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S1P and immune/hematopoietic  
cell trafficking
The lipid mediator S1P has received 
significant attention as an extracellular 
factor that signals via G protein–coupled 
receptors to regulate lymphocyte traf­
ficking and vascular function (Blaho 
and Hla, 2011; Cyster and Schwab, 2012; 
Obinata and Hla, 2012). It is now es­
tablished that an S1P gradient exists  
between vascular and nonvascular com­
partments (Schwab et al., 2005; Hla  
et al., 2008). High levels of S1P are 
found in blood and lymph, whereas the 
actions of degradative enzymes in tissue 
compartments such as secondary lym­
phoid organs keep its concentration 
low. This S1P gradient is necessary for 
the directional egress of lymphocytes 
from secondary lymphoid organs and 
the thymus into the circulatory system. 
Interference with the gradient by phar­
macologic or genetic manipulation of 

Recent work has highlighted the multitude of biological functions of  
sphingosine 1-phosphate (S1P), which include roles in hematopoietic cell 
trafficking, organization of immune organs, vascular development, and  
neuroinflammation. Indeed, a functional antagonist of S1P1 receptor, 
FTY720/Gilenya, has entered the clinic as a novel therapeutic for multiple 
sclerosis. In this issue of the JEM, Zhang et al. highlight yet another function 
of this lipid mediator: thrombopoiesis. The S1P1 receptor is required for the 
growth of proplatelet strings in the bloodstream and the shedding of plate-
lets into the circulation. Notably, the sharp gradient of S1P between blood 
and the interstitial fluids seems to be essential to ensure the production of 
platelets, and S1P appears to cooperate with the CXCL12–CXCR4 axis. Phar-
macologic modulation of the S1P1 receptor altered circulating platelet num-
bers acutely, suggesting a potential therapeutic strategy for controlling 
thrombocytopenic states. However, the S1P4 receptor may also regulate 
thrombopoiesis during stress-induced accelerated platelet production. This 
work reveals a novel physiological action of the S1P/S1P1 duet that could 
potentially be harnessed for clinical translation.
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S1P lyase (Schwab et al., 2005), genetic 
knockout of sphingosine kinases (Pham 
et al., 2010), S1P transporter (Spns2; 
Fukuhara et al., 2012), or the lipid phos­
phate phosphatase-3 (LPP3; Bréart et al., 
2011) results in the attenuation of lym­
phocyte egress, and lymphopenia. Sim­
ilar mechanisms may also be operative 
in the trafficking of dendritic cells, NKT 
cells, and hematopoietic progenitor cells 
(Massberg et al., 2007; Cyster and 
Schwab, 2012). These findings attest to 
the generality of the S1P gradient-
dependent trafficking paradigm for lym­
phocytes and other hematopoietic cells.

Detailed investigations of S1P re­
ceptors have also shown that S1P1  
receptor on immune cells is required 
for ligand-dependent egress (Grigorova  
et al., 2009; Allende et al., 2010). The 
rate of egress is determined by the net 
effect between retention signals and 
egress signals. In the case of lymph 
node–resident T cells, a key retention 
signal is determined by the chemokine 
CCL21 signaling via CCR7 (Pham  
et al., 2008). Activation of S1P1 by S1P 
appears to be the only egress signal 
identified to date. Intravital two-photon 
fluorescence microscopy studies have 
shown that S1P1 signaling on immune 

cells allows probing of the endothelial 
lining of cortical sinuses with cellular 
processes that ultimately allows pro­
ductive egress. The endothelial S1P1  
receptor appears to be dispensable for 
egress, whereas plasma membrane resi­
dence of S1P1 on lymphocytes is one of 
the key factors that determine egress 
rates (Thangada et al., 2010). It is likely 
that such mechanisms are applicable to 
many situations in which hematopoi­
etic cells traffic into the S1P-rich envi­
ronments via trans-endothelial egress.

S1P and platelets
Early work identified that S1P is re­
leased by activated platelets stimu­
lated with thrombin or ADP (Yatomi  
et al.1995, 1997). Platelets carry endo­
thelial cell-protective cargo (trophogens) 
such as platelet-derived growth factor 
(PDGF), vascular endothelial growth 
factor, CXCL12, fibroblast growth fac­
tor (FGF), and stem cell factor, among 
others, and thrombocytopenic states 
lead to vascular endothelial dysfunction 
and breach of vascular barrier (Nachman 
and Rafii, 2008). S1P seems to “nourish” 
the endothelium, supporting the integ­
rity of the vascular bed by activating 
endothelial S1P1 receptors. In addition, 
platelets also express S1P receptors; 
however, their role in platelet biology 
has remained elusive.

Zhang et al. (2012) report that S1P 
signaling via its multifunctional recep­
tor S1P1 is important in platelet pro­
duction from megakaryocytes. Even 
though multiple S1P receptors are ex­
pressed in megakaryocytes (i.e., S1P1,2,4), 
S1P1 is unique in that it is required for 
two specific events important in platelet 
formation and release.
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poiesis was slightly delayed in S1pr4 KO 
mice in this study, suggesting a possible 
function under accelerated platelet gener­
ation. Further, a significant number of 
S1pr4 KO megakaryocytes exhibited ab­
normal cellular morphology charac­
terized by cytoplasmic vacuolation and 
nuclear ploidy changes. In contrast, S1pr4 
KO megakaryocytes did not exhibit alter­
ations in proplatelet generation in vitro. 
Thus, S1P4 may also have a role in throm­
bopoiesis, even though its exact signifi­
cance in physiological and stress-induced 
thrombopoiesis needs further elucidation.

Recent studies also show that S1P1 
is intimately involved in flow-dependent 
signal transduction in the endothelium 
(Jung et al., 2012). In vascular endothelial 
cells, S1P1 is necessary for shear stress–
induced signaling events, which culmi­
nate in the stabilization of newly formed 
vascular networks (Gaengel et al., 2012; 
Jung et al., 2012). Notably, S1P1 GPCR 

megakaryocyte interactions is not well 
understood. However, S1P1 is known 
to activate the Gi pathway exclusively 
(Windh et al., 1999). This results in activa­
tion of Rac-dependent cortical actin as­
sembly (Lee et al., 2001). In addition to 
inducing actin cytoskeleton rearrange­
ment, the S1P1–Rac pathway also po­
tently induces microtubule dynamics 
(Paik et al., 2004; Obinata and Hla, 2012). 
Therefore, S1P1-dependent Rac activa­
tion is critical for process extension and 
the release of proplatelets. Indeed, a 
small molecule inhibitor of Rac potently 
blocked platelet release.

A previous study examined S1P4, an­
other megakaryocyte-expressed S1P re­
ceptor that possesses different signaling 
properties (Golfier et al., 2010). This  
receptor is strongly induced in mega­
karyocyte differentiation, but upon gene 
deletion, platelet numbers were not al­
tered. However, stress-induced thrombo­

The positioning of megakaryocytes 
to the endothelial lining of the bone 
marrow sinusoids via the VCAM1/VLA4 
adhesion pair is known to be critical for 
thrombopoiesis (Hamada et al., 1998; 
Majka et al., 2000; Avecilla et al., 2004; 
Schulze et al., 2006). In S1P1 knockout 
megakaryocytes, the positioning itself 
was not altered; however, the directional 
migration of proplatelet-containing cy­
toplasmic extensions into the circula­
tory compartment was inhibited. These 
data, coupled with in vitro studies using 
S1P gradients, suggest that compart­
mentalized S1P1 signaling is important 
for directional growth of proplatelet-
containing megakaryocyte processes. S1P1 
signaling is also required for the shed­
ding of proplatelets in a Rac-dependent 
manner. Because it is well established 
that S1P1 couples to the Gi-dependent 
Rac activation (Lee et al., 2001), the 
findings suggest that active signaling by 
this S1P receptor is required to complete 
the final stages of thrombopoiesis (Fig. 1). 
The importance of this pathway was 
demonstrated in the hematopoietic- 
specific S1pr1 knockout mice, which 
showed severe thrombocytopenia.

These findings also highlight the 
cooperative action of different GPCRs 
in megakaryocytes in ensuring optimal 
thrombopoiesis. Previous studies have 
determined that endothelial cell ex­
pression of CXCL12 and its action on 
megakaryocytes via CXCR4 GPCR is 
important for the interaction and posi­
tioning of the mature megakaryocytes 
in their proper vascular niche (Avecilla 
et al., 2004). Indeed, provision of CXCL12 
and FGF-4 (another endothelial-active 
cytokine; Konishi et al., 1996) was 
able to support platelet formation even 
in thrombopoietin knockout mice. Thus, 
CXCR4 supports megakaryocyte in­
teraction and positioning at the vascular 
niche, whereas S1P1 supports polarized 
proplatelet process formation and release 
into the circulation.

The intracellular signaling mecha­
nisms used by CXCR4 in megakaryo­
cytes to allow interaction with endothelial 
cells are not well understood. The CXCR4 
receptor can activate multiple G proteins, 
such as Gi, Gq, and G12/13 (Alkhatib, 2009). 
How such pathways lead to endothelial–

Figure 1.  S1P1 receptor on megakaryocytes is required for thrombopoiesis. The S1P1 recep-
tor, which activates the Gi protein, Ras GTPase, PI-3-kinase (PI3K), and phospholipase C (PLC) path-
ways, regulates the formation of proplatelet-containing cytoplasmic protrusions and release of 
platelet fragments. CXCR4 expression is required to position mature megakaryocytes in the appropri-
ate vascular niche for platelet formation, and S1P1 receptor is essential for process formation and 
proplatelet release. Both actin-based and microtubule cytoskeleton changes may be required for 
such events, which are likely to require both plasma-derived S1P and shear forces exerted by blood 
flow. The S1P4 receptor may also regulate thrombopoiesis because it is also highly expressed in 
megakaryocytes. However, endothelial S1P1 is essential for vascular stability and homeostasis.
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Several clinical conditions are associ­
ated with thrombocytopenia. In various 
infectious conditions, such as sepsis and 
Dengue hemorrhagic fever, platelet 
counts are markedly reduced and pose a 
significant risk for hemorrhage. Thus, in 
many hematological malignancies, as 
well as after administration of bone mar­
row cytotoxic therapies, the ability to in­
crease platelet counts acutely may be 
useful. Thus, activation of this pathway 
with a long-lasting agonist of S1P1 may 
be beneficial not only in increasing plate­
let counts but also in preserving endo­
thelial function. It is important to note 
that current S1P1 receptor modulators 
act as functional antagonists because of 
their ability to induce irreversible receptor 
internalization (Oo et al., 2011). In this 
scenario, such compounds are unlikely to 
be effective inducers of platelet formation. 
Thus, a new generation of S1P1 agonists 
will need to be developed to therapeuti­
cally harness this system. Because the S1P 
pathway is involved in the terminal steps 
of thrombopoiesis, it is likely that S1P1 
agonists will have to be used in conjunc­
tion with other inducers of thrombopoie­
sis, for example, thrombopoietin, a key 
megakaryocyte differentiation factor.

These recent findings of Zhang et al. 
(2012) have highlighted a novel function 
of the lipid mediator S1P that signals 
through its multifunctional receptor S1P1. 
This pathway may be potentially useful in 
therapeutic modulation of thrombocyto­
penia. However, because of the multitude 
of biological systems that S1P1 regulates, 
any therapeutic strategy will need to con­
sider possible adverse events. Novel agents 
that selectively target S1P1 receptors in a 
cell- or tissue-specific manner will likely 
be needed to fully harness this potential 
translational opportunity.
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