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Abstract

Background: In mammals, multigenerational environmental effects have been documented by either
epidemiological studies in human or animal experiments in rodents. Whether such phenomena also occur in
birds for more than one generation is still an open question. The objective of this study was to investigate if a
methionine deficiency experienced by a mother (G0) could affect her grand-offspring phenotypes (G2 hybrid
mule ducks and G2 purebred Muscovy ducks), through their Muscovy sons (G1). Muscovy drakes are used for the
production of mule ducks, which are sterile offspring of female common duck (Anas platyrhynchos) and Muscovy
drakes (Cairina moschata). In France, mule ducks are bred mainly for the production of “foie gras”, which stems
from hepatic steatosis under two weeks of force-feeding (FF). Two groups of female Muscovy ducks received either
a methionine deficient diet or a control diet. Their sons were mated to Muscovy or to common duck females to
produce Muscovy or Mule ducks, respectively. Several traits were measured in the G2 progenies, concerning
growth, feed efficiency during FF, body composition after FF, and quality of foie gras and magret.

Results: In the G2 mule duck progeny, grand-maternal methionine deficiency (GMMD) decreased 4, 8, and 12 week
body weights but increased weight gain and feed efficiency during FF, and abdominal fat weight. The plasmatic
glucose and triglyceride contents at the end of FF were higher in the methionine deficient group. In the G2
purebred Muscovy progeny, GMMD tended to decrease 4 week body weight in both sexes, and decreased weight
gain between the ages of 4 and 12 weeks, 12 week body weight, and body weight at the end of FF in male
offspring only. GMMD tended to increase liver weight and increased the carcass proportion of liver in both sexes.

Conclusion: Altogether, these results show that the mother's diet is able to affect traits linked to growth and to
lipid metabolism in the offspring of her sons, in Muscovy ducks. Whether this transmission through the father of
information induced in the grand-mother by the environment is epigenetic remains to be demonstrated.
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Background

In animal breeding, maternal and even grand-maternal
effects, in addition to the direct effects of the genes
transmitted to the offspring, have been postulated, mod-
elled and estimated for a long time [1, 2]. The mother
contributes to the offspring phenotype through the
genes she passed on to the next generation, but also
through maternal effects, independent from the genes
the offspring has received from his mother. The
renewed interest epigenetics has acquired in biological
sciences in the past few decades has in many cases given
a biological basis to non-genetic multigenerational ef-
fects [3, 4]. However, while multigenerational effects of
maternal environment are well recognized, whether epi-
genetic or not, those of paternal environment are more
rarely considered, even though they more certainly rep-
resent epigenetic phenomena, or “transgenerational
inheritance”. Over one generation, several animal and
epidemiological studies on various nutrition and life-
style related conditions have reported an effect of the
paternal environment on the offspring phenotype (pre-
mating fasting of male mice [5]; high fat diet in male
rats [6]; see [7, 8] for a review). Non-genetic effects in-
volving the male germ-line have also been documented
by either epidemiological studies in human such as the
prenatal exposure of fathers to the Dutch famine [9],
exposure of paternal grand-fathers [10, 11] or grand-
mothers [12] to different food supplies in Sweden, or
animal experiments such as the effects of endocrine dis-
ruptors on male fertility in the rat [13]. Whether these
phenomena also occur in birds has not been investi-
gated yet [14].

The objective of this study was thus to investigate
non-genetic multigenerational effects induced by the
environment in duck, the environment effector being
here a dietary methyl-donor deficiency. In France,
mule ducks, which are hybrids of common female
ducks (Anas platyrhynchos) and Muscovy drakes
(Cairina moschata) are bred for the production of
“foie gras” and of “magrets”, the pectoral muscle (with
skin) of force fed ducks. Force-feeding leads to a hep-
atic steatosis, with a tenfold increase in liver weight
within two weeks, from 12 to 14 weeks of age. The
idea of investigating multigenerational effects in the
duck stemmed from a parallel between steatosis in
duck and obesity in human and in mice, which is often
associated to multigenerational effects and to epigen-
etic mechanisms ([7, 15], see [16] for a review). A
methyl-donor limitation was applied to the Muscovy
dams (GO) before and during the conception of their
sons (G1), through a methionine restriction of the diet.
The multigenerational effects were evaluated on G2,
either purebred Muscovy ducks or hybrid mule ducks
issued from these G1 sires.
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Methods

All procedures were conducted in accordance with
guidelines for Care and Use of Animals in Agricultural
Research and Teaching (French Agricultural Agency and
Scientific Research Agency; approval number of the ex-
perimental farm: B40-037-1; Ethics committee approval
n°00066.03 from the C2EA-73 “Comité d’Ethique
Aquitaine Poissons Oiseaux”).

Animals and experimental design
The experiment was conducted at the INRA UEPFG
experimental farm for waterfowl (Benquet, France) be-
tween 2010 and 2013, and involved three generations of
animals, GO, G1, and G2 (Fig. 1).

In GO, 8 Muscovy female ducks of the R71M strain
were purchased (Grimaud Freres S.A.), raised at UEPFG
and allocated to two diet groups when placed in individ-
ual reproduction cages at the age of 10 weeks until the
age of 35 weeks. Both groups were fed a growing diet
until 17 weeks of age, followed by a reproduction diet
until the end of breeding. Females of the first group (n = 4)
were fed a Met-deficient diet. The other four females were
fed a control diet. The nutritional characteristics of the
growing and reproduction diets, which were produced at
the INRA PEAT experimental mill (Nouzilly, France) are
given in Table 1. The growing and the reproduction diets
were produced from the same base, but the Met contents
was 2.6 g/kg for the Met-deficient diet and 4.2 g/kg for the
control diet, the latest being in conformity with the recom-
mendations. The diets were given as pellets.

At the age of 25 to 26 weeks the females were insemi-
nated with semen of Muscovy drakes of the INRA66
strain in order to produce G1 drakes. Each drake insemi-
nated two Met-deficient and two control females. A total
of 25 G1 ducks of both sexes were raised, of which eight
males were kept for reproduction, four from each diet
group of the GO dams. The G1 males were from three
different mothers in each group. The procreation of the
G2 mule ducks was performed by artificially inseminat-
ing the semen of G1 Muscovy drakes to common duck
females of the INRA444 strain. Two batches were pro-
duced (2012 and 2013). The procreation of G2 pure-
bred Muscovy ducks was performed by artificially
inseminating the semen of G1 Muscovy drakes to
Muscovy females of the INRA66 strain. Only one
batch was produced (2013). A mating plan was de-
signed and controlled at each generation: the insemi-
nations were performed following a nested mating
design: the semen from each male was used for insem-
inating its own mates.

The G2 mule ducks and Muscovy ducks were fed ad
libitum a commercial starting diet from 0 to 4 weeks of
age, followed by a commercial growing diet until 12
weeks of age. From the age of 8 weeks until 12 weeks,



Brun et al. BMC Genetics (2015) 16:145

Page 3 of 11

GO d

st 9 &

36

c2 y ¢

Fig. 1 Experimental design. In GO, four females were fed a Met-deficient diet while four other females were fed a control diet. They were inseminated
with semen of two Muscovy drakes in order to produce G1 drakes. A total of 25 G1 ducks of both sexes were raised, of which eight males were kept
for reproduction, four from each diet group of the GO dams. The procreation of the G2 mule ducks was performed by artificial insemination with the
semen of G1 Muscovy drakes to common duck females. The procreation of G2 purebred Muscovy ducks was performed by artificially inseminating the
semen of G1 Muscovy drakes to Muscovy females. Black: with Met-deficient diet, hatched: having an ancestor with Met-deficient diet, red: Muscovy
duck, blue: Common duck, green: Mule duck. The number of individuals in each group is indicated
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Table 1 Composition of the Met-deficient diets' of the GO female
Muscovy duck

Growing Reproduction
diet(9-15 weeks) diet(beyond 15 weeks)

Ingredients g/kg

Maize 501 4618
Soybean meal 196.3 2223
Wheat 200 200
Wheat bran 533 268
Soybean oil 20 10
Phosphate Dicalcium 134 16.8
Limestone 7.78 548
Trace elements 5 4
NaCl 3 3
Lys Hcl 0.22 0.5
Expected nutritional composition
Metabolisable Energy, 2900 2700
Kcal/kg
Protein, g/kg 160 165
Lys, g/kg 7.8 8.5
Met, g/kg 2.56 261
Met + Cyst, g/kg 559 5.65
Try, g/kg 1.79 1.86
Thr, g/kg 5.96 6.16
Ca, g/kg 8.55 27
P, g/kg 351 401
Choline chloride, g/kg 0.55 0.55

"P"Met was added to form the control diet

all the G2 ducks underwent preparation for force-
feeding in order to expand their crop by restricting the
duration of access to the feeders and making the ducks
ingest their ration quickly. They were then force-fed in
collective cages of four ducks of the same sex, genetic
background and diet groups. Force-feeding (FF) con-
sisted of two meals per day for 13 d (a total of 25 meals)
with a mixture of 35 % maize flour, 25 % maize grain,
and 40 % water. A specific FF planning was applied to
mule ducks (the same for both sexes), to male Muscovy
ducks and to female Muscovy ducks, with a planned
total feed quantity at 9685 g (dry matter), 7265 g and
5760 g for the three types, respectively. When the previ-
ous meal had not been digested by a duck it was either
fed a half-meal or skipped the meal. Slaughter occurred
at the end of force-feeding, at 14 weeks of age, in the
slaughter room of the experimental farm. The ducks
were bled after electronarcosis and plucked. The
carcasses were refrigerated for 24 h at 4 °C, and then
eviscerated. Livers and magrets were removed. The
magrets were dissected into muscle and skin (including
subcutaneous fat). Samples of livers were taken in order
to evaluate the technological yield of liver at sterilization,
generally denoted by “melting rate” according to the
procedure described by [17].

Traits studied

The focus was put on the G2 mule and Muscovy ducks.
However, several traits which could have been affected
by the Met restriction were recorded in the GO and G1
generations. Concerning GO Muscovy females, laying
was recorded all over the laying period. Fertility and
hatchability were recorded during the reproduction
periods. Concerning G1, male and female offspring were
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weighed at the ages of 24, 43, 65 and 95d. The 8 males
retained for reproduction were also weighed at 143d of
age.

Concerning the G2 mule and Muscovy ducks, body
weight at 4, 8, and 12 week of age were measured and
the weight gains between consecutive ages were calcu-
lated. Individual feed consumption during FF was re-
corded for each meal and total feed consumption during
FF was calculated. Body weight at the end of FF was re-
corded and weight gain during FF was calculated, along
with the ratio (ingested feed/ weight gain) indicating
feed efficiency during FF. Carcass was weighed and
carcass yield was calculated. Liver weight, the carcass
percentage of liver and the melting rate were recorded.
Abdominal fat weight and its carcass percentage were
evaluated. Magret weight, carcass percentage of magret,
and the percentage of ‘skin + subcutaneous fat’ in the
magret, an indicator of overall subcutaneous fatness of
the duck, were also recorded. The concentration of two
plasma parameters, glucose and triglycerides, was deter-
mined from blood samples taken three hours after the
meal, at two stages of the FF period: in the middle (after
the 12th meal) and at the end (after the 24th meal).

Statistical analyses

Laying and reproductive output of GO females were ana-
lyzed by analysis of variance (ANOVA) according to the
diet. The weights of G1 offspring during growth were
analyzed by ANOVA according to the maternal diet, the
sex, and an interaction between both factors. Concern-
ing G2, the mule duck traits and the Muscovy duck
traits were analyzed separately, because of i) the different
time span of both genetic types (two years in mule ducks
vs. one year in Muscovy ducks), ii) the specific high sex-
ual dimorphism of body weight in Muscovy ducks and
ili) hence, the potentially specific interactions involving
year and sex. The mule duck traits were analyzed by
ANOVA with the fixed effects of grand-maternal diet,
year, sex, and paternal grand-sire (2 levels). In a first
step, all 2 by 2 interactions were introduced in the
model except those involving the paternal grand-sire.
The interactions ‘diet by year’ and ‘diet by sex’ were not
significant. The model retained was thus a model with-
out interactions for all traits except for liver weight,
carcass percentage of liver and liver technological yield,
for which a ‘year by sex” interaction was included in the
model.

The model retained for the analysis of G2 Muscovy
ducks included the fixed effect of grand-maternal diet,
sex, the paternal grand-sire, and an interaction between
grand-maternal diet and sex. In the analyses of the G2
progeny traits, we tried to partition at best what is due
to genetic inheritance vs. diet-related parental effects.
This could have been achieved by taking into account a

Page 4 of 11

dam effect or a full-sib family effect. However, since the
design involved dams nested within sires which were
themselves nested within the diets,, this would have neither
changed the estimate of the diet effect, nor prevented an
eventual confounding. Actually, this confounding can be
partially removed only through effects which are crossed
and not nested with the diet effect. The only genetic effect
that was crossed with the diet was the paternal grand-sire
of the G2 individuals and it was included in the model.

The ANOVAs were performed using the PROC GLM
procedure of SAS (SAS Inst., Cary, NC, USA).

Results

Zootechnical results at GO and G1 generations

Met deficiency showed no significant effects on laying
rate, fertility or hatchability.

Maternal diet had no significant effect on the weights of
G1 progeny at any age and there was no significant diet by
sex interaction. The eight males (four Met-deficient and
four Control) which were utilized as breeders to procreate
the G2 offspring showed no significant weight differences
between diets. Their 143 d-body weight was, on average,
4244 + 109 g for the Met deficient diet and 4182 + 109 g
for the control diet.

Effects of grand-maternal Met-deficiency (GMMD) on G2
mule ducks

Table 2 gives descriptive statistics of the G2 mule duck
traits, the statistical significance of the factors of the
ANOVA and the least square means of the G2 mule
duck traits, according to grand-maternal diet, for traits
showing significant diet effects in this progeny type. For
comparison purposes between both progeny types,
means are also given for the traits showing a significant
diet effect in the Muscovy progeny. In the following text,
G2 ducks with a Met-deficient grand-mother will be re-
ferred to as GMMD ducks.

GMMD had a significant effect (P < 0.05) on 4, 8, and
12 week body weights of mule ducks, decreasing body
weight by 5 %, 3.4 %, and 2 % at these three ages, re-
spectively. This effect was no longer observed after FF,
at the age of 14 weeks (it even showed the reverse trend)
because weight gain during FF was significantly higher
for GMMD mule ducks (P < 0.01, Fig. 2).

Feed consumption during FF was not different be-
tween the two diet groups, indicating that they had the
same ability to ingest the standardized FF doses. Conse-
quently, feed efficiency during FF was higher in the
GMMD group (P < 0.001).

Abdominal fat deposits were higher in the GMMD
group (P < 0.05), as absolute value and as percentage of
the carcass.

The plasmatic triglyceride content showed a signifi-
cant effect of GMMD at the end of FF, but no effect at



Brun et al. BMC Genetics (2015) 16:145

Page 5 of 11

Table 2 Results obtained on G2 mule duck traits. Statistical significance of the effects of grand-maternal (GM) diet, year, sex and year
by sex interaction on G2 mule duck traits (paternal grand-sire effect is not given), and least square means (+ SE) of GM diet®

N GM diet Year Sex Year x sex Met-deficient Control
Growth traits
Body weight, 4 weeks 133 *x% ns *xx - 1326 + 10¢ 1397 + 11°¢
Body weight, 8 weeks 134 HxX HHX *HX - 2814 + 19¢ 2913 + 21°¢
Body weight, 12 weeks 133 * e Ns - 3390 + 23¢ 3458 + 25°
Weight gain, 4-8weeks 133 ns *xX ns -
Weight gain, 8-12weeks 133 ns ns e - 577 £ 19 545 + 21
Weight gain, 4-12weeks 132 ns Hxx xxx -
Force-feeding (FF) traits
Weight gain during FF 130 *x ns e - 1609 + 23¢ 1502 + 25¢
Body weight, 14 weeks (end FF) 131 ns ** i - 5016 + 30 4960 + 33
Feed consumption during FF 131 ns FEE *xX - 14071 + 48 14026 + 53
Ratio FC/WG during FF 129 o ns xxx - 878 + 0.15° 958 + 0.17°
Carcass traits
Carcass weight (CW) 129 ns * i -
l\/lagretb weight 131 ns ns * - 367.1 34 3645 + 3.7
Ratio (magret/carcass) 128 ns * ns -
Magret muscle weight 131 ns ns ns -
Ratio (fat + skin/magret) 131 ns ns ns -
Abdominal fat weight (AF) 131 * ns *x - 1567 + 2.7° 1465 + 299
Ratio AF/CW % 128 * ns ns - 345 + 0.05° 327 + 0.06¢
Liver weight (LW) 131 ns ns ns e
Ratio (LW/CW) 128 ns ns ** ** 121 +£03 119+03
Liver melting rate 131 ns *xX *xE **
Blood metabolites
Glucose mid-FF (g/L) 129 ns ns ** -
Glucose end-FF (g/L) 105 + ns FHX - 327 £0.19 283 +£0.20
Triglycerides mid-FF (g/L) 129 ns x ns -
Triglycerides end-FF (g/L) 105 * ns ns - 0.85 + 0.06° 0.64 + 0.07°

Least square means of GM diets are given for traits showing an effect of GM diet (P < 0.10) and also for traits showing a significant GM effect in the Muscovy

duck progeny (P < 0.05)

b“Magret” is the Pectoralis major with skin of a force-fed duck; FF = Force Feeding

*#**P < 0.001; **P < 0.01; *P < 0.05; +P < 0.10; ns: not significant; "~‘interaction not included in the model

<9values within a row with different superscripts differ significantly at P < 0.05

mid-FF. It was significantly higher in the GMMD group
(P < 0.05). The glucose content at the end of FF showed
a trend toward a higher value in the deficient diet group
(3.27 £ 0.19 g/L for the GMMD group vs. 2.83 + 0.20 g/L
for the Control group, P < 0.10).

It is noteworthy that GMMD had no significant ef-
fects on several carcass traits: carcass yield, magret
weight, and carcass percentage of magret were not
altered. Subcutaneous fatness of the whole body, as
indicated by the subcutaneous fatness of the magret was
not either altered. At last, liver weight, carcass propor-
tion of liver, and technological yield of the liver were
not altered.

As tested in a preliminary step, there was no signifi-
cant interaction between the diet and any other factor of
the model, and in particular the sex of the mule duck,
indicating that the observed effects were not sex-specific
(Additional file 1).

Overall, GMMD effects were significant for several
traits, repeated in both years of tests, and were not sex-
specific.

Effect of grand-maternal Met-deficiency (GMMD) in G2
purebred Muscovy ducks

Table 3 gives the statistical significance for the factors of
the ANOVA and the least square means of G2 Muscovy
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Fig. 2 Body weight differences between control and GMMD groups at two ages, in mule ducks. In G2 mule ducks, the depressive effect of
grand-maternal Met restriction on 4weeks-body weight is offset afterward by a positive effect on weight gain until the end of force-feeding. Body
weight (g) distribution is shown for GMMD (red) and control (blue) groups. Up : body weight at 4 weeks of age. Down : body weight at 14 weeks
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duck traits, according to grand-maternal diet (and to
grand-maternal diet by sex combination in case of inter-
action between both factors), for traits showing signifi-
cant effects in this progeny type (and also for that
showing significant effects in the mule progeny, for com-
parison purpose).

Concerning body weight traits, GMMD tended to de-
crease 4 and 12 weeks-body weight (P < 0.10) and signifi-
cantly decreased body weight at the end of FF (P < 0.05).
The effect of GMMD on body weight traits was generally
sex-specific, as indicated by trends to interactions between
grand-maternal diet and sex, and affected male offspring
particularly (Additional file 1). Twelve weeks body weight
for example showed a significant interaction (P < 0.0001),
with no effect on female offspring but a marked effect on
male offspring (5269 g and 5501 g for the GMMD and
Control ducks, respectively). Four to eight weeks weight
gain, and eight to 12 weeks weight gain exhibited signifi-
cant grand-maternal diet by sex interactions (Fig. 3). From

four to eight weeks, GMMD males had a higher weight
gain than Control ones (difference at 80 g, P < 0.0001),
whereas females showed no differences. From eight to 12
weeks, GMMD males had a lower weight gain than Con-
trol ones (difference at 280 g, P < 0.0001), whereas
GMMD females had a higher weight gain than Control
ones. Overall, GMMD had a sex-specific effect on weight
gain between the ages of 4 and 12 weeks, hampering the
growth of male offspring but not that of females. Magret
weight was decreased by GMMD, but its proportion in
the carcass was not significantly affected. At last, liver
weight was higher in GMMD ducks, which had a signifi-
cantly higher proportion of liver in the carcass.

Whether at mid-FF or at the end of FF, plasmatic glu-
cose content was not affected by grand-maternal diet. By
contrast, plasma triglyceride content was influenced by
grand-maternal diet at both stages. GMMD increased
triglyceride level by 24 % at mid-FF and by 48 % at end-
FE. The significant interaction between grand-maternal



Brun et al. BMC Genetics (2015) 16:145 Page 7 of 11

Table 3 Results obtained on G2 Muscovy offspring. Statistical significance of the effects of grand-maternal (GM) diet, sex and GM
diet by sex interaction on traits of G2 Muscovy offspring, and least square means (+ SE) of GM diet?, given by sex in case
of interaction

N GM diet Sex Diet x sex Met-deficient Control
Growth traits
Body weight, 4 weeks 72 + *xx ns 1421 £ 20 1468 + 20
Body weight, 8 weeks 70 ns FrE ns 3530 £ 36 3560 + 34
Body weight, 12 weeks 72 + xR * 4112 + 43 4221 + 41
" males 37 5269 + 60° 5501 + 59°
" females 35 2955 + 61 2941 + 60
Weight gain, 4-8weeks 70 Ns xxx *
" males 36 2678 + 37° 2596 + 36°
" females 34 1525 £ 38 1589 + 37
Weight gain, 8-12weeks 70 * xxx xxx 574 + 34° 660 + 32°
" males 36 921 + 50° 1202 + 49°
" females 34 227 + 51° 119 + 50b
Weight gain, 4-12weeks 72 Ns o *
" males 37 3609 + 55° 3798 + 54°
" females 35 1772 + 57 1708 £ 55
Force-feeding (FF) traits
Weight gain during FF 70 ns *xx ns 1132 £ 30 1153 £ 30
Body weight, 14 weeks (end FF) 70 * i ns 5244 + 51° 5390 + 51°
Carcass traits
Carcass weight (CW) 71 * i ns
Magret® weight 71 ns e ns 437 £ 5° 452 + 5°
Ratio (magret/carcass) 71 ns * ns
Magret muscle weight 71 ns *xx ns
Ratio (fat + skin/magret) 71 ns ns ns
Abdominal fat weight (AF) 71 ns xrx ns 154 + 5 154 + 5
Ratio AF/CW % 71 ** ns 329 £0.10 3.18 £0.10
Liver weight (LW) 71 + *HX ns 479 £ 12 451 £ 12
Ratio (LW/CW) 71 * e ns 103 +0.2° 96 +02°
Blood metabolites 71
Glucose mid-FF (g/L) 71 ns ns ns
Glucose end-FF (g/L) 71 ns * ns
Triglycerides mid-FF (g/L) 71 x> xxx x> 041 +0.02° 033 + 0.02°
" males 37 032+ 002 031 +0.02
" females 34 0.50 + 0.02° 035 + 0.02°
Triglycerides end-FF (g/L) 70 * + ns 0.59 + 0.06 040 + 0.06°

Least square means of GM diets are given for traits showing an effect of GM diet (P < 0.10) and also for traits showing a significant GM effect in the mule duck
progeny (P < 0.05)

b“Magret” is the Pectoralis major with skin of a force-fed duck; FF = Force Feding

*%P < 0,001; **P < 0.01; *P < 0.05; +P < 0.10; ns: not significant. *° Values within a row with different superscripts differ significantly at P < 0.05

diet and sex at mid-FF reflected that only the females were  differences between GMMD and Control males (046 +
affected. The pattern was the same at the end of FF,  0.08 g/L and 0.38 + 0.08 g/L for GMMD and Control
although not significantly, due to the large standard- males, respectively) but a difference between GMMD and
deviation of triglyceride content at that stage: no  Control females (0.71 + 0.08 g/L and 0.42 + 0.08 g/L for
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GMMD and Control females, respectively). Thus, GMMD
had a sex-specific effect on triglyceride content, which was
limited to the females.

As for the mule ducks, GMMD effects were significant
for several traits in G2 purebred Muscovy ducks, being
sex-specific in many cases.

Discussion

By measuring several production and metabolic traits in
purebred Muscovy or hybrid mule ducks of which the
paternal grand-mother was fed a methionine-restricted
diet, we showed that the mother diet is able to affect the
offspring of her sons. The transmission of such effects
over two generations through the father was observed in
both genetic types for traits such as body weight before
force-feeding and triglycerides plasma concentration,
while other traits affected by the grand-mother diet were
genetic type-specific.

GMMD effects in mule ducks vs. Muscovy ducks

The effects observed at G2 in mule ducks and in Muscovy
ducks share common features: in both genetic types,
GMMD decreased body weights during the growth phase
from 4 to 12 weeks of age. In the purebred Muscovy
ducks, this effect was however limited to the male pro-
geny. A year effect was observed in G2 mule ducks, and
particularly a sex by year interaction on liver-related traits.
This year effect is likely to be multifactorial since
factors influencing these zootechnical traits are nu-
merous, including incubation conditions, temperature
and hygrometry during the growth phase, and force-
feeding conditions.

Surprisingly, some effects of GMMD were specific of
the genetic type of the G2 offspring. The marked effect
of GMMD on weight gain during force-feeding and on
abdominal fat weight was observed in the mule duck
progeny only. The effects of GMMD on magret weight
and on carcass proportion of fatty liver were specific of
the purebred Muscovy progeny.

The hybrid mule duck progeny and the purebred
Muscovy progeny have thus specific responses to
GMMD, particularly for growth traits (sex-specific re-
sponse in Muscovy ducks only) and for FF traits
(weight gain during FF in mule ducks only and specific
localization of fat deposits).

The sex-specific effects on growth in Muscovy ducks
may be linked to the sexual dimorphism of body weight
which is particularly marked in this species, as compared
to the common duck or to the mule duck [18]. This sex-
ual dimorphism clearly appeared in our study, as for
example in the control group: the 12 weeks body weight
was 5501 g in males vs. 2941 g in females. The nutri-
tional requirements of males and females are therefore
very different, and the fact that GMMD affected particu-
larly weight gain between the ages of 8 and 12 weeks,
including the phase of preparation to FF with limited
time for feed consumption, could involve sex-specific re-
sponse group to nutritional restriction. Several studies
have shown environmental sex-specific effects, including
epigenetics modifications, during embryogenesis (see
[19] for a review).

Grand-maternal Met restriction affected traits associated
with lipid metabolism

In contrast with the depressive effect on body weight,
GMMD increased traits associated with lipid metabolism
such as weight gain during FF and abdominal fat weight
in the mule duck progeny, and the carcass proportion of
fatty liver in the Muscovy duck progeny. Thus, the diet
seems to drive the localization of fat deposits towards
abdominal fat in mule ducks, and towards liver in Muscovy
ducks. This seems to reinforce the natural differences
between these two genetic backgrounds, already observed
[20-22]. In birds, the liver is the principal site of lipogen-
esis, which, in the case of force-feeding, consists of the
synthesis of triglycerides from glucose, resulting itself
from the digestion of the starch of the feed. In the liver,
the unbalance between lipogenesis and lipid exportation
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leads to liver steatosis. The exported triglycerides are
transported as VLDL (Very Low Density Lipoproteins) to
peripheral tissues, forming subcutaneous, abdominal, and
intra-muscular fat deposits. During FF, most of the body
weight gain is made of lipids, not excluding the continu-
ation of muscular growth. Liver weight is a good indicator
of liver fat content, since lipids represent 61 % of fatty liver
weight [22] and since the correlation between liver weight
and liver fat content was found to be 0.95 in a population
of mule ducks (X Fernandez, personal communication).

Beyond the lipid synthesis, Met restriction of the
grand-mother influenced the body distribution of the
triglyceride storage from lipogenesis. Indeed, in the mule
duck progeny, abdominal fat weight was altered, but
neither was the liver weight nor the subcutaneous fat-
ness of the body after force-feeding. In the Muscovy
duck progeny, the body distribution of the triglycerides
storage was also altered by GMMD: the ducks from
Met-restricted grand-mothers retained more triglycer-
ides in the liver, at the expense of subcutaneous fatness
which was decreased, however not significantly. Indeed,
the indicator of the overall body subcutaneous fatness,
the magret percentage of (skin + fat) was 9.07 + 0.08 %
in the Met-restricted group vs. 9.21 + 0.08 % in the
Control one.

Our data could be viewed in relation with what is ob-
served in mammals where several studies showed that
methyl donor deficient diets (MDD diets) affect hepatic
metabolism in FO and/or F1 generations. In rodents for
example, Methionine and Choline deficiency favors hep-
atic steatosis [23, 24], through increased fatty acid
uptake and decreased VLDL secretion by the liver [25].
In rats, maternal MDD diet induces hepatic steatosis
[26] and changes in liver proteome [27]. In sheep, mater-
nal MDD diet affects the gene methylation level in the
liver of F1 offspring [28]. Epigenetic changes have been
evoked to explain these effects since methyl donors such
as folate, choline, methionine and vitamins B6 and B12,
are involved in one-carbon metabolism which releases
methyl groups (—~CH3) used by methyltransferases to
methylate DNA and histone proteins (see [29-31] for
reviews). Furthermore, the deficiency of methyl groups
may affect the transmethylation of co-regulators of nuclear
receptors such as PGCl-a which is a master regulator of
lipid metabolism and fatty acid oxidation [26, 29, 30].
More recently, Chen and coworkers identified modifica-
tions of DNA methylation in the promoter regions of 1032
genes in liver of F1 offspring from female rats fed with
MMD diet [32]. To our knowledge, no such maternal
MDD diet studies have been carried out in birds, and our
work differs from the ones cited above in the fact that it
focuses on the F2 generation and that the non genetic
effects of the MMD diet are transmitted through the sons,
and thus through their spermatozoa, to the F2 generation.
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Such effects of female diet transmitted to their grandchil-
dren via their sons have already been reported in humans.
Thus studying a cohort of grandchildren of women ex-
posed to 1944-45 Duch famine, Veenendaal and co-
workers reported that adult offspring (F2) of prenatally
exposed F1 fathers were heavier and more obese than chil-
dren of fathers who had not been prenatally exposed [9].

Epigenetic vs genetic effects

It cannot be excluded that part of the differences ob-
served in G2 between the two grand-maternal diet
groups, in both the mule duck and the purebred
Muscovy progenies, can have a genetic origin. Sampling
bias can have occurred in GO, due to the small number
of founders, resulting in genetic differences between the
two groups of founders. Again, the small number of G1
drakes may add some genetic drift, responsible for an
additional error in the G2 progeny mean estimation
[33]. Our tests for comparing met-deficient and control
G2 offspring did not take the genetic drift into account,
but the absence of differences in the average weights of
the two groups of G1 males brings some reassurance
concerning this putative bias. But the results observed
are compatible with the existence of epigenetic effects.
Indeed, it is now well documented in mammals that
environmental exposures (e.g., toxins, stress or nutri-
tional deprivation) of the GO generation can influence
gene regulations and the adult phenotypes of the G1, G2
(“multigenerational”’) and G3 generations (“transgenera-
tional”) through epigenetic mechanisms (e.g, DNA
methylation, histone modifications or miRNA) [8, 34—38].
In birds, resources deposited in the egg (e.g., nutrients,
hormones, carotenoids, vitamins or RNA transcripts) can
also impact newborn fitness and later adult phenotypes of
the G1 generation. But the egg composition can also
directly affect the G2 generation since the developing G1
generation bears the primordial germ cells that will even-
tually form a G2 progeny. Hence, the maternal nutritional
deficiency may have affected the epigenetic information
carried by the G1 drake spermatozoa, as already reported
in mammals [39]. This non-genetic inheritance may be
partially involved in human metabolic diseases [40].
Epigenetics marks in the Primordial Germ Cells of the
developing father may be influenced by the environment of
his mother [7]. This transmission of information through
the paternal germline may involve modifications of chro-
matin, small RNAs, or other mechanisms, yet to be deci-
phered [41, 42].

Contrary to maternal effects [43], paternal effects have
received much less attention [44, 45]. Nevertheless,
several studies have shown that the father may transmit
non-genetic information through spermatozoa epigen-
etic marks [39, 46, 47], or sperm component factors
[48]. As the father’s environment modification happened
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during the father’s embryonic development in our study,
we hypothesize that epigenetic effects may be involved
in the results observed here.

Conclusions

Our results indicate that the females’ diets can affect
their grand-offspring through their sons, in the Muscovy
duck. This was observed in two genetic backgrounds
(hybrids and purebreds) for traits such as body weight
before force-feeding and triglycerides plasma concentra-
tion after force-feeding, whereas other traits affected by
the grand-mother’s diet were genetic background-
specific, such as the weight gain during force-feeding or
the localization of lipid deposition. Whether this trans-
mission through the father of information induced in
the grand-mother by the environment is epigenetic re-
mains to be demonstrated.
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