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While Alzheimer’s disease (AD) can cause a severe economic burden, the

specific pathogenesis involved is yet to be elucidated. To identify feature

genes associated with AD, we downloaded data from three GEO databases:

GSE122063, GSE15222, and GSE138260. In the filtering, we used AD for search

keywords, Homo sapiens for species selection, and established a sample size

of > 20 for each data set, and each data set contains Including the normal

group and AD group. The datasets GSE15222 and GSE138260 were combined

as a training group to build a model, and GSE122063 was used as a test

group to verify the model’s accuracy. The genes with di�erential expression

found in the combined datasets were used for analysis throughGeneOntology

(GO) and The Kyoto Encyclopedia of Genes and Genome Pathways (KEGG).

Then, AD-related module genes were identified using the combined dataset

through a weighted gene co-expression network analysis (WGCNA). Both

the di�erential and AD-related module genes were intersected to obtain AD

key genes. These genes were first filtered through LASSO regression and

then AD-related feature genes were obtained for subsequent immune-related

analysis. A comprehensive analysis of three AD-related datasets in the GEO

database revealed 111 common di�erential AD genes. In the GO analysis, the

more prominent terms were cognition and learning or memory. The KEGG

analysis showed that these di�erential genes were enriched not only in In the

KEGG analysis, but also in three other pathways: neuroactive ligand-receptor

interaction, cAMP signaling pathway, and Calcium signaling pathway. Three

AD-related feature genes (SST, MLIP, HSPB3) were finally identified. The area

under the ROC curve of these AD-related feature genes was greater than 0.7

in both the training and the test groups. Finally, an immune-related analysis

of these genes was performed. The finding of AD-related feature genes (SST,

MLIP, HSPB3) could help predict the onset and progression of the disease.

Overall, our study may provide significant guidance for further exploration of

potential biomarkers for the diagnosis and prediction of AD.
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1. Introduction

Alzheimer’s disease (AD) refers to the onset and

development of age-related cognitive and functional decline and

specific neuropathology, which Alois Alzheimer first described

in 1906 (Pleen and Townley, 2022). Despite numerous efforts

over the year, the exact mechanism of AD has not been fully

elucidated (Zhang et al., 2021). Studies have shown that immune

changes occur in all neurodegenerative diseases, but with

significant differences. Evidence indicates that immune cells

invade the aging brain and secrete particular substances that

disrupt the production of new nerve cells, which could explain

the gradual decline in neuronal recruitment during advanced

age. This may pave the way for the development of immune

strategies against age-related cognitive impairment (Dulken

et al., 2019). The study’s author, Anne Brunet, also suggested

that, even in humans, immune cells enter the aging brain and

precisely reach the areas where new neurons are generated.

However, much is yet known in this area.

The logic of the present analysis is to integrate the same

or similar gene expression patterns into multiple samples and

cluster these genes into a module. Then, each module can

be related to specific traits or phenotypes and screened to

assess sample expression. Key gene regulatory networks can

also be explored (Langfelder and Horvath, 2008). In this

network, if a gene is well-connected with others, it is called a

“highly-connected gene” (hub gene), and subsequent analysis is

performed. Moreover, we will define feature genes that could

have key roles in the disease and predict its development

and progression.

Overall, this study aimed to complement existing AD

research by identifying AD-related feature genes through

the WGCNA method and finding associations between their

expression and immune infiltration.

2. Materials and methods

2.1. Data source and search

We retrieved three datasets related to AD from the GEO

database (GSE122063, GSE15222 and GSE138260). In these

three datasets, there were 249 AD samples and 250 normal

samples. Among the AD samples, 56, 176, and 17 corresponded

to datasets GSE122063, GSE15222, andGSE138260, respectively.

All 499 samples were included in this study. Normal samples

were used as control throughout all the study to be able to

perform pooled analyses and validate the final model. Moreover,

we conducted model verification after its construction. In our

method, we merged the datasets GSE15222 and GSE138260 and

used the merged data as a training group to build a model. Then,

we used dataset GSE122063 as a test group for model validation.

A flow diagram of the study is shown in Figure 1.

2.2. Di�erential gene expression

The fusion of datasets GSE15222 and GSE138260 was

constructed with the R package termed “sva”. The conditions

for screening differential gene expression were set as logFC > 1,

FDR < 0.05. According to these stringent criteria, 111 genes were

screened and selected for subsequent analysis.

2.3. Functional analysis

The Gene Ontology (GO) analysis can identify genes closely

related to the origin, development, and phenotypic expression of

the disease. In our GO enrichment analysis, three components

were included: Biological Process (BP), Molecular Function

(MF), and Cellular Component (CC). On the other hand, the

Kyoto Encyclopedia of Genes and Genome Pathways (KEGG)

enrichment assessment enables systematic gene function

analysis by linking genomic and functional information. These

two methods were employed to analyze the 111 differential

genes obtained before. The R packages involved in the GO and

KEGG analysis were “DOSE”, “org.Hs.eg.db”, “clusterProfiler”

(Yu et al., 2012), “pathview” (Luo and Brouwer, 2013), and

“ggplot2”, which was used to visualize the results.

2.4. Network construction and module
identification for weighted gene
co-expression network analysis (WGCNA)

This analysis was performed using the R package “weighted

gene co-expression network analysis” (WGCNA). Briefly, the

first step was to cluster samples and then check whether they

contain outliers due to human or other reasons. Then, a

corresponding weighted correlation coefficient was obtained by

measuring each gene, and an adjacency matrix was constructed

accordingly. Here, gene similarity should be reflected at both

the expression levels and the network topology. However, noise

and false positives can affect the adjacency matrix alone. To

minimize these issues, in a second step, the adjacency matrix

was transformed into a topological overlap matrix (TOM).

After that, the genes that had similar expression levels were

clustered in modules to be used in subsequent analysis. In a

last step, we aimed to identify gene modules associated with

AD using Pearson’s correlation analysis. This association was

adjusted by setting the values of gene significance (GS) and

module membership (MM) to 0.4 and 0.8, respectively. The gene

modules thus calculated were used as hub genes. Finally, three

modules were found to be highly correlated with AD: yellow,

green, and magenta.
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FIGURE 1

The workflow of data preparation, processing, analysis, and validation.

2.5. Screening of AD-related feature
genes

After taking the merged dataset as a training group, the

screening conditions were logFC > 1, FDR < 0.05, and 111

differential genes were extracted. Then, the genes from the

three AD-related modules found in the WGCNA analysis

were assessed for intersection. Six matches were obtained

(SST, MLIP, HSPB3, PGM2L1, GABRA5, and NCALD) and

subsequently filtered by LASSO regression to obtain 3

AD characteristic genes: SST, MLIP, and HSPB3. Lastly,

the three were again submitted to validation using the

Test group, and all showed high reliability as AD-related

feature genes. In addition, we also performed transcription

factor analysis of AD-related feature genes, which was

done through the HumanTFDB (http://bioinfo.life.hust.edu.cn/

HumanTFDB#!/) database.

2.6. Evaluation of immune cell infiltration
in AD patients

Single sample gene set enrichment analysis (ssGSEA) was

performed to quantify the expression of AD-related immune

cell subgroups and immune function in normal and AD groups.

Then, a correlation analysis was performed between the screened

AD-related feature genes and the immune cells.

3. Results

3.1. Data collection

We combined datasets GSE15222 and GSE138260 as a training

group to build a model, and then used dataset GSE122063 as a

test group to evaluate model accurateness. In the training group,
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FIGURE 2

Clustering dendrogram of 399 samples.

the genes common to the two datasets were screened out, and the

expression levels of each sample were combined into a matrix.

The combined dataset had a total of 399 samples to be included

in the model for subsequent analysis. Of them, 193 were AD-

related and 206 were normal samples. For its part, the validation

group had 66 AD samples and 44 normal samples in its gene

expressionmatrix. Themerged dataset was normalized using the

“limma” package, and then we clustered the samples to avoid

significant outliers. All samples in the combined dataset were

included in our study (Figure 2).

3.2. Di�erential gene expression in the
AD merged data

In the AD merged data, a total of 111 differential genes were

detected, of which only 16 were up-regulated. The global results

are presented in a volcano plot (Figure 3A). The expression

changes are also shown in the form of a heatmap (Figure 3B).

3.3. GO and KEGG analysis of di�erential
genes

The results of the GO and KEGG enrichment analysis

performed on the previously obtained 111 differential genes

are depicted in Figure 4A. As shown for GO, BPs were mainly

associated with response to cognition and learning or memory.

The pathways concentrated in MF were signaling receptor

activator activity and receptor-ligand activity. For CC, the most

notable results were glutamatergic synapse, neuron to-neuron

synapse, and postsynaptic membrane. On the other hand, the

differential genes were enriched in three pathways: Neuroactive

ligand-receptor interaction, cAMP signaling pathway, and
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FIGURE 3

(A) Merged dataset di�erential gene volcano plot. (B) Merged dataset di�erential gene heatmap.
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FIGURE 4

GO and KEGG analyses of merged dataset of di�erential genes. (A) GO analysis of merged dataset of di�erential genes. BP, biological process;

CC, cellular components; MF, molecular function. (B) KEGG analysis of merged dataset of di�erential genes.
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Calcium signaling pathway, as displayed in the KEGG bar

graph (Figure 4B). These enriched pathways are all related to

cognition, learning, and memory, and in line with our overall

picture that AD patients may lose cognitive and memory-related

abilities. The present results suggest the relevance of these genes

for our follow-up research.

3.4. Construction and identification of
core modules through WGCNA

A scale-free network was established with the WGCNAmethod,

while a soft threshold was set to 9 by calculation (R2 = 0.86)

(Figures 5A,B). The corresponding adjacency and topological

overlap matrix were established, and all the genes in the merged

dataset were clustered. A total of 11 modules were identified

(Figure 5C, different colors). After a comprehensive analysis of

the 11 modules, three of them showed to be highly correlated

with AD. In particular, AD correlation values to each module

were: 0.43 to the yellow module (P = 5e-19), −0.41 to the green

module (P = 6e-18), and 0.38 to the magenta module (P = 6e-

15, Figure 5D). Fifty-one genes in the yellow, green andmagenta

modules were retained for further analysis.

3.5. Screening AD-related feature genes
based on the LASSO algorithm

A total of 6 AD key genes were found by intersecting the 111

differential genes with the 51 module core genes obtained in

FIGURE 5

(A) Analysis of the scale-free index for various soft-threshold powers (β). (B) Analysis of the mean connectivity for various soft-threshold powers.

(C) Identification of co-expression gene modules. (D) A heatmap showing the correlation between each module eigengene and phenotype.
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the above WGCNA analysis (Figure 6A) SST, MLIP, HSPB3,

PGM2L1, GABRA5, NCALD. Then, these six genes were filtered

by the LASSO regression using the L1 criterion to obtain the

feature genes of the disease. The resulting regression coefficient

changes are shown in Figure 6B. A diagram showing the

selection process of the cross-validation parameter λ was drawn.

There, log(λ) was on the horizontal axis, while the root mean

square error value was on the vertical axis (Figure 6C).When the

value of the model variable was 3, the root means square error

value was the smallest. This way, 3 AD-related feature genes are

obtained: SST, MLIP, and HSPB3. The parameter values of these

biomarker genes are shown in Table 1. And, transcription factor

analysis is shown in Figure 7.

3.6. Identification and validation of
AD-related feature genes

After screening out AD-related feature genes by the LASSO

regression, the difference boxplot of the Training group was

constructed. This boxplot showed that the AD-related feature

genes SST, MLIP, and HSPB3 had significant differences between

the AD group and the normal group (P < 0.001, Figure 8A).

These three disease feature genes were all down-regulated in the

AD group samples.

Then, the boxplot of the Test group was used to validate SST,

MLIP, and HSPB3 as AD-related feature genes. There were

significant differences between the genes in the test group

compared with the normal group (P < 0.001). In line with

the Train group, the evaluated genes were all down-regulated

(Figure 8B). The ROC curve displayed the accuracy in the

diagnostic character of the screened genes. The corresponding

area under the ROC curve (AUC) in both the Training and Test

groups were greater than 0.7 (Figures 8C,D, respectively). The

results suggested that SST, MLIP, and HSPB3 had high accuracy

as AD diagnostic genes.

3.7. Correlation analysis between
AD-related feature genes and immune
cells

The ssGSEA analysis enabled the construction of an immune

cell heatmap using the scores of each immune cell (Figure 9A).

The abscissa represented the sample type (AD or Con), and

the ordinate, the type of immune cells. Moreover, a violin plot

of immune cell differences (Figure 9B) indicated a total of 16

immune cell differences between the normal and AD groups

(P < 0.001). The abscissa of this violin plot denoted the name

of each immune cell, and the ordinate, the content of each

immune cell. The blue in the figure represented the samples of

the normal group, while the red represented those of the AD

group (Figure 9B). The results suggested that, in AD patients,

the content of the immune cells was significantly different from

that of the normal group. In these differential immune cells,

Eosinophil, Type 2 T helper cell, and Effector memory CD8 T

cell were down-regulated in AD patients. The rest of the immune

cells were all up-regulated.

Based on the above analysis, a correlation analysis was

conducted to evaluate which immune cells were correlated

with AD-related feature genes. Subsequently, a corresponding

heatmap was obtained (Figure 9C).

4. Conclusion

In summary, we identified three AD-related feature genes (SST,

MLIP, HSPB3), which passed the verification in the Test group.

These three genes may serve as AD markers and effective

indicators for AD treatment.

5. Discussion

Currently, immune analysis for neurodegenerative diseases is

gradually entering the big academic picture. The common

notion is that immune cells cannot quickly access a healthy

brain, which is true most of the time. However, recent research

in humans and other species has found that immune cells not

only can access a still-healthy aging brain, but can also reach

the precise cerebral areas where new neurons are generated. This

unlocks new directions for neurodegeneration research. Various

neurological diseases have a close interaction with the immune

system. In the human meninges, the boundary of the central

nervous system, both innate and acquired immune cells are

abundant. A different cytoimmunological situation is observed

in the brain parenchyma. For the immune response to function

properly, the brain parenchyma often adopts another strategy:

considerable lymphocyte infiltration.

Interestingly, multiple studies have demonstrated that

interventions on the immune system in the meninges can

modulate the nervous system function and behavior. This

regulation depends on neuron-specific receptor signaling, for

instance, on T cells and their secreted cytokines (Derecki et al.,

2010; Filiano et al., 2016; Lima et al., 2020). All the above

implicates that the immune activity in the meninges is crucial

for the brain’s normal functioning. As a result, the classic idea

that the brain is an immune-privileged organ is challenged.

At the present, the common academic idea is that cerebrospinal

fluid antigens first reach the neck lymph nodes and then

enter the lymphatic system. This process requires an immune

system network in the brain, which consists of the lymph in

the meninges and the cerebrospinal fluid (Mrdjen et al., 2018;

Hove et al., 2019), as has been demonstrated in autoimmune

encephalomyelitis, glioblastoma and other diseases. However,

the specific anatomical sites and cellular mechanisms of antigen
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FIGURE 6

(A) Venn diagram show the intersection of di�erential genes from the merged dataset and hub genes derived from WGCNA. (B,C) LASSO

regression screened the best AD-related feature genes.

TABLE 1 The characteristics of the AD-related feature genes.

Gene_symbol Gene_name RNA-seq

Fold change P-value FDR

SST Somatostatin −2.164 2.34E-28 7.32E-25

MLIP Muscular LMNA-interacting protein −1.746 9.61E-19 1.15E-16

HSPB3 Heat shock protein beta-3 −1.499 1.04E-18 1.22E-16

presentation and activation of T cells in the central nervous

system remain poorly understood.

We have previously identified the dural sinuses as the site of

neuroimmune interactions in the brain, where antigens in the

cerebrospinal fluid are recognized by antigen-presenting cells

and signal to the locally-enriched T cells. Moreover, endothelial

and parietal cells in the dural sinuses would also play an auxiliary

role in this process. Therefore, the dural sinus network would

have a crucial role in the normal functioning of the brain as

well as in pathological conditions, and the intervention of this
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FIGURE 7

AD-related feature transcription factor analysis.

cerebral location may become part of new treatments to alleviate

neurological diseases (Rustenhoven et al., 2021).

In this study, three AD-related feature genes (SST, MLIP, and

HSPB3) were identified by WGCNA analysis and subsequent

LASSO regression. Somatostatin (SST) is released in the

hypothalamus and, as the name suggests, inhibits growth by

preventing the release of growth hormones from the pituitary

gland. A previous study on the SST gene revealed that the

content of somatostatin in the cerebrospinal fluid of patients

with vascular dementia was significantly lower than in a healthy

person. We compared the data of patients with cognitive

impairment and found that both diseases are accompanied by

a decline in this gene, which would be one of the causes of

dementia in patients with cerebral infarction.

In the present study, the content of SST was also decreased

in the AD group. Thus, the down-regulation of this gene

may contribute to the occurrence and development of

AD. Nevertheless, more evidence is needed to support this

hypothesis. In addition, related studies have proposed that SST

is an important neuromodulator in the dentate gyrus, and

disruption of the associated signaling system may significantly

impact hippocampal function. The latter may have established a

more vital link between this gene and AD.

On the other hand, the MLIP gene is often reported to

be associated with muscle, and enriched in class A lamina-

interacting protein. This is a unique protein required for

normal cardiac muscle adaptation to stress (Cattin et al., 2015).

Recently, the MLIP gene was identified as responsible for

rhabdomyolysis, and decreased overall RNA expression levels of

major MLIP isoforms were observed in the skeletal muscle of

patients. MLIP is now identified as a novel disease-associated

gene in humans, with a role in normal and diseased skeletal
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FIGURE 8

(A) Expression of AD-related feature genes in Training group. (B) Expression of AD-related feature genes in Training group. ***P <0.001.

(C,D) ROC curves of AD-related feature genes in Training group and Test group.
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FIGURE 9

(A) Immune-related function heatmap. (B) violin diagram of AD-related di�erential immune cell. (C) Heatmap of correlations between

AD-related feature genes and immune cells.
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muscle homeostasis (Osorio et al., 2021). In particular, the

influence of the MLIP gene in AD development is yet to

be elucidated.

Finally, HSPB3 is one of the small human heat shock proteins,

with a molecular chaperone family of 10 members (HSPB1-

HSPB10). HSPB mutations may have serious consequences,

such as peripheral neuropathy caused by point mutations in

HSPB1 and HSPB8. Thus, HSPB3 research requires special

attention. In addition, a new missense mutation in HSPB3

(R7S) has been recently identified in axonal motor neuropathy.

A further article that employed bioinformatics methods also

identified HSPB3 as a central gene associated with AD (Jiang

et al., 2021). Lastly, this gene has also been reported to cause

motor neuropathy.
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