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Abstract: With the advances in different biological networks including gene regulation, gene
co-expression, protein–protein interaction networks, and advanced approaches for network
reconstruction, analysis, and interpretation, it is possible to discover reliable and accurate molecular
network-based biomarkers for monitoring cancer treatment. Such efforts will also pave the way
toward the realization of biomarker-driven personalized medicine against cancer. Previously, we have
reconstructed disease-specific driver signaling networks using multi-omics profiles and cancer
signaling pathway data. In this study, we developed a network-based sparse Bayesian machine
(NBSBM) approach, using previously derived disease-specific driver signaling networks to predict
cancer cell responses to drugs. NBSBM made use of the information encoded in a disease-specific
(differentially expressed) network to improve its prediction performance in problems with a reduced
amount of training data and a very high-dimensional feature space. Sparsity in NBSBM is favored by
a spike and slab prior distribution, which is combined with a Markov random field prior that encodes
the network of feature dependencies. Gene features that are connected in the network are assumed
to be both relevant and irrelevant to drug responses. We compared the proposed method with
network-based support vector machine (NBSVM) approaches and found that the NBSBM approach
could achieve much better accuracy than the other two NBSVM methods. The gene modules selected
from the disease-specific driver networks for predicting drug sensitivity might be directly involved in
drug sensitivity or resistance. This work provides a disease-specific network-based drug sensitivity
prediction approach and can uncover the potential mechanisms of the action of drugs by selecting the
most predictive sub-networks from the disease-specific network.

Keywords: network-based sparse Bayesian machine; disease-specific driver signaling network;
drug sensitivity; drug resistance; cancer signaling pathway

1. Introduction

It has been reported that some cancer cells are sensitive to drugs while others are not. Meanwhile,
the same drug has different efficacy on different cancer cell lines. For example, among 14 lung cancer
cell lines, H1666 and Cal12T are sensitive to Dasatinib [1] while the other 12 cell lines, H322, H661,
H460, H1568, H226, A549, H522, H2087, H1755, H1395, HCC364, and H2405, are not. For prostate cell
lines, PC3, DU145, HPV10, LNCaP, RWPE1, HPV7, NB26, PWR1E, NB11, and W99 are sensitive to
Dasatinib, however, 22Rv, VcaP, MDAPCa2b, DUCap, and WPMY1 are not. These examples show
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that different subtypes of lung cancer cell lines and prostate cell lines exhibited different sensitivity to
Dasatinib. This raises the question of whether, based on the high throughput gene expression data,
we can predict the drug sensitivity of a new cancer cell.

The question above can be considered as a typically supervised machine learning problem.
A classifier can be trained based on high throughput gene expression data and the sensitivity labels of
cell lines to drugs to predict drug sensitivities. In previous work, Wong [2] and Huang [3] applied
basic t-test methods to find sensitive or non-sensitive biomarkers to targeted therapy and predicted
the sensitivities of new cancer cell lines to the drug, according to the gene expression data. However,
they only used gene expression data for classification.

It has been reported that utilizing protein–protein interaction network data as prior information
can distinguish cancer patients and non-cancer patients [4–7], and is better than only using the
gene expression data of cancer patients [8–10]. However, in high throughput gene expression data,
the dimension of features d is much larger than the number of samples n, which makes it difficult to
construct an optimal classifier. Combining signaling transduction pathways into a high dimensional
data classification machine is a challenge. Rapaport et al. [5] used the protein–protein interaction
data as a graph and made a spectral decomposition of the gene expression data according to the
characteristic functions of the graph for frequency features, and then designed an SVM classifier
based on the features to classify yeasts with or without light radiation. Different from extracting the
network features directly, Zhu et al. [6] constructed an SVM classifier based on gene expression data
directly to classify the status of Parkinson’s patients by taking network data as a punishment term.
Gönen et al. [11] combined kernel-based non-linear dimensionality reduction and binary classification
to build a Bayesian algorithm under a multitask learning framework, which can reduce the off-target
effects and experimental noise. Moreover, Herndaniel et al. [12] and Miguel et al. [13] developed
a sparse Bayesian classifier (SBC) to classify high throughput data, integrating the gene expression
data with protein–protein interactions, which was different to using gene expression data to obtain
SVM classifiers, and showed better results than the network-based SVM classifiers. Additionally,
Yang et al. [14] raised the network-based method, NRL2DRP, which predicts drug responses not only
based on PPI data but also on the similarity of cell lines, reaching relatively high performance under
cross-validation on the GDSC dataset and methods comparison.

In this study, we propose a new network-based sparse Bayesian machine (NBSBM) method by
combining a sparse Bayesian classifier with a Laplace graph, which is designed by a disease-related
signaling network. Previously, we have developed several disease-specific driver signaling network
identification approaches to identify the potential disease-driver networks by integrating the DNA-seq,
copy number, RNA-seq, and methylation profiles of cancer patients [9,10,15,16]. We took advantage
of these previously identified disease-specific networks and put them as prior information for drug
sensitivity or resistance prediction in NBSBM. An expectation propagation strategy was employed
to obtain the optimal solution of NBSBM. We then compared the performance of NBSBM with other
network-based SVM classifiers. NBSBM demonstrated much better results than the other classifiers.
Furthermore, the NBSBM approach is capable of selecting the most predictive networks as a biomarker
for drug sensitivity or resistance prediction.

2. Materials and Methods

Sparse Bayesian Classifier Combined with Disease-Specific Network

Specifically, we consider this to be a supervised machine learning problem. The training set
D =

{
(xi, yi)

}n
i=1 has features xi ∈ Rd+1 of which the zero-th component is equal to 1 and xi contains

information about the gene expression or transcriptional response of cancer cells. On the other hand,
yi ∈ {−1, 1} is the class labels representing the phenotype data of the cancer cell response to drugs,
while 1 represents “sensitive” and −1 represents “resistant”. We aimed to build an optimal linear
classifier β = (β0, β1, · · · , βd) that utilizes a specific cancer signaling network as prior information
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and maximizes the distance between those sensitive and non-sensitive samples. Herbrich et al. [17]
considered the existence of a true classifier βtrue, which was used to label the data according to the
rule yi = sign(βtruexi). However, the samples might not be linearly separable, so in a general case,
we consider the labeling errors, that is, some of the class labels yi have been flipped with probability ε.
Under these assumptions, given X = (x1, · · · , xn), y = (y1, · · · , yn) and ε, the likelihood is shown in
Equation (1)

p(y|β, ε, X ) =
n∏

i=1

p(yi
∣∣∣β, ε, xi) =

n∏
i=1

[
ε
(
1−Φ

(
yiβ

txi
))
+ (1− ε)Φ

(
yiβ

txi
)]

(1)

where Φ is the Heaviside step function and is defined by Φ
(
yiβ

txi
)
= lim

k→∞
1

1+e−2k(y||iβtxi)
. In fact, the

likelihood function (1) is robust to outliers because it only depends on the number of errors of β in the
training set and not on the actual size of these errors. In high throughput gene expression data, d < n,
indicating β can have different optimal solutions. In this study, we only considered the sparse solution
for β. Herein, we introduce a new binary hidden variable z = {z0, z1, z2, · · · , zd}ε{0, 1}d. zi takes 0 if the
ith. component of βtrue is 0 and zi takes 1 otherwise. Assuming z is given, the prior density of β is

p(β|z) =
d∏

i=1

p(βi
∣∣∣zi) =

d∏
i=0

[N(βi, 0, σ2
i )

zi
(
δ(βi))

(1−zi)
]

(2)

Here, p(βi
∣∣∣zi) is a kind of spike and slab prior, which is a mixture of a Gaussian density (the slab)

and a point probability mass placed at zero (the spike). N
(
βi, 0, σ2

i

)
represents a Gaussian density with

a 0 mean and σ2
i variance, and δ(βi) is an impulse function that has a probability of 1 on βi and 0

elsewhere. To complete the specification of the prior for β at zero, we assume that a network that
encodes the dependencies between the gene features are known. Given a specific cancer signaling
network G = (V, E) whose vertices V = {0, 1, · · · , d} correspond to the proteins and whose edges, E,
link features that are expected to uncover the potential mechanism difference of the drug resistance
samples and sensitive samples. Equation (3) shows the prior density for z given G, which is given by a
Markov random field (MRF) model

p
(
z
∣∣∣G,λ,γ

)
=

1
Z

exp

cz0 + λ
d∑

i=1

zi

exp

γ ∑
{u,v}∈E

(
zu
√

du
−

zv
√

dv

)2

ω(u, v)

 (3)

In Equation (3), Z is a normalization constant and λ ∈ R controls the sparsity. γ ≥ 0 determines
the sum of the square difference between zu and zv that is linked in the input network G, and ω(u, v) is
the weight between proteins zu and zv. In fact, if we assume,

L(u, v) =


1− w(u,v)

du
, i f u = v and du , 0,

−w(u,v)
√

dudv
, i f u and v are adjacent,

0, othersize.

then
p
(
z
∣∣∣G,λ,γ

)
=

1
Z

exp(cz0 + λ|z|) exp
(
γ zTLz

)
(4)

If the sum of square difference,
(

zu√
du
−

zv√
dv

)2
is small, the subcomponent of z will be small, and a

smaller solution of z will lead to a more sparsity solution of β, which will help to avoid overfitting.
Furthermore, we assume the prior of ε as p(ε) = Beta(ε, a0, b0) =

1
B(a0,b0)

εa0−1, where B(a0, b0) represents
the β function with parameters a0 and b0. Under the assumption above, we can use the Bayesian
theorem to compute the posterior distribution of the model parameters β and ε given the training
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data X and y. Given the specific cancer signaling network G and the model hyper-parameters λ and γ,
the posterior is given by

p(β, ε
∣∣∣y, X, G,λ,γ) =

∑
Z p(y

∣∣∣β, ε, X)p(β
∣∣∣z)p(z∣∣∣G,λ,γ)p(ε)

p(y
∣∣∣X, G,λ,γ)

(5)

The joint probability distributions of the model parameters and hidden variables are given as
follows:

p(β, ε, z, y
∣∣∣X, G,λ,γ) = p(y

∣∣∣β, ε, X)p(β|z)p
(
z
∣∣∣G,λ,γ

)
p(ε) (6)

In this equation, the denominator is a normalization constant. If given a new unclassified sample
xtest, we can determine its classification labels ytest by probability as shown in Equation (7):

p
(
ytest

∣∣∣Xtest, y, X, G,λ,γ
)
=

x
p
(
ytest

∣∣∣β, ε, xtest
)
p(β, ε

∣∣∣y, X, G,λ,γ)dβdε (7)

With the Bayesian assumption above, we can easily estimate the average noise of classification labels
as Eε =

s
εp(β, ε

∣∣∣y, X, G,λ,γ)dβε. As the integrals and summations in the above three equations are
difficult to calculate directly, we can make an approximate Bayesian inference for posterior probability
distribution using an expectation propagation (EP) algorithm [18]. The detailed implementation of the
EP algorithm for parameter estimation in NBSBM is available in the Supplementary Materials.

3. Results

3.1. Prediction of Sensitivity and Resistance of Prostate Cancer Cell Lines to Dasatinib

In Wang’s work [2], the sensitivity data of 16 prostate cancer cell lines to Dasatinib were provided.
Eleven cell lines with half maximal inhibitory concentration (IC50) values lower than 200 nm were
designated as Dasatinib-sensitive. Five cell lines with IC50 values larger than 200 nm were designated as
Dasatinib-resistant. Previously, we reconstructed a prostate cancer-specific network [15] using multiple
genomic and epigenomic data of prostate cancer patients from TCGA. There are 48 differentially
expressed subnetworks (gene modules), 6738 genes, and 26,845 edges in this prostate cancer-specific
network. Our goal was to predict the drug sensitivity response of these 16 prostate cell lines based
on their gene expression data and the prostate cancer-specific network using the NBSBM. In this
study, we set a0 = 1 and b0 = 8 in the NBSBM. For parameter λ(γ), we took 500 values evenly from{
e−5, e2

}
(
{
e−5, e1

}
) to select the value that achieved the lowest error rate on the training dataset. We used

cross-validation (5-fold and 5-repeats) to evaluate the performance of the proposed sparse Bayesian
classifier, network-based support vector machine (NBSVM) [5], support vector machine based recursive
feature elimination classifier (SVM-RRFE) [19], and sparse Bayesian classifier (SBC) [13] on this dataset.
We obtained the ROC curve for each algorithm by obtaining the true positive rate and average false
positive rate from the cross-validation process. Figure 1 shows the ROC-curve and AUC results of the
four classifiers; our method performed better than all of the other approaches. We also evaluated the
differences of the predictive power of these methods by the paired Wilcoxon rank-sum test. The results
show that the NBSBM achieved better results than the other two SVM-based approaches in terms of
average AUC performance according to the Wilcoxon test with p < 0.01 (Figure 4a).
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Figure 1. Comparison performance of the network-based sparse Bayesian machine (NBSBM) with 
other methods in terms of average (mean) operating characteristic (ROC) (5-fold cross-validation and 
5-repeats), and AUC value. The boxplot indicates the variation around the average ROC curve and 
reports the median and the interquartile range. ROC curves of (a) network-based SVM, (b) the 
proposed approach, (c) SVM-RRFE, and (d) sparse Bayesian classifier (SBC) to classify the response 
of 16 prostate cancer cell lines to Dasatinib. 

3.2. Prediction of Sensitivity and Resistance of Breast Cancer Patients to Tamoxifen 

Dataset GSE17705 [20] (available in gene expression omnibus (GEO)) contained both the gene 
expression data of 103 estrogen receptor positive breast cancer patients and their survival time after 
Tamoxifen treatment. We divided those patients into the Tamoxifen sensitive group and Tamoxifen 
non-sensitive group according to their median survival time. Patients who survived longer than the 
median survival time were designated as Tamoxifen-sensitive, otherwise Tamoxifen-non-sensitive. 
Next, we employed NBSBM to predict the estrogen receptor-positive breast cancer patients’ response 
to Tamoxifen treatment, using a previously reconstructed estrogen receptor-positive breast cancer-
specific network [16] and the gene expression data of those 103 breast cancer patients. The estrogen 
receptor-positive breast cancer-specific network is highly interconnected and contains 15 
differentially expressed gene modules, 923 genes, and 10,073 edges. The 103 estrogen receptor 
positive breast cancer patients could be accurately classified by the proposed sparse Bayesian 

Figure 1. Comparison performance of the network-based sparse Bayesian machine (NBSBM) with
other methods in terms of average (mean) operating characteristic (ROC) (5-fold cross-validation
and 5-repeats), and AUC value. The boxplot indicates the variation around the average ROC curve
and reports the median and the interquartile range. ROC curves of (a) network-based SVM, (b) the
proposed approach, (c) SVM-RRFE, and (d) sparse Bayesian classifier (SBC) to classify the response of
16 prostate cancer cell lines to Dasatinib.

3.2. Prediction of Sensitivity and Resistance of Breast Cancer Patients to Tamoxifen

Dataset GSE17705 [20] (available in gene expression omnibus (GEO)) contained both the gene
expression data of 103 estrogen receptor positive breast cancer patients and their survival time after
Tamoxifen treatment. We divided those patients into the Tamoxifen sensitive group and Tamoxifen
non-sensitive group according to their median survival time. Patients who survived longer than the
median survival time were designated as Tamoxifen-sensitive, otherwise Tamoxifen-non-sensitive.
Next, we employed NBSBM to predict the estrogen receptor-positive breast cancer patients’ response to
Tamoxifen treatment, using a previously reconstructed estrogen receptor-positive breast cancer-specific
network [16] and the gene expression data of those 103 breast cancer patients. The estrogen
receptor-positive breast cancer-specific network is highly interconnected and contains 15 differentially
expressed gene modules, 923 genes, and 10,073 edges. The 103 estrogen receptor positive breast cancer
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patients could be accurately classified by the proposed sparse Bayesian machine. We compared the
proposed approach with the NBSVM and SVM-RRFE. Figure 2 shows the ROC curves and AUC results
of the three classifiers individually. We found that NBSBM performed better than the other methods.
We also evaluated the differences of the predictive power of these methods by the Wilcoxon rank-sum
test. It can be seen that the NBSBM achieved better results than the other two-SVM approaches in
terms of average AUC performance according to the Wilcoxon test with p < 0.05 (Figure 4b).
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Figure 2. Comparison performance of the NBSBM with other methods in terms of average (mean)
operating characteristic (ROC) curve (5-fold cross-validation and 5-repeats) and AUC value. The boxplot
indicates the variation around the average ROC curve and reports the median and the interquartile range.
ROC curves of (a) network-based SVM, (b) the proposed approach, (c) SVM-RRFE, and (d) sparse
Bayesian classifier (SBC) to predict the response of estrogen receptor-positive breast cancer patients
to Tamoxifen.
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3.3. Prediction of Sensitivity and Resistance of Various Cancer Cells to Dasatinib

The Genomics of Drug Sensitivity in Cancer (GDSC) database [21,22] contains the gene expression
data of 789 cancer cell lines and provides sensitivity data of various cancer cell lines to drugs from
in-vitro drug screening experiments. Herein, we used the sparse Bayesian classifier to predict the
sensitivity of cancer cell lines to Dasatinib based on the gene expression data of the 319 cancer cells,
and an integrated cancer signaling network from our previous work [9]. The integrated human cancer
signaling pathways (IHSP) consisted of previously published human cancer signaling pathways [23–26],
Biocarta [27], and KEGG [28] databases. There are 7564 genes and 58,932 edges in IHSP. Figure 3 shows
the ROC curve results of the three classifiers. It can be seen that our method performed better than the
other two SVM algorithms in terms of average AUC performances according to the Wilcoxon rank-sum
test with p < 0.05 (Figure 4c).
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Figure 3. Comparison performance of the NBSBM with other methods in terms of average (mean)
operating characteristic (ROC) curve (5-fold cross-validation and 5-repeats) and AUC value. The boxplot
indicates the variation around the average ROC curve and reports the median and the interquartile
range. ROC curves of (a) network-based SVM, (b) the proposed approach, (c) SVM-RRFE, and (d)
sparse Bayesian classifier (SBC) to classify the response of estrogen receptor-positive breast cancer
patients to Tamoxifen.



Genes 2019, 10, 602 8 of 10
Genes 2019, 10, x FOR PEER REVIEW 8 of 10 

 

 
(a)                       (b)                       (c) 

Figure 4. Performance comparison among N11111111BSBM, network-based SVM, and SVM-FREE in 
terms of average AUC in predicting (a) prostate cells’ response to Dasatinib, (b) Breast Cancer 
Patients’ response to Tamoxifen therapy, and (c) 789 cancer cells’ response to Dasatinib. The Wilcoxon 
rank-sum test was used to examine whether the AUCs obtained by two approaches were different. 

4. Discussion 

A spike and slab prior distribution combined with a Markov-random-field (MRF) prior were 
used to build a spare model in the proposed network-based sparse Bayesian machine (NBSBM). 
Under this sparsity assumption, better results can be achieved if prior information about the gene to 
gene relationships with the disease-specific network is available. A disease-specific (differentially 
expressed) network was encoded in such prior information, in other words, MRF prior to improve 
the prediction performance of NBSBM. Note that the Bayesian classifier proposed in this article is 
capable of feature selection, in Supplementary Tables S1 and S2, we list the top relevant features 
(genes) and pathways that can predict prostate cancer cell responses to Dasatinib. For the top-ranked 
genes or pathways reported to play important roles of prostate cancer development and progression, 
see Supplementary Materials, Section 2 for more detail. That is, we can derive network-based 
biomarkers for drugs such as those highly predictive gene modules (features) from the disease-
specific signaling network. Then, we can predict the sensitivity level of new cancer cells to drugs only 
according to the gene expression data of these network-biomarkers, which might provide an 
exploration of the molecular pathogenesis of specific diseases. Furthermore, those network-based 
biomarkers might directly contribute to drug sensitivity or resistance. In addition to the application 
to cancer therapeutics, our approach should be useful in predicting drug sensitivity in many common 
complex diseases. 

5. Conclusions 

In this article, we proposed a sparse Bayesian machine to predict the sensitivity level of cancer 
cells to drugs using gene expression data and disease-specific signaling networks. The Bayesian 
classifier systematically integrated specific cancer signaling pathways with high throughput gene 
expression data. It employed an expectation propagation strategy to find a sparse solution. In 
addition, we compared the performance of the NBSBM with other network based SVM methods. 
Using three different pharmacological datasets, we applied cross-validation to test the performance 
of the proposed Bayesian classifier. The results showed that the proposed algorithm performed much 
better than the other two methods, warranting further studies in individual cancer patients to predict 
personalized cancer treatments. 

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Table S1: Top-25 most 
predictive genes for classifying prostate cancer cell responses to Dasatinib; Table S2: The most enriched signaling 
pathways in those top-100 ranked genes that are most relevant to prostate cancer cell response to Dasatinib. 
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average AUC in predicting (a) prostate cells’ response to Dasatinib, (b) Breast Cancer Patients’ response
to Tamoxifen therapy, and (c) 789 cancer cells’ response to Dasatinib. The Wilcoxon rank-sum test was
used to examine whether the AUCs obtained by two approaches were different.

4. Discussion

A spike and slab prior distribution combined with a Markov-random-field (MRF) prior were used
to build a spare model in the proposed network-based sparse Bayesian machine (NBSBM). Under
this sparsity assumption, better results can be achieved if prior information about the gene to gene
relationships with the disease-specific network is available. A disease-specific (differentially expressed)
network was encoded in such prior information, in other words, MRF prior to improve the prediction
performance of NBSBM. Note that the Bayesian classifier proposed in this article is capable of feature
selection, in Supplementary Tables S1 and S2, we list the top relevant features (genes) and pathways
that can predict prostate cancer cell responses to Dasatinib. For the top-ranked genes or pathways
reported to play important roles of prostate cancer development and progression, see Supplementary
Materials, Section 2 for more detail. That is, we can derive network-based biomarkers for drugs such
as those highly predictive gene modules (features) from the disease-specific signaling network. Then,
we can predict the sensitivity level of new cancer cells to drugs only according to the gene expression
data of these network-biomarkers, which might provide an exploration of the molecular pathogenesis
of specific diseases. Furthermore, those network-based biomarkers might directly contribute to drug
sensitivity or resistance. In addition to the application to cancer therapeutics, our approach should be
useful in predicting drug sensitivity in many common complex diseases.

5. Conclusions

In this article, we proposed a sparse Bayesian machine to predict the sensitivity level of cancer
cells to drugs using gene expression data and disease-specific signaling networks. The Bayesian
classifier systematically integrated specific cancer signaling pathways with high throughput gene
expression data. It employed an expectation propagation strategy to find a sparse solution. In addition,
we compared the performance of the NBSBM with other network based SVM methods. Using three
different pharmacological datasets, we applied cross-validation to test the performance of the proposed
Bayesian classifier. The results showed that the proposed algorithm performed much better than the
other two methods, warranting further studies in individual cancer patients to predict personalized
cancer treatments.
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Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4425/10/8/602/s1,
Table S1: Top-25 most predictive genes for classifying prostate cancer cell responses to Dasatinib; Table S2:
The most enriched signaling pathways in those top-100 ranked genes that are most relevant to prostate cancer cell
response to Dasatinib.
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