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Simple Summary: Understanding the microRNAs’ role in cancer is challenging, because, in the
most cases, the only tissues available are the tumor and its counterpart, the adjacent-to-tumor tissue.
Indeed, this scenario could affect our analyses in the cancer field, including to colorectal cancer.
Using systematic criteria to select the healthy individuals and sigmoid colon cancer cases, we found
that adjacent-to-tumor tissue already has molecular alterations in relation to healthy tissue and to
tumor tissue as well. In addition, all miRNAs found showed to be involved in the carcinogenic
process, according to the gene enrichment analysis. We suggested that future cancer studies should
consider using these three tissues in their analysis, as well as the creation of a database of healthy
individuals’ miRNA expression profiles. Using these three tissues, we could better understand the
role of adjacent-to-tissue in cancer and other several questions related with clinical aspects.

Abstract: The aberrant expression of microRNAs in known to play a crucial role in carcinogenesis.
Here, we evaluated the miRNA expression profile of sigmoid colon cancer (SCC) compared to
adjacent-to-tumor (ADJ) and sigmoid colon healthy (SCH) tissues obtained from colon biopsy extracted
from Brazilian patients. Comparisons were performed between each group separately, considering as
significant p-values < 0.05 and |Log2(Fold-Change)| > 2. We found 20 differentially expressed miRNAs
(DEmiRNAs) in all comparisons, two of which were shared between SCC vs. ADJ and SCC vs. SCH.
We used miRTarBase, and miRTargetLink to identify target-genes of the differentially expressed
miRNAs, and DAVID and REACTOME databases for gene enrichment analysis. We also used TCGA
and GTEx databases to build miRNA-gene regulatory networks and check for the reproducibility
in our results. As findings, in addition to previously known miRNAs associated with colorectal
cancer, we identified three potential novel biomarkers. We showed that the three types of colon
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tissue could be clearly distinguished using a panel composed by the 20 DEmiRNAs. Additionally,
we found enriched pathways related to the carcinogenic process in which miRNA could be involved,
indicating that adjacent-to-tumor tissues may be already altered and cannot be considered as healthy
tissues. Overall, we expect that these findings may help in the search for biomarkers to prevent
cancer progression or, at least, allow its early detection, however, more studies are needed to confirm
our results.

Keywords: biomarkers; field-effect; colorectal cancer; miRNome

1. Introduction

Colorectal cancer (CRC) is the third most common cancer and the cause of a considerable number
of deaths worldwide [1]. Despite the continuous progress in diagnostic and therapeutic methods [2,3],
Brazil is the sixth and seventh in incidence and mortality, respectively [1].

CRC is not a single type of tumor and its pathogenesis depends on the anatomic location [4],
differing between the colon (which is subdivided into seven parts: cecum, ascending, hepatic flexure,
transverse, splenic flexure, descending, and sigmoid) and rectum [5]. Depending on the anatomical
location and stage, CRC has a different molecular biological characteristic, which results in distinct
clinical practices [6,7].

Advances in molecular biology have demonstrated that subsequent genetic and epigenetic
alterations are required to initiate the carcinogenesis process, and drive the progression of adenomas
to carcinomas in sporadic and inherited forms of CRC [8,9]. This process can take decades to escape
the multiple cellular regulatory layers and fully develop [8,9].

To date, there are three significant pathways associated with CRC pathogenesis—chromosomal
and microsatellite stability, and CpG island methylation [9,10]. However, non-coding RNAs have
also been described as key in this process, especially the microRNAs [11]. These biomarkers—for
instance—may identify patients who are most likely to benefit from an individual treatment [6,11–13].

MicroRNAs (miRNAs) are small non-coding RNAs (~22 nucleotides) involved in the regulation of
mRNA translation [14]. Each miRNA has the potential to interact with more than one mRNA, which in
turn may be suppressed by several miRNAs [15]. Moreover, miRNAs are involved in multiple cellular
functions, including those related to malignant transformation, such as angiogenesis, cell growth,
genomic stability, and inflammatory response [15,16].

Recent studies have related miRNAs as potential biomarkers to improve the diagnosis and
prognosis; and have analyzed its application to cancer treatment, as reviewed by Liu and Chen [17].
However, currently, we are only scratching the surface; a significant amount of research is still required
to (a) generate a complete picture of miRNA expression and its clinical relevance in CRC; (b) gain
knowledge of potential targets, and their molecular effects; and (c) determine whether they will fulfill
their promise as biomarkers [18].

Keeping this necessity in mind, in recent years, our research group has been exploring the
role of these molecules in several aspects, including the characterization of the miRNA expression
profile in the human stomach [19,20]; and their dysregulation in gastric and oral cancer [21–27].
Additionally, we highlight their importance to the field cancerization process in gastric cancer [23,26,27],
which comprehends a group of cells in the adjacent to tumor mass that can be altered and be further
ahead in the evolutionary path towards cancer [28].

Thus, considering that each colon portion has different molecular biological features—implying
a specific clinical practice to CRC [29,30]—and the field cancerization theory, in the present study,
we evaluate the global expression profile of miRNAs in sigmoid colon cancer (SCC) and measure the
differences with sigmoid colon healthy (SCH) and adjacent-to-tumor (ADJ) tissues.



Cancers 2020, 12, 3311 3 of 23

2. Materials and Methods

2.1. Biological Material

Our samples are divided in two groups: healthy individuals and cancer patients. Healthy individuals
were submitted to the colonoscopy exam. The biopsy was collected without any alteration
(e.g., inflammation process, diverticulitis, diverticulosis, polyps, or tumor). Additionally, none of them
had a personal or familial history of neoplastic diseases (polyps or tumors, for instance). Regarding the
cancer patients, we collected a serial biopsy from those who had not had a prior diagnosis of cancer
and no previous clinical intervention (surgery, radiotherapy, chemotherapy, immunotherapy, or target
therapy). These criteria are schematized and illustrated in Figure 1.
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Figure 1. Flowchart of casuistic selection.

In the present study we included a total of 21 fresh samples of colon tissues. Of these, there were
seven biopsies of sigmoid colon cancer tumor (SCC), seven biopsies from the adjacent-to-tumor tissue
(ADJ, approximately 5~10 cm from tumor marge, avoiding necrotic tissue), and seven biopsies from
the sigmoid colon of healthy individuals (SCH).

The SCH tissues were obtained from healthy volunteers from the Centro de Diagnóstico de
Imagens do Hospital Universitário Onofre Lopes (Rio Grande do Norte—Natal). Regarding the cancer
patients, samples were obtained from patients treated at the Liga Norte Riograndense Contra o Câncer
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(Liga; Rio Grande do Norte—Natal). Immediately after collection, all samples were immersed in
RNAlater® Stabilization Solution (Ambion; Life Technologies, Carlsbad, CA, USA) and stored at
−80 ◦C until analysis.

Clinical data were collected from the pathological reports from the Liga’s department of pathology
(Table 1). Histopathological analysis of the tumor fragments was performed according to the
International Agency for Research on Cancer [31].

Table 1. Clinical characteristics of patients at diagnosis.

Characteristics Cases (n = 7) Control (n = 7)

Age 60.86 ± 10.4 years 51.85 ± 17.44 years
Sex (M/F) 5 (71.43%)/2 (28.57%) 3 (42.86%)/4 (57.14%)

Tumor grade (Intermediate) 7 (100%) -
Histological classification

Non-mucinous adenocarcinoma 6 (85.71%) -
Mucinous and non-mucinous adenocarcinoma 1 (14.29%) -

Inflammatory cell infiltrates (Yes) 7 (100%) -
Tumor budding

Yes 1 (14.29%) -
No/Not informed 5 (71.43%)/1 (14.29%) -
Depth of invasion

T1, T2 2 (28.57%) -
T3, T4 4 (57.14%) -

Tx 1 (14.29%) -
Lymph node involvement

N0/Nx 4 (57.14%)/1 (14.29%) -
N1, N2 2 (28.57%) -

Distant metastasis
M0/Mx 5 (71.43%)/1 (14.29%) -

M1 1 (14.29%) -
AJCC stage

Stage I/Stage II 2 (28.57%)/1 (14.29%) -
Stage III/Stage IV 2 (28.57%)/1 (14.29%) -

Unknown 1 (14.29%) -
Metastasis site (Liver/Not identified) 1 (14.29%)/6 (85.71%) -

Note: Tumors were classified according to the American Joint Committee on Cancer (AJCC) staging system.

2.2. Ethics Statement

This study was reviewed and approved by the Ethics Committee of the Liga Norte Riograndense
Contra o Câncer (Protocol N◦: 36185514.2.0000.5293). All study participants or their legal guardian
provided informed written consent following the Helsinki Declaration of 2013, the Nuremberg Code,
in compliance with the National Health Council’s Research Guidelines Involving Human Beings
(Res CNS 466/12).

2.3. RNA Extraction, Small RNA Library Preparation, and Sequencing

Total RNA was extracted using TRIzol® reagent (Thermo Fisher Scientific). After isolation,
total RNA was stored at −80 ◦C until further analysis. Total RNA was quality tested using the 2200
TapeStation Instrument (Agilent Technologies, Santa Clara, CA, USA). Samples with an RNA integrity
number ≥ 5 were sequenced. For small RNA-seq, 1 µg of total RNA per sample was used for library
preparation using TruSeq Small RNA Sample Prep Kits (Illumina, San Diego, CA, USA). A 4-nM library
pool comprising all samples was sequenced using a MiSeq Reagent Kit with v3-150 cycles on a MiSeq
System (Illumina, San Diego, CA, USA). The raw sequencing reads of all libraries were deposited at
the European Nucleotide Archive (PRJEB37027).
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2.4. Bioinformatics Analysis

Raw reads were preprocessed using Trimmomatic (v.0.36) [32] to remove adaptors, low-quality
bases, and reads with <16 nucleotides. We used the STAR aligner [33] to map the reads to the human
genome reference (GRCH37). We quantified mature miRNA sequencing according to the miRbase
human annotation (v20) using the HTSeq [34].

Differential expression analysis was performed using the DESeq2 package in the R software [35],
filtering miRNA with <10 reads. Comparison between [a] Sigmoid Colon Cancer (SCC) vs. Sigmoid
Colon Healthy (SCH); [b] Adjacent to Sigmoid Colon Cancer (ADJ) vs. SCH; and [c] SCC vs. ADJ samples
were made separately. FDR adjusted p-value < 0.05 and |Log2(Fold-Change)| > 2 were considered
statistically significant.

For graphical analysis, expression data were normalized using Median-Ratio Normalization
(MRN). Heatmaps were used for hierarchical clustering visualization of the differentially expressed
miRNAs (DEmiRNAs); a DAPC (Discriminant Analysis of Principal Components) was constructed to
infer the number of clusters of the related samples [36]. All graphical analyses were performed using
the R statistical platform v3.6.2 (http://www.r-project.org/).

2.5. Identification of the miRNAs’ Target Genes

We used two online tools to identify the target genes of DEmiRNA: [i] miRTarBase v.7.0
and [ii] miRTargetLink Human. We considered as target genes the overlapping results between
these databases.

To identify the target genes that are expressed in colon tissues, we used the “hpar” Bioconductor
package to access Human Protein Atlas (HPA) databases [37]. We selected gene expression on normal
(colon and rectum) and tumoral tissue, according to the HPA database. The criteria are schematized
and illustrated in Figure 2.
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Figure 2. Flowchart of the target genes selection. For normal tissues (HPA-Normal), the HPA quantifies
the expression as transcripts per million units (TPM). We considered target genes in normal tissues
those with TPM > 0. For tumor tissues (HPA-CRC), the HPA classifies protein expression according to
staining intensity (negative—N; low—L; moderate—M; or high—H). We considered target genes in
tumor tissues, those that have lower than two negative intensity cases, and at least one of others with
staining intensity supported by more than two cases.

http://www.r-project.org/
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The identified target genes were submitted to functional annotation and enrichment in
KEGG pathways using DAVID Bioinformatics Resources v.6.8 online tool [38,39]. Then, we used
the REACTOME Pathway Database to explore the over-represented pathways and topology.
Cytoscape v.3.7.2 was used to create a network of DEmiRNAs and DEGenes. The interaction
between potentially targeted genes was performed using STRING [40], considering only interactions:
curated from database or text-mining, experimentally determined, co-occurrent, and co-expressed.
Disconnected nodes were hidden from the network view.

We used The National Cancer Institute Genomic Data Commons (The Cancer Genome Atlas,
TCGA) and GTEx (Genotype-Tissue Expression) databases to obtain transcriptome data from the
healthy, tumor, and adjacent-to-tumor tissues to perform differential expression analysis. The criteria
for casuistic selection are detailed in Figure 3. Clinical features of TCGA participants were extracted
from cBioPortal for Cancer Genomics (Table 2).
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Figure 3. Data mining workflow. The GTEx data were downloaded using the recount v.1.14.0 package.
The TCGA data were downloaded using the TCGAbiolinks v.2.16.1 package. The differential analyses
were performed using the DESeq2 package. Transcripts with FDR adjusted p-value < 0.05 and
|Log2(Fold-Change)| > 2 were considered statistically significant. TUM = Primary Tumor. SNT = Solid
Normal Tissue. The red box indicates the filters applied during casuistic selection.

Table 2. Clinical characteristics of patients selected from the GTEx and TCGA dataset.

Characteristics TCGA—miRNA-Seq (n = 3) TCGA—RNA-Seq (n = 13) GTEx (n = 173)

Age 62.66 ± 20.42 years 64.69 ± 14.51 years Not informed
Sex (M/F) 33.33%/66.67% 53.85%/46.15% 59.24%/40.46%

AJCC stage
Stage I/Stage II 100% 84.62% -

Stage III/Stage IV - 15.38% -
Unknown - - -

Note: Tumors were classified according to the guidelines of the American Joint Committee on Cancer (AJCC)
staging system.
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3. Results

After quality control, alignment, and transcript quantification, the average number of mapped
reads per sample was 53,021, varying from 11,620 to 372,268. From a list of 2576 known miRNAs,
666 were detected, with raw read count ≥1 in at least one sample. Of them, 160 miRNAs presented
more than ten reads on average and were selected for further investigation. Considering this threshold,
the most abundant miRNA was hsa-miR-143-3p (responsible for ~33% of the expression), followed by
hsa-miRNA-192-5p, hsa-miRNA-10a-5p, and hsa-miR-10b-5p.

Differentially Expressed miRNAs Analysis

Differential expression analyses were performed following these three comparisons: [a] SCC vs. SCH
(four DEmiRNAs); [b] ADJ vs. SCH (ten DEmiRNAs); and [c] SCC vs. ADJ (13 DEmiRNAs),
resulting in a total of 20 DEmiRNAs – these results are presented in Figure 4A. As shown in Figure 4B,
some DEmiRNAs are shared between the models, while others are exclusive: two DEmiRNAs are
shared by SCC vs. ADJ and SCC vs. SCH (hsa-miR-21-3p and hsa-miR-215-5p), and five DEmiRNAs
were found only in ADJ vs. SCH (hsa-miR-100-5p, hsa-miR-1248, hsa-miR-145b and hsa-miR-99a-5p).
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Figure 4. Overview of the differential miRNA expression analysis. (A) Volcano plot showing the
differential expression analysis, (B) an overview of 20 differential expressed miRNAs in this study,
and (C) a comparison of these 20 miRNAs with results of previous studies with CRC patients.
These studies were annotated as Dark-grey and Light-grey according to tissue considered as reference.
Dark-grey = this study used a biopsy of a healthy subject as a reference against Colorectal Cancer (CRC).
Light-grey = these studies used adjacent-tumor tissue as the reference against CRC. Note: Sigmoid
Colon Cancer (SCC); Sigmoid Colon Healthy (SCH); Adjacent to Sigmoid Colon Cancer (ADJ).
Up = Upregulated. Down = Downregulated. NS = Not-significant or Not-evaluated.
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In Figure 4C, we compared our results with previous studies. We found that most of our DEmiRNAs
were previously described in CRC, except for hsa-miR-125b-2-3p, hsa-miR-1248, hsa-miR-190a-5p,
and hsa-miR-424-5p, indicating that these miRNAs could be potential novel biomarkers. We also
performed a differential analysis using TCGA miRNA-Seq data for comparison – data mining workflow
is detailed in Figure 3. Overall, we found nine DEmiRNAs in common and with the same expression
pattern between our comparison of SCC vs. ADJ and TCGA (Figure 4B).

Our set of 20 DEmiRNAs was used to perform a DPAC (Figure 5A) and a heatmap
(Figure 5B). Both analyses show evidence that these miRNAs can distinguish each group of samples
(SCH, ADJ, and SCC), suggesting its high specificity. It also indicates that ADJ tissue has different
expression from healthy and tumor tissues and cannot be considered as normal tissue, reinforcing the
field cancerization theory in CRC.
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Figure 5. A clustering-based approach for efficient identification of microRNA combinatorial biomarkers.
(A) Discriminant Analysis of Principal Components (DAPC) and (B) Heatmap plot of all differentially
expressed miRNAs, clustered by Euclidean distance. In DAPC, the individuals are represented as
dots and the groups as inertia ellipses. The axes represent the first two Linear Discriminants (LD).
The dashed line represents the 95% confidence interval. Principal Components (PC) eigenvalues
retained in the dimension-reduction step of the analysis are displayed inset, the Kaiser criterion
threshold is represented as a red line. Additionally, we used the cumulative proportion to assess the
total amount of variance that the consecutive principal components explain 90% of cases (red line).
In the heatmap, there are three miRNAs clusters. Cluster 1—differences between tumor expression
from their counterpart (adjacent tissue). Cluster 2—discern tumor expression from healthy tissue.
Cluster 3—discriminate adjacent-tumor expression from healthy tissue. Note: Sigmoid Colon Cancer
(SCC); Sigmoid Colon Healthy (SCH); Adjacent to Sigmoid Colon Cancer (ADJ).
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To better understand which pathways might be associated with the DEmiRNAs, we performed a
functional analysis of its target genes. We found 816 target genes in common between miRTarBase
and miRTargetLink Human. From those, 761 were selected for further investigation since they
were expressed in CRC and healthy colon according to the HPA database (Figure 6A). Overall,
these genes are involved in several cancer-related processes, such as inflammation, DNA repair,
cell cycle, and programmed cell death (Figure 7).
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Figure 6. Upset plot for the select target genes to perform (A) gene enrichment and (B) an integrative
analysis. Firstly (A), we selected target genes expressed in the healthy colon (HPA Rectum and HPA
Colon) and CRC (HPA CRC), related to Human Protein Atlas databases. These genes were used to
perform gene enrichment analysis. Then (B), we selected a gene subset to perform integrative analysis.
For this, we considered only the genes that were involved with 23 cancer-related pathways subsets and
were differentially expressed using TCGA and GTEx dataset. Highlighted in red are the genes selected
to perform this analysis. The UpSetR package v.1.4.0 was used to create the plot.
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Figure 7. Genome-wide overview of the pathways analysis. Reactome pathways are arranged
hierarchically. The center of each of the circular “bursts” is the root of one top-level pathway. Each step
away from the center represents the next level above in the pathway hierarchy. The color code denotes
the over-representation of that pathway in the input dataset. A numeric ID identifies the biological
process significantly over-represented and correlated with a carcinogenic process (01–11), used to
discriminate the significant main pathway involved in this process. Light grey represents pathways
that are not significantly over-represented.
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Furthermore, we also performed a functional gene set enrichment analysis by each comparison
(SCC vs. SCH; ADJ vs. SCH and SCC vs. ADJ), resulting in 50 enriched pathways (Figure 8). In the
first comparison (SCC vs. SCH), we found that the p53 signaling pathway is strongly enriched,
indicating that its four DEmiRNAs are related to cell growth and death. In the second comparison
(SCC vs. ADJ), in addition to several cancer-related pathways, we also observed six pathways that are
exclusive of this comparison (e.g., mTOR signaling pathway). In the last comparison (ADJ vs. SCH),
we found four pathways restricted to this model (e.g., Jak-STAT signaling pathway) and also some
cancer-related pathways.
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Figure 8. Gene set enrichment analysis of the DEmiRNAs. (A) The bubble chart shows significant
pathways associated with the respective miRNA profile, according to the statistical model analyzed.
This analysis was performed separately according to the profile of differentially expressed miRNAs.
Fold enrichment was represented only for pathways that had Benjamin Hochberg’s adjusted p-value
lower than 0.05. Each color represents a hierarchical class, according to the KEGG database. * = The
KEGG was associated with one statistical comparison. (B) The Venn diagram shows all possible logical
relations between the pathways obtained during gene enrichment analysis of statistical model sets.
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Later, of these sets of 50 pathways, we selected a subset of 23 pathways that are cancer-related to
explore. We searched for genes involved in each of these 23 pathways in TCGA (SCC and ADJ samples)
and GTEx (SCH samples) and performed a differential expression analysis—data mining workflow is
described in Figure 3. Using the same comparisons as before (SCC vs. SCH; ADJ vs. SCH and SCC
vs. ADJ), we found 33 differentially expressed genes that are related to the subset of the 23 pathways
(Figure 6B).

Then, by using an integrative approach, we built three miRNA-gene regulatory networks involving
these 33 genes and our 20 DEmiRNAs, according to our three comparisons — SCC vs. SCH (Figure 9),
ADJ vs. SCH (Figure 10), and SCC vs. ADJ (Figure 11). We also performed a functional enrichment
analysis related to each network. In the first comparison, we used four miRNAs and 20 genes and
observed that hsa-miR-let-7c-5p and hsa-miR-215-5p might be involved in pathways related to cancer
and cell cycle (Figure 9).
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Figure 9. Integrative analysis of the DEmiRNAs in SCC vs. SCH. (A) miRNA-Gene and
(B) Gene–Gene networks. In A, colors indicate if the miRNA or gene is up (red) or down (blue)
expressed. miRNA Log2(Fold-Change) measures were obtained from our casuistic analysis, while gene
Log2(Fold-Change) measures were obtained from TCGA and GTEx datasets. (C) Genes involved in the
carcinogenic pathway, according to our functional annotation. The box indicates the total of miRNA
and genes differentially expressed in this statistical comparison. Additionally, the total of pathways
related to cancer was observed. Note: SCH = Sigmoid Colon Healthy. SCC = Sigmoid Colon Cancer.
Disconnected nodes were hidden from the network view.
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reinforce the notion that the adjacent tissue cannot be considered as normal as it presents several 
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shows that there are some differences between these two types of tissues, being most of them 

related to the PIK3-Akt signaling pathway (Figure 11). 

Figure 10. Integrative analysis of the DEmiRNAs in ADJ vs. SCH. (A) miRNA-Gene and
(B) Gene-Gene network. In A, colors indicate if the miRNA or gene is up (red) or down (blue)
expressed. miRNA Log2(Fold-Change) measures were obtained from our casuistic analysis, while gene
Log2(Fold-Change) measures were obtained from TCGA and GTEx datasets. (C) Genes involved in the
carcinogenic pathway, according to our functional enrichment analysis. The box indicates the total of
miRNA and Genes differentially expressed in this statistical model. Additionally, the total of pathways
related to cancer was observed. Note: SCH = Sigmoid Colon Healthy. ADJ = Adjacent-to-Tumor.
Disconnected nodes were hidden from the network view.

In the second comparison, we integrated ten miRNAs and 19 genes, which were mostly enriched
for microRNAs in cancer, followed by pathways in cancer (Figure 10). These findings reinforce
the notion that the adjacent tissue cannot be considered as normal as it presents several molecular
alterations in comparison to the control group. However, the adjacent tissue cannot be considered as
the tumor itself. The third comparison, which integrates four miRNAs and 13 genes, shows that there
are some differences between these two types of tissues, being most of them related to the PIK3-Akt
signaling pathway (Figure 11).
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Figure 11. Integrative analysis of the DEmiRNAs in SCC vs. ADJ. (A) miRNA-Gene and
(B) Gene-Gene network. In A, colors indicate if miRNA or gene is up (red) or down (blue) expressed.
miRNA Log2(Fold-Change) were obtained from our casuistic analysis, while gene Log2(Fold-Change)
were obtained from the TCGA dataset. (C) Genes involved in the carcinogenic pathway, according
to our functional enrichment analysis. The box indicates the total of miRNA and genes differentially
expressed in this statistical model. Additionally, the total of pathways related to cancer was observed.
Note: SCC = Sigmoid Colon Cancer. ADJ = Adjacent-to-Tumor. Disconnected nodes were hidden from
the network view.

4. Discussion

In this study, we analyzed the differences in the microRNA expression profile of sigmoid colon,
sigmoid colon cancer, and their counterpart. We also investigated the pathways in which the
differentially expressed miRNAs are mainly associated. Furthermore, we constructed a miRNA-gene
regulatory network based on the closely related target genes and miRNAs to better clarify the molecular
mechanism of sigmoid colon cancer.

First, our data showed that the three types of colon tissue could be distinguished using a panel
of 20 DEmiRNAs (Figures 4 and 5). We accessed miRNAs’ global expression data from TCGA to
further validate our DEmiRNAs of SCC vs. ADJ comparison and found similar results, corroborating
our findings (Figure 4B). Then, we compared our 20 miRNAs-panel with previous studies [30,41–59],
and observed that most of them had been reported in association with CRC, except for hsa-miR-125b-2-3p,
hsa-miR-1248, hsa-miR-190a-5p, and hsa-miR-424-5p (Figure 4C), suggesting these miRNAs as potential
novel biomarkers.

Our results showed that hsa-miR-125b is highly expressed in ADJ, when compared with SCH and
SCC (Figure 4B), suggesting a potential activation of an initial carcinogenesis process, by inhibiting
apoptosis [60] and promoting tumor proliferation [61]. On the other hand, hsa-miR-1248 is predicted to
regulate numerous cytokines, including IL-5 [62], facilitating metastasis colonization by modulating the
immune-microenvironment [63]. The low expression of this miRNA in ADJ tissue, when compared with
the healthy one (Figure 4B), suggests potential immune cell recruitment in response to inflammation
triggered by the tumor [64].
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Although the inflammatory mechanisms are essential for normal tissue regeneration [65], in the
carcinogenic context, cytotoxic immune cells recognize and eliminate immunogenic cancer cells [66].
Meanwhile, they select cancer cell variants which are less immunogenic [66]. As it promotes tissue
repair, failure of this can lead to persistent cytokine production, aggravating tissue destruction (such as
necrosis) [67]. These findings corroborate with the histological data, which revealed that all patients
had inflammatory cell infiltrates in the primary tumor (Table 1, Figure 12).
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Figure 12. Histopathologic representation of tumor-infiltrating lymphocytes observed in the primary
tumor. Hematoxylin and eosin stain, (A) ×100; (B) ×200; and (C) ×400. The following representative
fields (D–F) show immunohistochemistry stain used to identify lymphocytes type. (D) The CD3+

indices presence of T lymphocytes, ×200. (E) The CD20+ marker indices presence of B lymphocytes,
×400; (F) the CD8+ marker indices presences of cytotoxic T lymphocytes, ×400.

Downregulation of hsa-miR-190a-5p has been associated with fast-growing, clinically features,
and potentially lethal cancer [68,69]. Moreover, its expression levels decrease with advanced
tumor grade [68]. Our results showed that this miRNA had lower expression levels in tumor
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and adjacent-to-tumor tissue when compared to a healthy one (Figure 4B), suggesting a chronic
carcinogenic process, which might be associated with tumor recurrence.

Interestingly, the role of hsa-miR-424-5p in the carcinogenesis process is controversial, depending on
the cellular context [70]. It was already described as a tumor-suppressor in the esophageal squamous
cell [71], hepatocellular [72], and ovarian tumors [73], while promoting cellular proliferation in other
tumors, such as gastric [74] and pancreatic cancer [75]. Our results showed a higher expression in the
cancer when compared with its counterpart (Figure 4B), which indicates that this miRNA might be
related to TGFBR3 [70]. This can result in the disruption of a pathway commonly associated with colon
cancer, the TGF-B superfamily signaling [76].

The global functional enrichment of the 20 differentially expressed miRNAs revealed genes
involved in several processes altered in cancer, including cell cycle [77] and death [78,79] (Figure 7).
Additionally, the p53 signaling pathway was the most enriched process in the comparison between
healthy and cancer samples. This shows the significant impact of these miRNAs in carcinogenic
pathways, by controlling most of the cancer hallmarks—such as deregulated proliferation and cell death,
replicative immortality, angiogenesis, invasion and metastasis, metabolism and genomic instability,
as well as immune response (Figure 8). The hsa-miR-let-7c-5p and hsa-miR-215-5p were identified
regulating most of the differentially expressed genes found between SCC and SCH (Figure 4) and were
closely related to the carcinogenic pathway, regulating the expression of RRM2, PMAIP1, CDKN2A,
CCNE1, and CCND1 (Figure 9).

The let-7 family has been described as a tumor-suppressor, repressing several oncogenes,
influencing cell proliferation and apoptotic pathways [80]. The upregulation of certain let-7 family
members has also been observed with less frequency, suggesting that hsa-let-7 does not act as a
tumor-suppressor under all circumstances or tissues [81]. Its upregulated expression has been
associated with cell differentiation [80], indicating that the increased expression could be used as a
prognostic marker to identify patients at risk. In hepatocellular carcinoma, the upregulation of this
miRNA was associated with high-grade tumors [80]. This finding corroborates our histological data,
which show that all patients had an intermediate-grade tumor (Table 1). Concerning hsa-miR-215-5p,
it has been reported in the literature as being downregulated in tumor tissue, as shown in Figure 4C.
Its expression reduces according to clinical stage progression and the presence of lymph node
metastases [46], enabling tumor proliferation and migration [82,83].

The regulatory network analysis, presented in Figure 10A, revealed evidence of two hub miRNAs in
the comparison of ADJ and SCH: hsa-miR-let-7c-5p and hsa-miR-125b-5p. The hsa-let-7c-5p demonstrated
the same aberrant expression profile in adjacent-to-tumor and tumor tissue when compared with
healthy tissues (Figure 4B). This finding suggests that the adjacent-tissue might be in the malignant
transformation process, by impact in immune-response [84,85] or already had a compromised cell
differentiation, as discussed above. Concerning hsa-miR-125b-5p, its role in carcinogenesis is unclear, as it
could be acting either as a tumor suppressor or an oncogene, as reviewed by Sun et al. [61]. The ectopic
expression of this miRNA in adjacent-to-tumor tissue, when compared with the healthy one, suggests
several possibilities of its role in recurrence and tumor progression. First, hsa-miR-125b might be
suppressing the ERBB2 and ERBB3 pathway, reducing proliferative growth, motility, and invasiveness
of tumors [86]. Second, elevated expression of hsa-miR-125b might be driving macrophages to an
active form, accompanied by increased co-stimulatory factor expression and elevated responsiveness
to interferon-gamma [87]. Furthermore, high macrophage infiltration has been associated with both
better and worst prognosis according to immune microenvironment stimuli [88].

Regarding the integrative network made for SCC and ADJ comparison, we found four
hub miRNAs (Figure 11A): hsa-miR-215-5p, hsa-miR-378a-3p, hsa-miR-133a-3p, and hsa-miR-143-3p.
Similarly, when compared with the healthy tissue, hsa-miR-215-5p presented as downregulated
in tumor tissue (Figure 4B), reinforcing its role in clinical-stage progression, as discussed above.
The hsa-miR-378a-3p profile showed to be consistent in different studies (Figure 4C), corroborating
our findings, indicating its role in inhibiting apoptosis, and promoting tumor proliferation [89].
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Furthermore, its expression might be reduced as a result of an inflammatory process occurring
in the tissue [90]. Regarding hsa-miR-133a-3p [91] and hsa-miR-143-3p [92], they might modulate
epithelial–mesenchymal transition, impacting cell adherence and tight junction, conferring an invasive
phenotype to various cancers. Additionally, as shown in Figure 11C, these miRNAs are mainly involved
in the PI3K-Akt signaling pathway, suggesting the impact of this pathway in differentiating the tumor
itself from the adjacent-tumor samples. This impact might be acting in synergy with adherence and tight
junction aberrations [93], consolidating the association of these miRNAs in malignant transformation
and suggesting them as potential biomarkers to evaluate safety margins or stratified potential of
recurrence cases.

Our results show that although adjacent-to-tumor tissues have unique characteristics differentiating
them from both healthy and tumor tissues (Figures 4A and 5B), they also share a few components,
such as hsa-miR-215-5p and hsa-let-7c-5p, respectively. In line with these findings, we observed that both
the tumor and adjacent tissues share pathways that might be compromised—such as p53 signaling
pathways [94], the Hippo signaling pathway [95,96], AMPK signaling pathway [97], and FoxO
signaling pathway [98]. Furthermore, we could observe that DEmiRNAs in tumor tissue can influence
pathways such as Focal adhesion [99], the PI3K-Akt signaling pathway [100], and TGF-beta signaling
pathway [101], influencing on the adjacent-tissue molecular profile [102].

To date, there are limitations regarding sample number, lack of available data, and lack of prior
research studies using healthy tissue as control. Several studies have used adjacent-to-tumor tissue
as controls in their approaches, reasonably by having an advantage of easy sample access. However,
by comparing only tumor tissues with their counterpart, many potential cancer biomarker candidates
may be missed, and others spuriously implicated [103,104], as exposed above.

The present study reinforces the importance of future studies considering the field-effect theory
during method design, as well as previous works published by our group in studies involving other
cancers [23,26,27]. Our study also raises several opportunities for future research, both in terms of theory
development and concept validation. We believe that some questions could be elucidated if we also use
healthy tissue as a control, for example: How could the adjacent tissue impact carcinogenesis? What are
the molecular differences between tumor and adjacent-to-tumor concerning healthy tissue, according to
the TNM stage? How could stromal molecular components influence the tumor progression? In which
moment could the adjacent tissue turn into a cancer, be it second primary tumor or local recurrence?
How could we avoid this malignant process? What are the best treatment strategies according to
the molecular profile? Moreover, we believe that new therapeutic targets could be identified as an
improvement in therapy against cancer.

5. Conclusions

In summary, our results demonstrated that 20 DEmiRNAs could distinguish the three types of
tissue evaluated here (SCC, SCH, and ADJ). Additionally, we found enriched pathways related to the
carcinogenic process in which these miRNAs could be involved, indicating that the adjacent-to-tumor
tissue may already be molecularly altered; therefore, it cannot be considered as healthy. Hence, it is
also essential to include healthy non-cancer tissues in case-control studies, since it may give a better
understanding of the molecular alterations occurring during the malignant transformation. Overall,
we expect that these findings may help in the search for biomarkers to prevent cancer development
allowing its early detection. A further validation may confirm this applicabilities. Moreover, we strongly
recommend that future cancer studies consider using these three tissues in their analysis, as well as we
suggest the creation of a database of healthy individuals’ miRNA expression profiles.
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