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Abstract: Several challenges present themselves when discussing current approaches to the
prevention or treatment of pancreatic cancer. Up to 45% of the risk of pancreatic cancer is attributed
to unknown causes, making effective prevention programs difficult to design. The most common
type of pancreatic cancer, pancreatic ductal adenocarcinoma (PDAC), is generally diagnosed at a late
stage, leading to a poor prognosis and 5-year survival estimate. PDAC tumors are heterogeneous,
leading to many identified cell subtypes within one patient’s primary tumor. This explains why there
is a high frequency of tumors that are resistant to standard treatments, leading to high relapse rates.
This review will discuss how epigenetic technologies and epigenome-wide association studies have
been used to address some of these challenges and the future promises these approaches hold.
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1. Introduction

Consistently across sources, the top identified risk factors for pancreatic cancer include: Smoking,
obesity, age, recent onset diabetes mellitus, recent pancreatitis, hereditary pancreatitis and hereditary
pancreatic cancer. These risk factors are only present in about 50–60% of pancreatic cancer cases,
with known genetic alterations only accounting for about 5–10% [1–4]. Investigation into the role of
dysregulated epigenetic processes could help explain some of the unknown causes.

Globally in 2018 for pancreatic cancer, the estimated number of new cases was over 1,000,000, with
65,000 deaths [5]. Pancreatic ductal adenocarcinoma (PDAC) is the most common form of pancreatic
cancer, representing about 90% of pancreatic cancer cases. PDAC is generally diagnosed at a late stage,
leading to an extremely poor 5-year survival rate of around 7% [5]. PDAC tumors are heterogeneous
and frequently are resistant to standard treatments [6]. Currently, no effective biomarkers have been
identified for use in clinical diagnosis or prognosis.

PDAC is characterized by well-defined genetic modifications; however, epigenetic alterations
have recently been recognized as important contributors to PDAC development and progression [7],
as well as potential therapeutic targets [8]. Epigenetic changes are heritable modifications that are made
to the DNA chemistry or chromatin structures, influencing gene expression without altering the DNA
sequence [9]. Epigenetic alterations to oncogenes and tumor suppressor genes affect tumor progression
and are associated with PDAC patient survival post-diagnosis [10]. The principle epigenetic
mechanisms that influence tumor-associated gene expression are: DNA methylation [11]; histone
modification, including histone acetylation, deacetylation and methylation [12]; and microRNAs [13].
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Epigenetics refers to processes that take action on the DNA, rather than modifying the DNA
sequence (i.e., genetic alterations). Epigenomics only refers to the analysis of these epigenetic processes
across multiple genes or the entire genome (i.e., whole genome-wide). Several schematics exist to
demonstrate the interrelationship between genomic, epigenomic and signaling pathway alterations in
PDAC [14–17]. In this review, we will describe the different epigenetic processes and then move to
focus on epigenome-wide technologies and epigenome-wide association studies (EWAS) that have
investigated epigenetic markers associated with either the diagnosis or prognosis of pancreatic cancer.

2. Epigenetic Processes

In this section, several types of epigenetic processes are discussed, along with current
laboratory methods used to detect markers of each type of process. The processes that are discussed
include nucleosome remodeling complexes and nuclear architecture, histones, transcription factors,
methylation and non-coding RNA.

2.1. Nucleosome Remodeling Complexes and Nuclear Architecture

Nuclear DNA exists in a very compact configuration because of its interaction with an array
of proteins, including histones. During the process of transcription and replication, chromatin is
relaxed, remodeled and recovered in a cascade of events concisely referred to as chromatin remodeling
(CR). CR can be initiated by various types of histones or through an ATP-dependent mobilization of
nucleosomes; the latter is termed as nucleosome remodeling (NR). NR complexes are categorized into
four families: SWI/SNF, ISWI, CHD and INO80, each harboring a family-specific ATPase, BRM or
BRG1 (SWI/SNF), SNF2H (ISWI), CHD3 (CHD) and INO80 (INO80). Increasing evidence now suggests
that NR has fundamental roles in transcriptional regulation and DNA-damage repair [18]. The subunits
of NR complexes are known to be mutated or replaced with other complexes in more than 20% of
human cancers [19,20].

The basic biological properties of nucleosomes and NR are investigated using atomic force
microscopy (AFM) [21]. Additionally, DNA-histone binding strength, nucleosome stability and
nucleosome locations can also be analyzed using AFM [22,23]. More recent methods and technique
enhancements have been developed, including 3D modeling [24] and visualization in a buffer without
fixation [25].

2.2. DNA-Protein Interaction

2.2.1. Histone Modifications

Histone modifications, including acetylation and methylation, are another major epigenetic
mechanism responsible for regulating gene expression. The acetylation of lysine residues within
histone proteins prevents the positively charged lysine from interacting with the negatively charged
DNA, resulting in a more open chromatin structure that promotes gene expression. Conversely,
deacetylation has the opposite effect and results in a more closed chromatin structure that suppresses
gene expression. Histone deacetylases (HDACs) and histone acetyltransferases (HATs) are the key
enzymes associated with the removal and addition of acetyl groups to lysine residues in histone
proteins [26,27]. Increased expression of various HDACs is observed in PDAC and associated
with reduced tumor suppressor gene expression and enhanced cancer cell proliferation [28,29].
Enhanced HAT activity can activate oncogenes that drive tumor growth [30]. The methylation of
arginine and lysine residues in histone proteins constitutes another form of histone modification.
Several methyltransferases and demethylases are known to be overexpressed, mutated, deleted and
dysregulated in various human cancers; however, their impact on cancer-related mortality is not clearly
demonstrated [31].

The aberrant expression levels of mucinous glycoproteins, such as MUC17, has earlier been
correlated with PDAC pathogenicity and progression [32]. Epigenetic modifications, such as the
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dimethylation of H3-K9 in histone proteins, reduce the expression of MUC17, while acetylation at the
same sites was shown to elevate the levels of MUC17 [33]. Additionally, a higher activity of histone
alterations, like H2AK119 monoubiquitination (H2AK119Ub1) and H3K27 trimethylation (H3K27Me3),
which are controlled by Polycomb group (PcG) complexes, is associated with poor prognoses and
shorter survival times in PDAC patients [34].

Techniques to evaluate histone modifications frequently involve targeted antibodies [35].
Although this approach is sensitive and specific, prior knowledge of these modifications is required.
Affinity pull-down assays use different baits such as peptides, nucleosomes and chromatin to identify
histone modifications [36,37]. Chromatin immunoprecipitation and the subsequent sequencing of the
DNA fragments, referred to as chromatin immunoprecipitation sequencing, or ChIP-Seq, can analyze
genomic regions that are enriched in a particular histone modification. A critical challenge exists in
the development of sophisticated bioinformatics tools to integrate genomics and proteomics data and
provide new visualization tools for a comprehensive representation of chromatin organization [38].

2.2.2. Transcription Factors

Transcriptional factors (TFs) have the functional role of directing and attaching transcriptional
machinery to specific segments of the DNA within the cell [39]. Several TFs have been hypothesized
to influence pancreatic cancer differentiation and development including: Pancreas/duodenum
homeobox protein 1 (PDX1), pancreas transcription factor 1 subunit alpha (PTF1A), nuclear receptor
subfamily 5 group A member 2 (NR5A2), hepatocyte nuclear factor 1-alpha (HNF1A) and hepatocyte
nuclear factor 1-beta (HNF1B) [40]. Certain sequence-specific TFs, such as KLF11 and KLF14, have
been observed to primarily regulate metabolic gene networks [41–43] and genes important in PDAC
(e.g., KRAS) have been observed to either influence, or be influenced by, the functions of TFs [40,44].
More specifically, acinar cells lacking PTF1A are more frequently transformed by KRAS [45,46], while
NR5A2 prevents KRAS induced neoplasia through the maintenance of acinar cell plasticity [47],
and PDAC metastasis has been observed to increase with the activation of KRAS and the expression of
c-Myc TFs [48]. TFs have also been identified to influence PDAC survival or drug resistance through
their functional role in directing transcriptional machinery, thus providing potential individualized
therapeutic targets [49].

2.2.3. Next Generation Technologies

ChIP-Seq can be used to survey interactions between proteins, DNA and RNA. ChIP-Seq using
next generation sequencing (NGS) enables researchers to identify the binding sites of multiple protein
targets, including transcription factors and histones, across the entire genome. Comprehensive tools
such as Spatial Clustering for Identification of ChIP-Enriched Regions (SICER) [50] and Model-based
Analysis for ChIP-seq (MACS) [51] have been used to identify differential epigenetic markers in PDAC
patients using ChIP-Seq data. Several challenges have been identified for the analysis of ChIP-Seq data,
including understanding alterations based on different population genetic architectures, understanding
existence of modifiers or buffering variants and understanding missing heritability [52]. It will be
essential to overcome these challenges to deepen our understanding of the importance of specific
DNA-protein interactions and to identify the functionally relevant DNA and protein modifications
which create microenvironmental conditions favorable for PDAC development and growth [53].

2.3. DNA Methylation

DNA methylation involves the addition of a methyl group to the 5-carbon position of cytosine
within the DNA sequence and most frequently occurs in CpG sites where a cytosine (C) is positioned
next to a guanidine (G) nucleotide. DNA methyltransferases (DNMTs) initiate and maintain the
methylation state of the CpG sequences, which are commonly present in the promoter regions
of genes. Promoter hypermethylation is primarily associated with gene silencing, as methylation
interferes with the transcription factor binding to the promoter, resulting in the suppression of gene
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expression [54]. Conversely, promoter hypomethylation is associated with an increased expression of
the corresponding gene product. Cancer-associated genes, such as tumor suppressor genes, frequently
display promoter hypermethylation which reduces their expression and results in unchecked tumor
cell proliferation [55,56]. Recently, it was reported that the overexpression of DNMT1 in PDAC
was responsible for silencing key tumor-suppressor genes; namely p16, preproenkephalin and Ras
association domain family member 1 [57]. Critical cytokines such as transforming growth factor
beta 1 (TGF-β1) are known to drive epithelial-to-mesenchymal (EMT) transition in pancreatic cancer
cells [58,59]. The histone methyl transferase enzyme EZH2 was recognized to regulate EMT, mediated
via TGF-β1 signaling [60]. Additionally, the aberrant and widespread loss of DNA methylation of
several transcription factors such as TFF1, TFF2 and E2F5 has been identified in PDAC tissues [61].

Techniques to evaluate DNA methylation have evolved since the 1970’s, when the first approaches
were developed [62]. These early approaches included methylation-specific restriction enzyme
digestion and affinity purification of methylated DNA. Most of the techniques currently used
rely on bisulfite treatment and a subsequent PCR or sequencing analysis. The bisulfite method
converts cytosines to thymidines and can thereby distinguish methylation levels at a single-base-pair
resolution [63]. Next generation Illumina and Roche sequencing platforms have been commonly used
to sequence whole genomes after bisulfite treatment [64]. Methylated DNA fragments can also be
isolated using immunoprecipitation and are further used for hybridization with microarrays [65].
Several reviews have recently summarized DNA methylation technologies [66] and the decision of
which technique to use can be made based on the information required, number and type of samples,
and cost [67,68].

Recently, several studies (last two in preprint stage) have observed increases in both widespread
and targeted gene-specific 5-hydroxymethylation in PDAC. 5-hydroxymethylcytosine (5-hmC) is a
residue that is generated from the well-studied cancer associated 5-methylcytosine (5-mC). The first
study used a mass spectrometry method to compare 11 patient derived xenografts (PDX), 11 PDAC
cell lines, and two control pancreas cell lines. Their results suggested an increase in 5-hmC in the
enhancer region of key PDAC oncogenic genes (e.g., MYC, KRAS, VEGFA, and BRD4) [69]. The second
study used the high-throughput Illumina EPIC array to describe differences in 5-hmC distributions
in 17 pairs of patient pancreas tumor/adjacent tissues and found enrichment in genes found in
pathways relevant to cancer [70]. The last study used the Illumina NextSeq550 instrument with version
2 reagent chemistry to compare 5-hmC density differences in cell-free DNA from 51 PDAC patients
and 41 non-cancer patients. They identified (and validated in two independent datasets) a set of four
pancreas related genes and seven cancer related genes which differentiate between PDAC and normal
patients, with a reasonable Area Under the Curve (AUC) between 0.74–0.97 [71]. These results in total
suggest an important regulatory role for 5-hmC in the development and growth of PDAC.

2.4. Non-Coding RNA

Protein-coding genes constitute only 2% of the human genome, while a major proportion is
transcribed into non-coding RNAs (ncRNAs). NcRNA refers to a broad category of RNA molecules
that includes circular-RNA (circRNA), piwi-RNA (piRNA), micro-RNA (miRNA), small-interfering
RNA (siRNA), enhancer-RNA (eRNA) and long non-coding RNA (lncRNA). Substantial breakthroughs
have elucidated the functions of ncRNAs and have supplied plentiful evidence suggesting the roles of
ncRNAs in all fundamental cellular processes [72–74]. For the past two decades, many studies have
provided convincing data suggesting the roles of ncRNAs in tumor development, progression [75],
metastasis [76] and in drug-resistance [77]. Small RNA sequencing is commonly used to investigate the
abundance and sequence of small RNAs and shares the same basic principle and sample preparation
techniques as mRNA sequencing. Simple and cost-effective solutions, such as TruSeq Small RNA
Library Prep methods, are now available to generate small RNA libraries from total RNA. With the
development of deep sequencing platforms by Illumina and Roche, it is now possible to identify
and quantify small RNAs with unprecedented sensitivity and resolution. Using the aforementioned
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small RNA sequencing platforms, the roles of various miRNAs have now been validated in PDAC
cell invasion [78], migration [79], EMT [80] and resistance to chemotherapy [81]. Whole genome
high-throughput sequencing technologies have proven pivotal in elucidating the roles of lncRNAS
in human cancers and their interactions with miRNAs, mRNAs and DNA [82]. Apart from being
biomarkers, lncRNAs such as HOST2 are now known to play important roles in EMT transition,
proliferation and gemcitabine resistance in PDAC patients [83,84]. Colon cancer associated transcript 2
(CCAT2) is a lncRNA that has been associated with tumor growth and chromosomal instability [85].
Recent studies have demonstrated the involvement of CCAT2 in bladder cancer [86], breast cancer [87]
and gastric cancer tumorigenesis [88]. In addition, CCAT2 was shown to be upregulated in PDAC
tissue and its upregulation was associated with poor patient survival [85].

2.5. Public Databases

Databases harboring methylome and epigenome data from resected tumors and biopsy samples
have unlocked new avenues for genome-wide epigenetic research. The International Cancer Genome
Consortium (ICGC) [89] and The Cancer Genome Atlas (TCGA) [90,91] databases provide access to
hundreds of human pancreatic tumor samples for which omics data has been generated. ICGC data
utilizing the HumanMethylation450 BeadChip technology has been used to analyze genome-wide
methylation patterns in PDAC, employing Spearman’s correlation of differentially methylated
CpGs [92,93]. In addition, the ICGC database houses 2800 cancer whole genome data on “somatic
mutations, somatic structural variations, copy number alterations, germline variations, RNA expression
profiles, gene fusions and phenotypic annotations”, and researchers have conducted pan-cancer
analyses on these data [94]. Similarly, TCGA data on global methylation showed differential
methylation of markers for pancreatic cancer survival [89]. These databases have made it possible for
researchers to study global methylation and gene expression patterns with higher statistical power as
a progressively larger number of datasets become available on a common platform.

3. Sample Collection Considerations

Tissue biopsies are traditionally used to evaluate epigenetic changes in tumors. However,
the inability of tissue biopsies to completely characterize tumors has shifted attention to new
diagnostics and minimally invasive techniques, like liquid biopsies. Liquid biopsies involve the
analysis of analytes from biological fluids, namely blood [95,96]. The most common analytes
investigated in liquid biopsies include circulating tumor cells, cell-free DNA, cell-free RNA and
extracellular vesicles, such as exosomes. Circulating tumor cells and tumor DNA not only give insight
into the genomic mutations and copy number alterations, but are now regularly used to generate
information about the epigenomes [97], transcriptomes [98] and the metabolomes [99] of tumors. The
prognostic value of exosomes has been identified, but their application in determining predictive
markers and an applicable treatment response remains to be elucidated [100,101]. Recently, liquid
biopsies were used to detect tumor-specific methylation changes in cancer patients well before clinical
diagnosis of breast [102] and ovarian cancer [103].

PDAC tumors are known to be very heterogeneous and include a vast amount of stroma.
Therefore, capturing gene expression data on a PDAC tumor will only provide an overview of
the transcriptional activity of the tumor and not necessarily reflect what is occurring in the cancer
cells. Approaches have been developed to elucidate the cell-to-cell variability in tumors, including
PCR amplification of complimentary DNA from a single cells [104,105]. With the advent of more
sophisticated technologies, single-cell sequencing has been applied to identify cell types [106],
map gene regulatory pathways [107,108] and trace cellular response to stimuli [109]. Recently,
single-cell sequencing approaches have been applied for the genomic and transcriptomic profiling
of circulating tumor cells, broadening the applications of liquid biopsies. Single-cell sequencing has
proven pivotal in establishing intratumoral heterogeneity and gene signatures in esophageal [84]
and breast cancers [110], and in differentiating intraductal papillary mucosal neoplasms (IPMNs),
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a precancerous ductal cyst, from other pancreatic cysts [111]. In addition, the complexity of IPMNs
evolution has been shown to vary by early and late driver gene mutations [112]. The applications
of single-cell sequencing have not yet had a large impact in the context of analyzing the epigenome
of PDAC tumor cells, however, they do suggest the role of stromal extracellular matrix proteins in
creating the necessary microenvironment for metastasizing tumor cells [113].

4. Epigenome-Wide Studies for PDAC

Studies investigating candidate epigenomic components and their associations with PDAC are
increasing exponentially, with many review articles already published [14,16,114]. Since the primary
functional role of epigenetic factors is thought to be gene regulation, most studies will focus on the
correlation of epigenetic marker levels with gene expression. Below, we focus on summarizing the
studies which have taken an epigenome-wide approach to marker identification as a way to make
comparisons across studies more consistent. The search and article selection criteria can be found in
the methods section of this article.

When genome-wide associations are investigated, numerous statistical tests are performed,
therefore, multiple testing adjustment approaches such as the Bonferroni correction [115] or the
false discovery rate (FDR) method [116] need to be used to reduce the amount of results that are
significant due to chance. The use of setting log2 fold change cutoff values is a technique that
some researchers have used to reduce the chance of false negatives, however, the selection of the
cutoff is non-standardized. It has been proposed that the use of both p-value and effect size is equally
important [117], but the selection of arbitrary cutoffs will result in the exclusion of important alterations.
Evidence suggests that cancer is a very heterogeneous disease, with growth and development likely
driven by multiple alterations that would be minimal in effect size, rather than a few alterations of
large effect size, especially when the effect sizes represent an averaged value for a tissue sample [118].

4.1. Methylation

EWAS studies looking at methylation and PDAC are the most common because of the early
implementation of technologies. As a consequence, researchers have a better understanding of
the functional role that methylation plays in transcription and gene expression compared to other
epigenetic factors. The key characteristics of the reviewed methylation EWAS studies are presented in
Table 1.

The eight reviewed studies have focused on comparing methylation marker patterns for cancer to
either normal or cell line samples. The sample sources were generally from pancreas tissue, but also
included blood, cell lines and mouse models. The earlier studies had small sample sizes, limited
methylation markers and poor genome coverage. All studies experienced difficulty with the validation
of markers, multiple testing and clinical factor adjustments. In the later studies, significance was
based not only on the p-value but also the beta value, and the methylation level was correlated to
gene expression, thereby reducing the likelihood of false-positives and increasing the chances of
identifying functionally relevant results. Any methylation markers appearing in multiple studies
would be candidates for further study, since issues such platform technology, sample selection and
statistical methods would be minimized.

4.2. Non-Coding RNA (ncRNA)

NcRNAs, originally considered “transcriptional noise”, are classified into two groups (short
(sncRNA) and long (lncRNA)) based on the length of the RNA fragment [119]. These RNAs are able to
modify other epigenetic processes by interacting with DNA, other RNA and transcriptional factors.
To date, the limited EWAS studies have focused on lncRNA and are presented in Table 3.

The six reviewed studies have focused on comparing lncRNA markers for cancer to either normal
or cell line samples. Among these studies, there was a much heavier focus on treatment response and
survival as outcomes. The sample sources were generally from pancreas tissue, but also included cell
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lines and mouse models. All studies have been published since 2017 and have experienced difficulty
with the validation of markers, multiple testing, clinical factor adjustments and determining the
functional role of identified lncRNA markers. Any lncRNA markers appearing in multiple studies
would be candidates for further study, since issues such platform technology, sample selection and
statistical methods would be minimized.

4.3. Multi-Omics Studies

With the availability of public EWAS datasets with reasonable sample sizes for PDAC,
researchers have started to take a more system-wide approach to understanding the complexity
and interconnectedness of several types of epigenetic markers. These datasets are an important source
for exploratory studies or the validation of potentially important marker sets. The key characteristics
of the reviewed studies are presented in Table 2.

The four reviewed studies have focused on comparing at least two marker datasets (e.g.,
methylation, mRNA, expression, lncRNA) for cancer to either normal or cell line samples. The sample
sources were generally from pancreas tissue or cell lines. These types of studies for PDAC started
appearing in the literature around 2015 and have benefited immensely from the availability of data
through the public databases. Multi-omic studies experience difficulty with the use of non-standard
statistical/bioinformatic approaches, multiple tests, clinical factor adjustments and arbitrary filters to
reduce dimensionality [120–122]. Any marker set appearing significant in these studies has generally
appeared in multiple public datasets and in at least two different types of epigenetic marker sets.
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Table 1. Epigenome-wide association studies (EWAS) identifying methylation markers associated with pancreatic ductal adenocarcinoma (PDAC).

Source Tissue Type Techniques Sample Size Comparisons Strengths Weakness

[123] Pancreas tissue
88K Agilent promotor array
and 244K island
array—methylated CpG
island amplification (MCA)

10 pancreatic cancer cell lines;
normal human pancreatic ductal
epithelium (HPDE) and human
pancreatic Nestin-expressing cells
(HPNE)

Cancer vs.
normal

• Study conducted in cells lines and patient
tissue

• Early implementation of
technology

57 pancreatic cancer samples and 34
normal pancreas samples • Investigated using several approaches • Limited number of probes

[124] Leukocytes
Illumina GoldenGate
methylation
Beadchip—1505 CpG sites

Phase 1: 132 never-smoker cases and
60 never-smoker controls

Cancer vs.
normal • Validation • Limited number of probes

Phase 2: 240 cases and 240 matched
controls (half never smokers) • Adjustment for some confounders • Promotor region CpGs only

[54]
Cell lines and
pancreas tissue
samples

244K ChIP-on-Chip
microarray—27800 CpG
island array

9 pairs of pancreatic cancer versus
normal pancreatic epithelial tissues Cancer vs.

normal

• Looked at number different cell lines and
tissue samples • CpG islands only

3 matched pairs of pancreatic cancer
versus lymphoid tissue from same
individual

• No validation within this study
• Looked at methylation difference
as individual samples rather than
average of population

[125]
Pancreas tissue
samples

Methyl capture sequencing
method—(methylCap-Seq)

10 pancreatic cancer tissues and 10
adjacent non-tumor tissues

Cancer vs.
normal

• Explored potential functional result of CpG
methylation • Used p-value < 0.05

• 728/3911 differently methylated genes
identified that were also reported in at least one
of 3 different studies

• Early implementation of
technology

[92]
Pancreas tissue
samples

Infinium 450k methylation
array (Illumina)

167 untreated PDACs and 29
adjacent normal pancreata

Cancer vs.
normal • Larger sample size

• No discussion of the significance
of dissimilar pathway analysis
results using two different methods

121 PDAC and 8 nontumor Survival

• Looked at methylation across potential
confounding factors • Survival analysis methods not

described• 850/3522 genes previously reported to have
differential methylation
• Determined significance based on p-value
and beta value

[126]
Pancreas tissue
samples

HumanMethylation450k
Beadchip (Illumina)

Secondary analysis of public TCGA
data - 184 tumors and 10 normals

Cancer vs.
normal

• Looked at methylation and expression, as
well as mutation loads and copy number
variations of key oncogenes or suppressor genes

• Had to attempt to adjust for
batch effects using PCA

• Promoter region methylation highly
negatively correlated with gene expression

• Used median beta value for
genes with multiple methylation
markers with no justification

• Non-promoter region methylation highly
positively correlated with gene expression

• Stated gender bias was ignored
by excluding X and Y chromosomes

• Determined significance based on p-value
and beta value

• Used only beta value for
significance• Highlighted methylation of genes coding for

other epigenetic markers
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Table 1. Cont.

Source Tissue Type Techniques Sample Size Comparisons Strengths Weakness

[127]
PDX – pancreas
tissues - stem
cells

HumanMethylation450k
Beadchip (Illumina)

Not given
Cancer stems
cells vs.
non-cancer
stem cells

• Looked at stem cells from PDAC-185, liver
met (PDAC-A6L) and single cell-derived tumor

• Unknown systematic effects of
DNMT1 treatment

• Function of stems cells reduced by
inhibiting DNMT1 • Unknown sample size used
• Cancer stem cells show hypermethylation in
intergenic regions

[128] PDX – pancreas
tissue

Chip-seq
24 xenograft samples - tumor Survival

• Looked at chromatin states, DNA
methylation, Gene expression, and
Transcription factors

• limited to later stage samplesRNA-seq
MethEpic

Table 2. Multi-omic EWAS studies identifying marker networks in PDAC.

Source Tissue Type Techniques Sample Size Comparisons Strengths Weakness

[121] Pancreas tissue
5617 miRNA—Affymetrix
GeneChip miRNA 3.0

104 PDAC and 17 benign pancreas
tissue

Cancer vs.
benign

• Candidate markers annotated using
gene ontology analysis • New approach - unvalidated

33,297 mRNA—HuGene
1.0 ST

Validation in GEO and TCGA
databases

Cancer vs.
normal

• Selection of genes based on predictive
measures and adjusted p-values

• Weights are dataset dependent,
however, limited markers to
validation in at least 2 datasets

[134]
PDAC tumor
tissue and cell
lines

exome—llumina HiSeq
2000) 3 different cell lines and 6 primary

pancreatic cancer tumors

Primary
tumor vs cell
lines

• Combined exome data and
transcriptome data

• Variant analysis and
interpretation

transcriptome—RNA-seq
(Illumina HiSeq 2000)

• Variant filtering in pipeline removes
most false positives

• Biopsy samples generally
included normal tissue

• Made analysis pipeline available for
others to try and establish standard and
reproducibility

• Exome only on cell lines

[122] Pancreas tissue multiple—Table 1 in
reference

Cancer vs.
normal • Used FDR to determine significance • Datasets with no class-based

clustering were excluded

Survival

• Focused meta-analysis on functional
markers

• Several arbitrary filters applied -
currently no standardized data
combining techniques

• Visualization of significant results • Clinical factors not taken into
account in survival plots

• Large sample size - meta analysis • Hard to identify causal changes

[135] Cell lines
Agilent Human
Whole-genome expression
microarray

3 BxPC-3 and 3 BxPC-3ER
Treatment
response

• Investigated specific expression changes
associated with erlotinib resistance using
BXPC cell line

• Understanding metabolite
changes is limited

• Identified potential metabolic pathways
and associated genes to target to counter
resistance

• Expression and phosphorylation
of RTKs not consistent with previous
reports
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Table 3. EWAS studies identifying ncRNA markers associated with PDAC.

Source Tissue Type Techniques Sample Size Comparisons Strengths Weakness

[129] Pancreas tissue

Affymetrix Human
Genome U133 Plus 2.0

Secondary analysis: 117 tumor
samples and 73 normal pancreas
samples

Cases vs.
control

• Two markers validated in independent
cohort • Set significance at log2 fold

change > 1 and p-value < 0.05
Agilent-014850 Whole
Human Genome
Microarray

Independent set: 145 tumor and 46
normal samples • Multiple platforms used

IlluminaHiSeq 165 samples from TCGA Survival

[130] Pancreas tissue
RNA-seq 29 pancreatic ductal adenocarcinoma

xenogragts Drug targets • Used public databases and patient-based
samples

• Most functional impacts
unknownmiRNA-seq 3 public databases

[128] PDX—Pancrease
tissues

Chip-seq 24 xenograft samples - tumor Survival
• Looked at chromatin states, DNA
methylation, gene expression, and
transcription factors • Limited to later stage samples

RNA-seq •
MethEpic •

[131]
Pancreas
tissue—cell line
and mouse

RNA-seq 4 E1A;HRasV12;Neat1+/+ and 4
E1A;HRasV12;Neat1−/−

Gene
expression • Used multiple mouse and human cells • Literature has contradictory role

for Neat1

Chip-seq • Demonstrated important functional
roles for Neat1

• Previous evidence of Neat1 role
in tumorigenesis is unclear

Implication related to p53

[132]
Pancreas tissue RNA-seq Mouse Gene

expression • Associated Arid1a with MyC • Previous evidence of ARID1A
role in tumorigenesis is unclear

Cell lines Chip-seq Pancreatic ductal epithelial cells • Different roles given pancreatic cancer
cell type

• Mutational profiles of IPMN
currently unknown

[133]

Cell lines 11 cell line from patient-derived
xenografts

Gene
expression

• GATA6 regulated
epithelial-mesenchymal transition

• Proposed new functional role of
an EMT regulator

Pancreas tissue
samples 25 tumor samples

Survival • Patients with low GATA6 have worse
survival and worse treatment response

• Prior evidence for functional
roles in other cancers

Treatment
response

• Used samples from randomized clinical
trial

• GATA6 suspected oncogene, but
patients with low expression have
worse outcomes

• Support role of GATA6 in tumor
differentiation

• No cause-effect relationship with
5-FU treatment response
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5. Discussion

To date, EWAS studies have mostly focused on assessing the relationship between PDAC diagnosis
or prognosis with methylation or ncRNA markers (both individually and as sets) across the genome.
The hypothesized role of epigenetic markers is to regulate gene expression by controlling access to DNA
(e.g., presence will block access), and markers are often correlated with gene expression. However,
recent evidence suggests that this widely held assumption may not always hold true, as transcription
factors have been shown to bind to both methylated and unmethylated DNA [136].

The assessment of epigenetic markers associated with PDAC has been performed for both
diagnostic [126,128] and prognostic purposes [122,137]. In general, it has been and will continue
to be very challenging to develop potential epigenetic marker sets which provide diagnostic accuracy
and reliability for PDAC risk among an asymptomatic population. Focusing on higher-risk subgroups
of the population should help, but difficulties will still remain related to the heterogeneity and rarity
of PDAC, as well as the effectiveness of existing treatments with earlier diagnoses.

Multi-omic approaches are going to be key to furthering our biological/mechanistic understanding
of the development and metastatic behavior of PDAC. Studies have started to identify cell subtypes
based on epigenetic signatures in PDAC, and these subtypes have differential survival rates and
responses to treatment (reviewed in Reference [93]). Through further research, common heterogeneity
PDAC profiles and associated effective combination treatments can be developed to improve overall
PDAC patient survival with an individualized approach [135,138,139].

Sample collection and selection are key factors that require transparent discussion of strengths,
limitations and study hypotheses whenever researchers are presenting study results. For example,
the methylation marker sets that we measured from the cell-free DNA that was collected from a PDAC
patient will tell us different information than the methylation marker set which we would measure
from the primary tumor or in circulating exosomes in the same patient [16,140]. In terms of the
samples collected from patients, availability will be limited to those who have a diagnosis (meaning
generally a later stage diagnosis), thereby limiting the length of time to impact survival and the
ability to understand early, fundamentally important alteration/mutations and develop effective early
detection biomarkers. Mouse models (e.g., patient-derived xerographs), with their own limitation,
are a proposed approach of testing treatment effectiveness and understanding key early changes in
the pancreas leading to PDAC [141]. The importance of these differences and the utility of the less
complete and less invasive processes have yet to be determined but hold much promise.

Candidate gene/pathway studies in the laboratory using multiple tissues/cells will continue
to provide further biological and mechanistic evidence of statistical associations observed at the
genome-wide level. These type of laboratory studies will also provide insight into biological pathways
and can use knockout/knockdown models to clarify the functional relationships observed through
statistical associations and computational modeling [142].

Genome-wide based technologies and techniques are creating new datasets at a fast pace.
As scientific researchers, we need to be conscious and always highlight the key limitations of the
sample collection and lab-based methods, along with the results we are presenting. Each sample
type and technology provides us with a snapshot view of the biological system and disease state.
Therefore, attempting to further understand the biological processes and mechanisms of a complex
and heterogeneous disease like PDAC will require us to take a more systematic approach through the
integration of multi-omic datasets and laboratory results.

6. Materials and Methods

A search was conducted using the database PubMed in order to identify all published
studies with a combination of the following keywords in the abstract or title: “Pancreatic
adenocarcinoma”, “pancreatic cancer”, “methylation”, “RNA”, “epigenetic”, “multi-omics”,
“epigenomic”, “epigenomes-wide”, “genome-wide”. Abstracts were then screened to determine
which articles were EWAS studies for full review and inclusion in Table 1 or Table 3. The first step
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resulted in 295 articles. The articles where then excluded for one of the following reasons: (1) Not
related to PDAC; (2) not an EWAS study; or (3) not in English. There were 17 studies that underwent
full review for inclusion in Tables 1–3.
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