshold to 5% with the same

direction of effect, only 12 associations are not replicated outside of the tissue they were originally

detected in, and 19 associations are significant across 10 or more tissue types. Although sample

sizes and detection criteria may influence our ability to detect all associations, these results indicate

that a large number of associations between the nuclear and mitochondrial genomes may be operat-

ing via general mechanisms that occur across multiple tissue types.

Functional characterization
In order to elucidate the potential biological mechanisms influencing mitochondrial processes, we

attempted to identify the nuclear gene of action through which each nuclear genetic variant is asso-

ciated with mitochondrial encoded gene expression. For missense variants, we assume a direct influ-

ence on the gene in which they are located and thus identify three nuclear genes associated with

mitochondrial encoded gene expression (Table 1), all of which have a known role in mitochondrial

processes. TBRG4 localizes to the mitochondria to modulate energy balance (particularly under

stress) and plays a role in processing mitochondrial RNA (Boehm et al., 2017), MTPAP synthesizes

the 3’ poly(A) tail of mitochondrial transcripts, and LONP1 mediates the degradation of mis-folded

or damaged polypeptides in the mitochondrial matrix. There is evidence that all three proteins are

targeted to the mitochondria, and mass spectrometry experiments have identified the presence of

these proteins in mitochondria (Smith and Robinson, 2016).

For genetic variants in non-coding regions (from 49 unique associations), we first annotated var-

iants using chromatin state predictions obtained from 128 cell types within the Roadmap Epigenetic

project (Kundaje et al., 2015). Using tissue matched data (information available for 44 of the 49

non-coding variants), we find that none of the nuclear genetic variants associated with mitochondrial

encoded gene expression fall in enhancer regions, which is not different to that expected by chance

(p=0.676 using randomly selected variants matched for MAF, distance to nearest transcription start

site and annotation). Under the assumption that associations between nuclear genetic variants and

mitochondrial encoded gene expression occur ubiquitously across the body, we tested for the pres-

ence of peak variants in enhancer regions in any cell type. In total, 24 variants fall in enhancer

regions, which again is not significantly different from that expected by chance (p=0.691, using ran-

domly selected variants as before).

To test more directly if each nuclear non-coding genetic variant potentially acts upon mitochon-

drial-encoded gene expression through a nearby nuclear gene, we perform mediation analysis

(requiring an association between the peak nuclear genetic variant and the expression of a nearby

nuclear-encoded gene, and then significant mediation of the initial association via bootstrapping,

requiring an average causal mediation effect with p<0.05 after FDR correction). Considering only

nuclear genes known to play a role in mitochondrial processes first, we identify seven genes whose

expression accounts for a significant component of the relationship between the nearby nuclear

genetic variant and the expression of the associated mitochondrial-encoded gene (Table 1). These

include TBRG4 and MTPAP (described above), as well as MRPP3, which is known to form part of a

complex that cleaves and processes the 5’ end of mitochondrial transfer RNAs (Holzmann et al.,

2008); LRPPRC, which is thought to play a role in the stability and transcriptional regulation of mito-

chondrial RNA (Xu et al., 2004); MRPS35, which is a mitochondrial ribosomal protein; PNPT1, which

is an RNA binding protein that plays a role in numerous RNA metabolic processes and the import of

RNA into the mitochondria; and FASTKD1, which is an RNA binding protein that regulates the
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energy balance of mitochondria under stress. Five out of the seven proteins (PNPT1, TBRG4,

MTPAP, MRPP3 and LRPPRC) contain RNA binding domains (Wolf and Mootha, 2014), and as such

it is possible that they bind directly to mitochondrial RNA.

For the remaining non-coding peak genetic variants (from 36 unique associations), we tested

whether any nearby nuclear genes (not yet implicated in mitochondrial processes) significantly medi-

ated the expression of a mitochondria-encoded gene (as above). Using this approach, we identify

eleven candidate genes that may play a previously unknown role in influencing mitochondrial gene

expression (Table 1). In general, these genes are not predicted to contain mitochondria targeting

sequences, although SLC7A6OS and TGM3 show partial evidence of being targeted to mitochondria

in some databases (SLC7A6OS prediction score of 1 in IPSort and both genes have a score >0.6 in

TargetP (Smith and Robinson, 2016)).

Finally, to test whether peak genetic variants may be acting on mitochondrial encoded gene

expression via distal associations with genes in the nuclear genome, we performed association analy-

ses between each peak genetic variant and all other nuclear genes not in cis (genes > 1 MB away or

on different chromosomes). After correcting for multiple tests, we observe no significant associations

(p>0.05 in all cases, Bonferroni correction). Collectively these results suggest that the common

mechanisms by which nuclear genetic variation influences mitochondrial encoded gene expression

could be either through functional mutations within nuclear genes themselves, or via their effects on

the expression of nearby nuclear genes. There is also some evidence that the protein products of

some of these genes then enter the mitochondria and bind directly to mitochondrial RNA. Genes

identified via these approaches therefore represent the most promising candidates for causal nuclear

genes that influence fundamental biological processes taking place in human mitochondria.
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Figure 3. Replication and validation of significant associations between nuclear genetic variants and the expression of mitochondria-encoded genes.

(A) Discovery versus replication beta estimates for significant associations between nuclear genetic variation and mitochondrial gene expression

detected in discovery data at FDR 5%, (B) Validation of the association between rs2304694 and the expression of MTND4 using quantitative PCR in

LCLs. MTND4 mRNA expression levels are normalised to GAPDH (theoretical quantities).
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Replication and validation of associations
In order to test the robustness of associations between common nuclear genetic variants and mito-

chondrial gene expression, we tested whether trans-genome eQTLs detected in multi-dataset tissues

were significant in independent tissue-matched samples (see Materials and methods). In total, 61

eQTLs were found in multi-dataset tissues; to consider the signal replicated we required the associa-

tion to be between the same variant (or nearest variant in LD (r2 >0.8) if the same variant was not

present, or the nearest variant with r2 >0.5 otherwise) and mitochondrial gene in the same tissue

type, with the same direction of effect and passing a significance threshold corrected for the number

of tests (0.05/61 = 0.00082 in this case). In total we replicate 13/61 (~21.3%) of the mitochondrial

trans-genome eQTLs (Figure 3A, example association shown in Figure 2B and C, Table 2), and for

ten of these we find a link to a potential casual gene through mediation by a nearby nuclear gene or

via functional mutations as outlined above (Table 1). We also find that an additional 12 associations

replicate at the 5% level, and in total 43/61 of the associations show the same direction of effect in

replication datasets; larger sample sizes may increase replication rates in these cases.

In order to uncover potential reasons for a lack of replication for some associations, we per-

formed power analysis using the variance explained by each genetic variant on the associated mito-

chondrial encoded gene expression level in the discovery dataset, together with the replication

sample size, and find that ~40.5 associations would be expected to replicate (at p=0.00082). Beyond

this, we find significant differences between discovery and replication datasets for the proportion of

mapped reads aligning to the mitochondrial genome in whole blood and subcutaneous adipose

(Wilcoxon tests, p<0.05 after correcting for multiple tests). It is unclear whether this would influence

our ability to replicate associations in these cases, although we note that PEER factors (which we

include as covariates in our association analyses) have been shown to correlate with known technical

and biological features of RNA sequencing data (Stegle et al., 2010; GTEx Consortium et al.,

2017; Glastonbury et al., 2018) and as such should control for some systematic variation across

individuals. Even so, given the unexplained lack of replication in some cases, it is possible that false

positives may contribute to our results.

To validate our results for one association (rs2304694-MTND4 in LCLs) using an alternative RNA

quantification method, we obtained LCLs with homozygous reference and non-reference genotypes

at rs2304694, matched for sex and ethnicity between the two groups, and measured expression lev-

els of MTND4 using quantitative PCR. We find significant differences in the expression levels of

MTND4 between samples that are homozygous for the reference allele at rs2304694 versus samples

that are homozygous for the non-reference allele at rs2304694 (p=0.0325, one-way ANOVA,

Figure 3B), thus validating the original association with the same direction of effect.

Links to complex disease
Finally, since genetic variation modulating gene expression may underlie a large proportion of

genetic associations with disease (Nicolae et al., 2010), we intersected peak mitochondrial trans-

genome eQTL SNPs, as well as those in strong linkage disequilibrium (LD, r2 >0.8, calculated within

our data), with significant associations documented in the NHGRI genome wide association study

(GWAS) catalogue and find overlapping variants for two diseases/disease risk traits. First, the peak

nuclear genetic variant associated with the expression of MTCYB in whole blood (rs782633) is in

strong LD with rs782590, a variant that has been linked to systolic blood pressure (a known risk fac-

tor for heart disease and stroke) in a study of individuals with metabolic syndrome and controls

(Kristiansson et al., 2012). We also note that the same peak nuclear genetic variant associated with

the expression of MTCYB is also in LD with rs1975487 (r2 = 0.84 for Europeans in 1000 Genomes

data), a variant that is associated with diastolic blood pressure in a larger GWAS for blood pressure

(Ehret et al., 2016) (p=2�10�9). Rs1975487 was not present in our original analysis due to a miss-

ingness rate that was above our threshold for filtering (3%, 2% and 1.7% missing genotype rate in

CARTaGENE, TwinsUK and GTEx data respectively). Mitochondrial processes have previously been

associated with blood pressure (Dikalov and Dikalova, 2016), and given the association here, this

may at least partially be modulated though changes in mitochondrial encoded gene expression. The

genetic variant associated with mitochondrial encoded gene expression falls within the intron of

PNPT1, suggesting that this may be the gene of action influencing blood pressure, although further

fine mapping and functional work would be required to establish a causal link.
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Second, two peak genetic variants associated with the expression of MTND5 and MTND6 in

whole blood (rs10172506 and rs7558127 respectively) are in strong LD with rs10200159, which has

been associated with Vitiligo (Jin et al., 2016), a disease that is driven by the functional loss of mela-

nocytes in the skin which leads to a loss of pigmentation. High reactive oxygen species generation

and a deficit of the antioxidant network are key processes in Vitiligo, and thus altered mitochondrial

function is thought to play a role (Dell’Anna et al., 2017). Although we detect significant associa-

tions in whole blood, there is suggestive evidence of the same relationships in sun-exposed skin

data, with both associations occurring with p<0.05 (p=0.016 and p=0.0027, GTEx data) and the

same direction of effect. For both peak nuclear genetic variants the gene of action appears to be

PNPT1, where we find evidence of significant mediation on the expression of MTND5 and MTND6

(Table 1).

Genome-wide association studies considering blood pressure were conducted in individuals of

Finnish (Kristiansson et al., 2012) and European descent (Ehret et al., 2016), and the study of Viti-

ligo was also conducted using individuals of European descent (Jin et al., 2016). Since our eQTL

analysis included individuals from diverse ancestries (although largely of European descent), we

attempted to match LD structure more closely to populations used in the above GWAS associations

by re-running mitochondrial encoded eQTL analyses using only samples from individuals of Euro-

pean descent (see Materials and methods). Using the same approach as before, in whole blood data

we find that rs782633 remains significantly associated with the expression of MTCYB in Europeans

(p=6.33�10�11 in Europeans, p=8.58�10�11 in all samples), rs10172506 is significantly as associated

with the expression of MTND5 in Europeans (p=4.01�10�25 in Europeans, p=5.26�10�32 in all sam-

ples) and rs7558127 is significantly as associated with the expression of MTND6 in Europeans

(p=1.94�10�31 in Europeans, p=4.40�10�40 in all samples). Furthermore, we find that overlapping

mitochondrial-encoded eQTL and GWAS variants are in strong LD in combined European popula-

tions surveyed by the 1000 Genomes project (r2 >0.8 in all cases). These results imply that genetic

variants associated with mitochondrial encoded gene expression are genuinely in LD with GWAS sig-

nals, however some caution should still be applied if populations within Europe are likely to generate

further substructure in the data, which we have limited power to disentangle here.

Discussion
Despite key roles for mitochondria in a range of fundamental biological processes, as well as a wide

array of human diseases, knowledge of how the mitochondrial transcriptome is processed across dif-

ferent individuals and tissues on a population scale is incomplete. Using RNA sequencing data for a

large number of individuals and across a wide range of tissues, we find considerable variation in

mitochondrial gene expression along the mitochondrial genome, across tissues and between individ-

uals. Variation in mitochondrial encoded gene expression profiles is likely important for the cells abil-

ity to respond to changing energy demands in specific cell types and environments, and may also

play a role in tissue specific disease processes across individuals.

Through integrated analysis of genetic and RNA data, we identify a large number of common

nuclear genetic variants associated with mitochondrial encoded gene expression and replicate a sub-

stantial fraction of these (~21% after correcting for multiple testing,~41% at nominal 5% with the

same direction of effect) in independent tissue-matched datasets. Through mediation analysis and

functional genetic variants we identify the potential causal nuclear gene influencing mitochondrial

encoded gene expression in 36 cases. A large number of these genes are already known to play a

role in mitochondrial processes, and thus validate our findings in a biological context, but also impli-

cate functional mechanisms by which common nuclear genetic variation can act between chromo-

somes (and indeed, genomes) to influence gene expression. Such trans-eQTLs have been

notoriously difficult to replicate in humans, and thus the 13 replicated associations identified in this

study provide candidates to test the mechanisms associated with genetic variation that acts over

large genetic distances.

For some of the potential causal nuclear genes that we identify as being linked to variation in the

expression mitochondrial-encoded genes, it is not difficult to speculate on potential mechanisms

through which they might act. For example, MTPAP (within which we identify a missense mutation

associated with the expression of MTND3 in LCLs) synthesizes the poly(A) tail of mitochondrial tran-

scripts. Since polyadenylation of mitochondrial transcripts is required in many cases to complete the
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termination codon and is thought to influence RNA stability (Rackham et al., 2012), a functional

mutation in this enzyme may lead to variable accumulation of unprocessed mitochondrial transcripts

and ultimately influence mitochondrial encoded gene expression levels. Similarly, TBGR4 (within

which we identify a missense mutation associated with the expression of multiple mitochondrial

genes in multiple tissues) is known to process mitochondrial precursor transcripts and stabilize some

mature mitochondrial messenger RNAs (Boehm et al., 2017), thus having obvious links to changes

in mitochondrial gene expression. These findings lay the foundation for future work to functionally

validate the causal role of these genetic variants.

Beyond this, we also identify nuclear genes through mediation analysis that have not previously

been linked with mitochondrial gene expression. These results potentially point to novel roles for

these proteins and thus may be important new targets in the context of mitochondrial disease in

cases where it has thus far been difficult to identify causal mutations in patients. Examples that may

be interesting for further study include ZFP90, a zinc finger protein that modulates nuclear gene

expression. ZFP90 transgenic mice show altered expression of genes involved in oxidative phosphor-

ylation and fatty acid elongation in mitochondria compared to wild type littermates (Yang et al.,

2009), pointing to a potential role in mitochondrial processes. Similarly, CCM2 is involved in the

stress-activated p38 mitogen-activated protein kinase (MAPK) signalling cascade and is thought to

localize to the mitochondria. CCM proteins are implicated in Cerebral Cavernous Malformation and

accumulating evidence points to a role for these proteins in processes related to mitochondrial func-

tion, including cellular responses to oxidative stress and autophagy (Retta and Glading, 2016).

Finally, the common genetic variants we identify here as associated with mitochondrial encoded

gene expression profiles across individuals potentially have downstream functional consequences

that influence disease processes and risk. We find some evidence for this, as nuclear genetic varia-

tion associated with variable mitochondrial encoded gene expression is linked to mutations that

have been implicated in blood pressure and Vitiligo, yet further study of these genes is required to

identify the causal mechanisms that influence how mitochondrial RNA is processed in the cell and

how dysregulation of these mechanisms may cause disease. Combined, these data now serve as a

frame of reference for mitochondrial disease researchers who wish to consider how patient samples

may vary in mitochondrial gene expression versus a healthy cohort in the relevant tissue type, and

for the community as whole interested in the genes and genetics of fundamental processes taking

place in mitochondria and the genetic architecture of gene expression.

Materials and methods

Data
Raw human RNA sequencing and genotyping data were obtained through application to five inde-

pendent sequencing projects:

CARTaGENE: CARTaGENE is a healthy cohort of individuals aged between 40 and 69 from Que-

bec, Canada. Whole blood, 100 bp paired-end RNA sequencing and genotyping data (Illumina

Omni 2.5M arrays) for 911 individuals were obtained from the CARTaGENE project (Awadalla et al.,

2013; Hodgkinson et al., 2014) through application to the data access committee (instructions are

available at www.cartagene.qc.ca). Samples with multiple sequencing runs were merged prior to

alignment.

TwinsUK: 50 bp paired-end RNA sequencing data from 391 whole blood samples, 685 subcutane-

ous adipose samples, 672 non-sun exposed skin samples and 765 LCL samples (Buil et al., 2015), as

well as accompanying genotyping information (obtained from either Illumina HumanHap300 and

HumanHap610Q arrays), were derived from a mix of unrelated samples and monozygotic and dizy-

gotic twin pairs through application to the TwinsUK data access committee and then downloaded

from the European Genome-Phenome archive (https://ega-archive.org) through study ID EGA

S00001000805.

GTEx (Genotype-Tissue Expression) Project: 75 bp paired-end RNA sequencing data from 44 tis-

sue/cell types from up to 572 individuals (GTEx Consortium et al., 2017), along with accompanying

genotyping data (obtained from either Illumina Omni5M and Omni2.5M arrays) were obtained by

application to dbGaP through accession number phs000424.v6.p1. Tissues were selected if the

organ they were obtained from had at least 100 samples. In cases where samples had multiple
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sequencing experiments for a given individual and tissue, we selected the dataset containing the

highest number of raw sequencing reads.

NIMH (National Institute of Mental Health) Genomics Resource: 50 bp single end RNA sequenc-

ing data and matched genotyping data (Illumina HumanOmni1-Quad BeadChip) from 937 whole

blood samples (Battle et al., 2014; Mostafavi et al., 2014) from the Depression Genes and Net-

works study were obtained via transfer from external hard drives after application to the data access

committee (through www.nimhgenetics.org).

Geuvadis Project: 75 bp paired end RNA sequencing data from 462 LCL samples

(Lappalainen et al., 2013) were downloaded from the European Nucleotide Archive under submis-

sion number ERA169774. Accompanying genetic variants from whole genome sequencing data

(which were generated as part of the 1000 Genomes Project (Abecasis et al., 2012)) were down-

loaded from the 1000 genomes FTP site. We used phase three data that was phased and imputed

(v5a.20130502).

Processing of RNA sequencing data
All RNA sequencing data derived from different projects were processed in the same way to ensure

comparability across analyses. Raw RNA sequencing reads (fastq format) from 13,261 individual sam-

ples were trimmed for adaptor sequences, terminal bases with nucleotide quality below 20 and poly

(A) tails > 4 bp in length, before being aligned to a reference genome (1000G GRCh37 reference,

which contains the mitochondrial rCRS NC_012920.1) with STAR 2.51a (Dobin et al., 2013), using

two-pass mapping, version 19 of the Gencode gene annotation and allowing for 1/18*read_length

mismatches, rounded down to the nearest integer. Following this, in order to minimize the likelihood

of incorrectly placed reads (particularly those associated with NUMT sequences), we used a stringent

filtering pipeline, focusing only on reads that were properly paired and uniquely mapped. After map-

ping we removed low quality samples that had either <10 thousand reads mapping to the mitochon-

drial genome,<5 million total mapped reads,>30% of reads mapping to intergenic regions,>1%

total mismatches or >30% reads mapping to ribosomal RNA using in house scripts and RNAseQC

(DeLuca et al., 2012). To calculate transcript abundances, we used HTseq (Anders et al., 2015)

with the ‘intersect non-empty’ model and version 19 of the Gencode gene annotation, before con-

verting raw counts to transcripts per million (TPM). We plotted the log10 transformed distributions of

all genes with mean TPM >2 per sample and removed visual outlier samples. We also calculated

principle components using the same data and removed outlier samples. Finally, samples were only

included in analyses if they had accompanying high quality genotyping information (see below) and

there were at least 70 samples available for analysis within each tissue/dataset; in total after match-

ing samples to genotyping data and quality control filtering we were left with 11,371 RNA sequenc-

ing datasets for analysis. We focused on mitochondrial encoded protein coding and ribosomal RNA

genes only, since transfer RNAs showed lower sequencing coverage overall and were not expressed

highly in all tissues and datasets. For analysis of mitochondrial encoded gene expression variation

across genes and datasets, for TwinsUK data we used only unrelated samples (which involved pick-

ing one of each twin pair at random and combining these with unrelated samples). For NIMH sam-

ples, which were derived from 454 depression cases and 454 controls, we tested whether disease

status may affect our results by comparing TPM values for mitochondrial-encoded genes between

the two groups; in all cases we find no significant differences (Wilcoxon test, p>0.05 in all cases after

correction for multiple testing).

Processing of genotyping data
Genotyping data from different arrays and sequencing studies were processed separately. For Twin-

sUK data, only one twin from each twin pair was genotyped and thus processed, with data dupli-

cated to represent the missing twin pair after quality control and filtering. Genotyping quality

control and calculation of genetic principle components for Twins data was thus performed only on

unrelated samples. Within each dataset, samples with high relatedness (>0.125), high SNP heterozy-

gosity (visual outliers), non-matching sex, ambiguous X-chromosome homozygosity estimates or

high SNP missingness (>5%) were removed. Autosomal SNPs were flipped to the positive strand

and those with minor allele frequency (MAF) >1%, in Hardy Weinberg equilibrium (p>0.001) and not

missing in more than 1% of individuals were then phased with shapeit2 (Delaneau et al., 2013) using
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no reference panel and default settings. Problematic sites were removed and remaining SNPs were

used for imputation in 2 MB intervals using impute2 (Howie et al., 2009) with default settings, incor-

porating the 1000 Genomes phase three reference panel. Imputed data were then hard-called to

produce genotypes at each site with a threshold of 0.9 and SNPs with information score lower than

0.8 were removed. Data from different arrays within each study were then merged and filtered to

keep bi-allelic variants with minor allele frequency (MAF) >5%, in Hardy Weinberg equilibrium

(p>0.001) and not missing in more than 1% of individuals for downstream analysis. After processing,

we calculated genetic principal components and removed outlier samples by visual inspection. For

Geuvadis data we used whole genome sequencing variant calls from the 1000 Genomes project

(Abecasis et al., 2012). As such, these samples did not undergo phasing and imputation within our

pipeline, but were filtered in the same way as genotyping data after this stage of the analysis.

Association analyses
Expression QTL mapping was performed within each tissue and sequencing dataset. In each case,

TPM values for thirteen mitochondrial encoded protein coding genes and two mitochondrial

encoded ribosomal RNA genes were extracted before being log10 transformed (Supplementary file

4). Mitochondrial encoded gene expression distributions were median normalized, before outlier val-

ues were removed per gene (defined as three interquartile ranges above or below the upper and

lower quartile respectively). To control for unidentified confounding factors in RNA sequencing data,

we calculated PEER factors (Stegle et al., 2010) per dataset using all genes (nuclear and mitochon-

drial) that had a mean TPM >2. For genotyping data, we restricted the data to only those samples

that had corresponding mitochondrial encoded gene expression values for the given dataset and

calculated genetic principle components on this reduced set in each case. We then performed asso-

ciation analyses on each tissue and dataset using a linear model within PLINK (Purcell et al., 2007)

for unrelated samples. For twin data, we calculated the relatedness matrix of samples before con-

ducting association analyses with GEMMA (Zhou and Stephens, 2012). In each case we included

sex, five genetic principle components, 5 or 10 PEER factors (five for samples sizes < 100, ten for

sample sizes >= 100) and sequencing/genotyping batch (where applicable) as covariates. For Twin-

sUK data, the genotyping array was included as the batch covariate and sex was omitted as all sam-

ples were derived from females. For CARTaGENE data, which was original sequenced at higher and

lower coverage as part of discovery and replication phase data respectively (Hodgkinson et al.,

2014), the sequencing phase was included as the batch covariate. For GTEx data, where two differ-

ent genotyping arrays were used, the genotyping array covariate correlated highly with one of the

first genetic principle components for all tissues (|r| > 0.8 in all cases) and was therefore not included

in the linear model. After analysis, QQ plots were visually assessed and show no skew. QQ plots for

discovery associations that replicate at the nominal 5% level are shown in Figure 2—figure supple-

ment 1. False discovery correction (Benjamini-Hochberg) was applied to raw p-values within each

dataset by merging all genes (15) and genetic variants in each case, following the approach applied

by the GTEx consortium (GTEx Consortium et al., 2017).

To calculate P-values via permutation analysis, for each association that we originally identified as

being significant at FDR 5% (64 variant-gene pairs), we performed 100,000 point-wise permutations

for the relevant tissue type, mitochondria-encoded gene and nuclear genetic variant by randomly

shuffling phenotypes. In each case, we then collected the test statistic across all 100,000 permuta-

tions to generate a null distribution, and compared our observed test statistic against this to calcu-

late an empirical P-value. For tissue types with multiple datasets (Whole Blood and LCLs) we

performed permutations per dataset, combined these within a meta-analysis, and then derived the

null distribution from the meta-analysis results. In each case, we also then followed the approach

outlined in Ongen et al. (2016) to calculate a more precise P-value by estimating the underlying

beta distribution of the null distribution via maximum likelihood (using the ‘ebeta’ function within

the R package ‘EnvStats’).

Additionally, we also calculated the family-wise error rate on the gene level for each association

originally detected at FDR 5%. To do this, we performed 200 random permutations across all nuclear

genetic variants for the relevant mitochondria-encoded gene and tissue type, and then calculated

the null distribution by selecting the largest test statistic per permutation across all nuclear genetic

variants. To calculate the overall family wise error rate, we repeated this again, this time selecting

the largest test statistic across all nuclear genetic variants and all 15 mitochondria-encoded genes
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per permutation to generate the null distribution in the relevant tissue type. For the calculation of

both family-wise error rates, we repeated the approach outlined in Ongen et al. (2016) to obtain a

more precise P-value by extrapolating from the beta-distribution generated from the null. P values

generated across all methods are shown in supplementary file 1.

NUMT sequences were obtained from the UCSC genome browser track named ‘numtS’, and

were generated by Simone et al. (2011), who used blastN to map nuclear chromosomes to the

mitochondrial genome, setting the e-value threshold to 0.001. Sequences in this database range

from 31 to 14904 bp in length, with a similarity percentage ranging between 63% and 100%, thus

the approach has the potential to tolerate a large number of mismatches between nuclear and mito-

chondrial sequences. To test whether any 50 bp segments of mitochondrial genes also aligned to

nuclear genes, we followed the approach defined in Saha and Battle (2018). Specifically, we took

all 50 bp k-mers from each mitochondrial encoded gene and then aligned these sequences to the

nuclear genome using bowtie v1.22 (Langmead et al., 2009), allowing for up to two mismatches

and reporting all alignments. For each nuclear genetic variant associated with a mitochondrial

encoded gene, we then tested whether any of the 50 bp k-mers from the mitochondrial encoded

gene aligned within a nuclear gene whose transcription start site fell within 1 MB of the correspond-

ing nuclear genetic variant.

For tissue types with multiple independent datasets, we defined discovery and replication data-

sets. Discovery datasets were chosen as the dataset with the largest starting sample size for each

given tissue, with the replication dataset as the second largest. For whole blood, where four inde-

pendent datasets were available, we performed meta analysis within PLINK using a fixed affects

model, combining data from the CARTaGENE project, GTEx and TwinsUK for the discovery phase,

and then used NIMH data for replication. For LCLs, where three independent datasets were avail-

able, we performed meta analysis combining data from the Twins and GTEx for the discovery phase,

and then used Geuvadis data for replication. For Subcutaneous adipose and non-sun exposed skin,

we used TwinsUK data for discovery and GTEx data for replication. For all other tissues, only a single

dataset was available, and so no replication analysis was performed. In all association analyses we

defined the peak SNP as the genetic variant with the lowest p-value within a block of 1 MB, and

tested for replication using the exact same SNP where available (using the nearest SNP in LD

(r2 >0.8) if the exact match was not present, followed by the nearest SNP with r2 >0.5 otherwise).

We used the same approach when comparing association signals across tissues. To perform power

calculations, we obtained the correlation coefficient (r2) between the genetic variant and the expres-

sion of the associated mitochondrial encoded gene in the relevant discovery dataset (or largest data-

set where the genetic variant is present, if multiple datasets are available for the tissue). We then

used a power calculator (Purcell et al., 2003), specifying our estimate for the variance explained by

the genetic variant (r2), the minor allele frequency, replication sample size and the significance

threshold (0.05/61) in each case. Following this, we summed power values across all 61 associations.

We also repeated all association analyses after using mitochondrial library size (all reads mapping

to the mitochondrial) to calculate TPM for mitochondrial genes, rather than total library size. We

tested this approach as a way to remove the effects of variable mitochondrial copy number and

poly-cistronic transcription rate, however in all cases we obtained very similar results to those

obtained using the method outlined above. Additionally, we also repeated all analyses shown in Fig-

ure 1 using mitochondrial reads to normalize gene expression values; again we find very similar

results.

It has recently been shown that the post-mortem interval (PMI) appears to influence gene expres-

sion patterns in GTEx data (Ferreira et al., 2018). As such, to test for an effect in our data, we

repeated association analyses for significant associations discovered in GTEx data and including PMI

as a covariate (where PMI data were available). In both cases, we find that the P-values do not

change dramatically (Atrial appendage (heart), rs11811165-MTND4L, original raw P value: 5.09 �

10�10, P value including PMI as a covariate: 3.50 � 10�9; Tibial nerve, rs932345-MTND4L, original

raw P value: 6.47 � 10�10, P value including PMI as a covariate: 7.57 � 10�10).

Functional annotation and links to complex disease
In order to identify the potential causal nuclear gene associated with mitochondrial encoded gene

expression, we identified genes associated with the peak eQTL variant in the following ways. First, if

the peak variant was a missense mutation, we assumed that its mode of action was via functional
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changes in the gene it was located in. Second, for non-coding mutations, we tested whether non-

coding peak variants fell in enhancer regions using chromatin state predictions obtained from 128

cell types within the Roadmap Epigenetic project (Kundaje et al., 2015), using matched tissue data

as outlined in the GTEx project (GTEx Consortium et al., 2017), and compared this against a set of

random genetic variants matched for minor allele frequency, distance from transcription start site

and genome annotation (using 1000 random sets to generate a P-value). Third, for non-coding peak

variants, we tested for mediation via the expression of nuclear genes located near to the peak SNP.

To do this, for each tissue we used the largest dataset available and restricted our analysis to unre-

lated samples (for TwinsUK data, this involved picking one of each twin pair at random and combin-

ing these with unrelated samples). Within each dataset we then again tested for a significant

correlation between the peak SNP and the expression of the mitochondrial gene in question

(p<0.05, linear model, t-test of regression coefficient), as well as a significant correlation between

the peak SNP and the expression of any nuclear gene within 1 MB of the variant (p<0.05, linear

model, t-test of regression coefficient). For genes/variants passing these criteria, we then tested

whether the expression of the nuclear gene significantly mediated the relationship between the

peak nuclear variant and the mitochondrial encoded gene expression using the module ‘mediation’

(testing significant mediation of the initial association via bootstrapping, requiring an average causal

mediation effect with p<0.05 after FDR correction) within R. To prioritize potential causal genes

within this framework, we first selected nuclear genes with a known role in mitochondrial processes

(any gene listed in the Mitocarta database (Calvo et al., 2016), shown to influence mitochondrial

RNA processing (Wolf and Mootha, 2014) or listed as being involved in mitochondrial disorders in

the Genomics England PanelApp - https://panelapp.genomicsengland.co.uk), before moving on to

any other nuclear gene. Finally, we tested whether non-coding peak variants were associated with

the expression of more distal genes (those whose transcription start site was >1 MB away, or on

another chromosome) within a linear model (and meta-analysis where relevant) including the same

datasets, methods and covariates as the original discovery analysis.

In order to identify whether genetic variants associated with mitochondrial encoded gene expres-

sion may play a role in complex disease, we first identified any SNP in linkage disequilibrium

(r2 >0.8, calculated using datasets and samples used in this study) with peak eQTL SNPs in any of

the datasets used for the tissue type in which the association was identified. We then tested whether

any of these variants overlapped with significant associations documented in the NHGRI GWAS cata-

logue (for association where p<5e-8). To test whether associations between nuclear genetic variants

and mitochondrial encoded gene expression that overlap GWAS signals are significant in individuals

of European descent, we plotted the first two genetic principal components against those derived

from 1000 genomes samples with known ancestry for any dataset that had associated RNA sequenc-

ing data from whole blood. We then selected samples that clustered with Europeans in 1000

genomes data by visual inspection and re-ran association analyses as before for whole blood data

from CARTaGENE, TwinsUK and GTEx, before performing meta-analysis to calculate P-values.

Validation
In order to validate the association between rs2304694 and expression levels of MTND4 in LCLs, we

obtained ten LCL samples carrying the homozygous reference genotype and ten LCL samples carry-

ing the homozygous non-reference genotype for rs2304694 from the Coriell Institute for Medical

Research, matched between the two genotype groups for sex and ethnicity (Supplementary file 5).

The following cell lines were obtained from the NIGMS Human Genetic Cell Repository at the Coriell

Institute for Medical Research: GM11919, GM11932, GM12003, GM12414, GM12717, GM12842.

The following cell lines were obtained from the NHGRI Sample Repository for Human Genetic

Research at the Coriell Institute for Medical Research: GM20582, GM20822, HG00118, HG00254,

HG00284, HG00290, HG01524, HG01625, HG01631, HG01777, HG01800, HG01804, HG01812,

HG01815. Cultures were tested as standard by Coriell Cell Repositories before shipping and found

free of mycoplasma, and microsatellite profiling was used to confirm identity (see ‘Quality Control’

at www.coriell.org). Cells were handled as per supplier’s instructions. Total RNA was extracted using

the RNeasy kit (Qiagen) according to the manufacturer’s instructions. 1 ug total RNA was pre-

treated with 2 units of Turbo DNase (Fisher Scientific) and subsequently reverse-transcribed using

the ProtoScript First Strand cDNA synthesis kit (New England BioLabs) with random primers. The

first strand reaction was diluted five fold with deionised water and 1% (vol/vol) was used as template
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for each real-time PCR (RT-PCR) reaction. RT-PCR was carried out using QuantiNova SYBR Green

(Qiagen) and a StepOnePlus RT-PCR System (Applied Biosystems). Primers used were as follows:

GAPDH (F: TCTGCTCCTCCTGTTCGACA, R: AAAAGCAGCCCTGGTGACC), MTND4 (F: CAC

TAAACATTCTACTACTCACTCTC, R: GGAGTCATAAGTGGAGTCCGTA). Expression levels of

MTND4 were determined after normalization to GAPDH (theoretical quantities), and two technical

qPCR replicates were performed per sample before being averaged. Outlier values were removed

(defined as three interquartile ranges above or below the upper and lower quartile respectively)

within each genotypic category, leaving 19 samples for analysis. This association was chosen for rep-

lication analysis since it is associated with mitochondrial encoded gene expression across multiple

tissue types and is significantly associated with MTND4 in a dataset and tissue type for which we

had access to the relevant biological material (Geuvadis dataset, LCLs).
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Holzmann J, Frank P, Löffler E, Bennett KL, Gerner C, Rossmanith W. 2008. RNase P without RNA: identification
and functional reconstitution of the human mitochondrial tRNA processing enzyme. Cell 135:462–474.
DOI: https://doi.org/10.1016/j.cell.2008.09.013, PMID: 18984158

Howie BN, Donnelly P, Marchini J. 2009. A flexible and accurate genotype imputation method for the next
generation of genome-wide association studies. PLOS Genetics 5:e1000529. DOI: https://doi.org/10.1371/
journal.pgen.1000529, PMID: 19543373

Hudson G, Gomez-Duran A, Wilson IJ, Chinnery PF. 2014. Recent mitochondrial DNA mutations increase the risk
of developing common late-onset human diseases. PLOS Genetics 10:e1004369. DOI: https://doi.org/10.1371/
journal.pgen.1004369, PMID: 24852434

Idaghdour Y, Hodgkinson A. 2017. Integrated genomic analysis of mitochondrial RNA processing in human
cancers. Genome Medicine 9:36. DOI: https://doi.org/10.1186/s13073-017-0426-0, PMID: 28420414

Innocenti F, Cooper GM, Stanaway IB, Gamazon ER, Smith JD, Mirkov S, Ramirez J, Liu W, Lin YS, Moloney C,
Aldred SF, Trinklein ND, Schuetz E, Nickerson DA, Thummel KE, Rieder MJ, Rettie AE, Ratain MJ, Cox NJ,
Brown CD. 2011. Identification, replication, and functional fine-mapping of expression quantitative trait loci in
primary human liver tissue. PLOS Genetics 7:e1002078. DOI: https://doi.org/10.1371/journal.pgen.1002078,
PMID: 21637794

Jin Y, Andersen G, Yorgov D, Ferrara TM, Ben S, Brownson KM, Holland PJ, Birlea SA, Siebert J, Hartmann A,
Lienert A, van Geel N, Lambert J, Luiten RM, Wolkerstorfer A, Wietze van der Veen JP, Bennett DC, Taı̈eb A,
Ezzedine K, Kemp EH, et al. 2016. Genome-wide association studies of autoimmune vitiligo identify 23 new risk
loci and highlight key pathways and regulatory variants. Nature Genetics 48:1418–1424. DOI: https://doi.org/
10.1038/ng.3680, PMID: 27723757

Jokinen R, Marttinen P, Sandell HK, Manninen T, Teerenhovi H, Wai T, Teoli D, Loredo-Osti JC, Shoubridge EA,
Battersby BJ. 2010. Gimap3 regulates tissue-specific mitochondrial DNA segregation. PLOS Genetics 6:
e1001161. DOI: https://doi.org/10.1371/journal.pgen.1001161, PMID: 20976251

Kassam I, Qi T, Lloyd-Jones L, Holloway A, Jan Bonder M, Henders AK, Martin NG, Powell JE, Franke L,
Montgomery GW, Visscher PM, McRae AF. 2016. Evidence for mitochondrial genetic control of autosomal
gene expression. Human Molecular Genetics 25:ddw347. DOI: https://doi.org/10.1093/hmg/ddw347,
PMID: 27798101

Kirsten H, Al-Hasani H, Holdt L, Gross A, Beutner F, Krohn K, Horn K, Ahnert P, Burkhardt R, Reiche K,
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