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Abstract

Dysregulation of protein tyrosine phosphatase, receptor type B (PTPRB) correlates with the development of a variety of
tumors. Here we show that PTPRB promotes metastasis of colorectal cancer (CRC) cells via inducing epithelial-
mesenchymal transition (EMT). We find that PTPRB is expressed at significantly higher levels in CRC tissues compared
to adjacent nontumor tissues and in CRC cell lines with high invasion. PTPRB knockdown decreased the number of
invasive CRC cells in an in vitro wound healing model, and also reduced tumor metastasis in vivo. Conversely, PTPRB
overexpression promoted CRC cell invasion in vitro and metastasis in vivo. PTPRB overexpression decreased vimentin
expression and promoted E-cadherin expression, consistent with promotion of EMT, while PTPRB knockdown had the
opposite effect. Hypoxic conditions induced EMT and promoted invasion in CRC cells, but these effects were
eliminated by PTPRB knockdown. EMT blockade via TWIST1 knockdown inhibited the migration and invasiveness of
CRC cells, and even increased PTPRB expression could not reverse this effect. Altogether, these data support the
conclusion that PTPRB promotes invasion and metastasis of CRC cells via inducing EMT, and that PTPRB would be a

novel therapeutic target for the treatment of CRC.

Introduction

Colorectal cancer (CRC) is one of the most common
cancers, and is diagnosed in more than 1 million patients
each year'. Moreover, CRC is the fourth most common
cause of cancer-related deaths after lung, liver, and sto-
mach cancer”. Surgical resection has been considered as
the most effective treatment for patients with CRC.
However, despite significant advances in perioperative
management and expansion of screening programs, CRC
mortality continues to increase rapidly worldwide®.
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Metastasis and recurrence are believed to be responsible
for limiting long-term survival of patients with CRC, and
there is an estimated recurrence rate of 29-63% among
patients with stage II-III CRC*. According to previously
reported data, the long-term survival of CRC patients with
liver metastasis is rarely longer than three years®. There-
fore, further understanding the vital mechanisms under-
lying CRC progression is urgent for developing new
therapeutic strategies to improve prognosis.

Protein tyrosine phosphatase, receptor type B (PTPRB),
also known as VE-PTP and RPTP}, is located on chro-
mosome 12q15°. The chromosome 12q15 locus contains
multiple proliferation-related genes, and patients with
deletions of the chromosome 12q15 region commonly
present with global developmental delay and growth
retardation’. PTPRB belongs to the protein tyrosine
phosphatase family, and consists of an extracellular
domain with multiple fibronectin type III-like domains, a
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single intracellular catalytic domain with C-terminal
phosphorylation sites, and a transmembrane domain.
Multiple studies have previously demonstrated that
PTPRB plays critical roles in regulating various biological
processes depending on binding and dephosphorylation
of many types of receptor tyrosine kinases (RKTs)®. Soady
et al. showed that PTPRB negatively regulates branching
morphogenesis in the mammary epithelium, dependent
on inhibition of FGFR activation and ERK1/2 phosphor-
ylation®. Genetic studies in both mammals and inverte-
brate model systems have shown that the RPTP family is
essential for tubular organ development'’.

Moreover, dysregulation of PTPRB function and
expression has been shown to correlate with carcinogen-
esis and tumor progression in multiple cancer types*' ™',
Qi et al. reported that PTPRB could decrease the level of
Src phosphorylation, resulting in reduced cell proliferation
and inhibitory tumorigenesis in non-small cell lung car-
cinoma'?, Activation of the insulin signaling pathway is a
very common phenomenon in many cancers'®. PTPRB
preferentially dephosphorylates the insulin receptor at
Y960 and Y1146, suppressing insulin-induced activation of
the insulin receptor and Akt'®.

In this study, we used CRC cell lines to explore the
expression of PTPRB and to analyze the biological function
of PTPRB protein, with a focus on invasion and epithelial-
mesenchymal transition (EMT). The results confirmed that
PTPRB is highly expressed in CRC tissues and CRC cell
lines with high invasion, and that PTPRB knockdown
suppresses CRC cell migration and invasion in vitro and
metastasis in vivo dependent on inhibition of EMT.

Results
PTPRB is associated with the motility and invasiveness of
CRC cells

The motility and invasiveness of three CRC cell lines
(LOVO, HCT116, and HT29) were analyzed by the
transwell assay and wound healing assay. After 36h
incubation, the wound distance was reduced by 70% in
LOVO, 50% in HCT116, and 30% in HT29 cells (Fig. 1a).
Similarly, the frequency of invasiveness was the highest in
LOVO, intermediate in HCT116, and lowest in HT29
cells (Fig. 1b). Interestingly, the expression of PTPRB at
both the transcriptional level (Fig. 1c) and protein level
(Fig. 1d) was high in LOVO, intermediate in HCT116, and
low in HT29 cells. These results indicate that the
expression of PTPRB in cells with different motility rates
was different. The expression of PTPRB in cells with high
motility rate was higher.

PTPRB promotes migration and invasion in CRC cell lines

siRNAs targeting PTPRB and PTPRB overexpression
plasmids were, respectively, used to decrease and upre-
gulate PTPRB expression in three CRC cell lines. Western
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blotting showed the transfection efficiency of PTPRB
siRNA or PTPRB plasmid in all cell lines (Fig. 2a). The
PTPRB-siRNA-transfected CRC cells showed a significant
decrease in motility compared to the negative siRNA.
Conversely, PTPRB overexpression accelerated the rate of
wound healing in the CRC cell lines (Fig. 2b). A similar
effect of PTPRB on invasiveness was observed. PTPRB
knockdown significantly decreased the number of invasive
cells compared to negative siRNA, while PTPRB over-
expression promoted invasiveness (Fig. 2c).

PTPRB regulates EMT in CRC cell lines

The expression level of vimentin ranged from high to
low in LOVO, HCT116, and HT29 cells, and an opposite
trend in expression was observed for E-cadherin (Fig. 3a,
b). This result suggested that EMT was essential for CRC
cell migration and invasion. We therefore investigated the
relationship between PTPRB expression and the EMT
process in CRC cells. After decreasing PTPRB expression,
CRC cells showed reduced vimentin expression and
increased E-cadherin expression. On the contrary, PTPRB
overexpression promoted vimentin expression and
downregulated E-cadherin expression (Fig. 3c). In line
with the results of western bolt, PTPRB siRNA could
decrease the fluorescence of vimentin and increased the
fluorescence of E-cadherin, while PTPRB overexpression
had the opposite effect (Fig. 3d). At the same time, PTPRB
siRNA could reduce twist expression while PTPRB over-
expression increased twist expression (Fig. S). Finally, a
siRNA-targeting Twistl was transfected into CRC cells to
inhibit the EMT process. As anticipated, Twistl knock-
down significantly inhibited CRC cell migration and
invasion (Fig. 4a, b). In addition, Twistl knockdown also
eliminated the effect of PTPRB overexpression on pro-
moting CRC cells invasion.

PTPRB knockdown inhibits hypoxia-induced metastasis in
CRC cells

Hypoxia has a significant role in inducing EMT and
metastasis in multiple cancers including CRC'”. Hypoxia-
inducible factor (HIF) is the key factor of physiological
and pathological hypoxia response, which is significantly
expressed in hypoxic environment. The qRT-PCR assay
showed the level of HIF-1a was increased under hypoxia
compared to the normoxia condition, indicating hypoxic
condition was generated (Fig. 5a). After culture for 36 h in
hypoxic conditions, CRC cells showed increased migra-
tion and invasion compared to control groups (Fig. 5b, c).
However, PTPRB knockdown could reverse the effect of
hypoxia on promoting migration and invasion. In addi-
tion, we had detected the effect of PTPRB on Twist under
hypoxia. The twist expression was increased under
hypoxia while PTPRB siRNA could reverse the effect of
hypoxia on twist (Fig. S).
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Fig. 1 a The wound recovery ratio after incubation for 36 h for LOVO, HCT116, and HT29 cells, **P < 0.01, **P < 0.001. b The number of invasive cells
in LOVO, HCT116, and HT29 lines, **P < 0.01, ***P < 0.001. ¢, d The expression level of PTPRB in LOVO, HCT116, and HT29 cells was detected at the

PTPRB promotes tumor metastasis in vivo

To determine the effects of PTPRB expression level on
tumor metastasis in vivo, PTPRB shRNA and PTPRB
plasmids were transfected into CRC cells. Western blot-
ting showed the transfection efficiency of PTPRB shRNA
or PTPRB plasmid in HCT116 cells (Fig. 6a). Compared
to mice injected with control cells, PTPRB knockdown
cells inhibited tumor metastasis in the whole body (Fig.
6b), such as lung (Fig. 6¢), while PTPRB overexpression
increased tumor metastasis. Moreover, western blot ana-
lysis (Fig. 6d) and RT-PCR (Fig. 6¢) revealed that PTPRB
knockdown decreased vimentin expression and increased
E-cadherin expression in tumor tissues. PTPRB over-
expression showed an opposite effect on vimentin and E-
cadherin expression.
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PTPRB is highly expressed in CRC

To analyze the expression of PTPRB in CRC, tumor
tissues and adjacent nontumor tissues from 100 patients
were assayed by immunohistochemistry and RT-PCR. As
seen in Fig. 7a—c, the level of PTPRB mRNA and protein
was significantly higher in CRC than in adjacent tissues.
But as shown as in Fig. 7d, survival analysis indicated that
there was no significantly difference between low
expression and high expression of PTPRB.

Discussion

PTPRB has been investigated in multiple primary
malignancies and tumor cell lines'*'®'?, However, there
are few studies on the relationship between PTPRB
function and CRC. This study firstly demonstrated that
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Fig. 2 a The expression level of PTPRB in LOVO, HCT116, and HT29 cells after transfection of PTPRB-siRNA or PTPRB, *P < 0.05,**P < 0.01, ***P < 0.001.
b, ¢ The wound recovery ratio and number of invasive cells in LOVO, HCT116, and HT29 cells transfected with scrambled-siRNA, PTPRB-siRNA, or

PTPRB plasmid, *P < 0.05*P < 0.01, ***P < 0.001
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PTPRB is highly expressed in CRC tissues compared with
adjacent nontumor tissues and in CRC cells with high
metastasis potential. Metastasis is well known to be the
main cause of CRC-related death, and more than 50% of
patients with CRC will present with liver metastases
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during their lifespan®®. PTPRB-siRNA significantly sup-
pressed migration and invasion of CRC cells in vitro and
inhibitory tumorigenesis in vivo. This result suggested
that PTPRB was a potential molecular target against CRC
metastasis. PTPRB could catalyze the dephosphorylation
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of phosphotyrosine residues, and along with protein tyr-
osine kinases could modulate the levels of phosphotyr-
osine modification in tumor cells.

Reversible phosphorylation of tyrosine accounts for less
than 1% of the phosphoproteome, but it plays a dis-
proportionately significant role in many diseases includ-
ing cancer initiation and development®'. Nearly 50% of
the 90 human tyrosine kinases are implicated in cancer®,
and many different RTKs are direct targets for protein
tyrosine phosphatases”~2°. Hence, PTPRB could regulate
the proliferation, migration, invasion, and tumorigenesis
of tumor cells as an essential regulator of the RTK sig-
naling network.

Understanding the molecular mechanisms underlying
how CRC cells acquire invasive and metastatic properties
is essential for the development of effective strategies for
CRC therapy. Increasing evidence supports the view that
EMT could endow tumor cells with metastatic features
via inducing loss of epithelial characteristics, for instance,
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cell depolarization, cell-cell disconnection, and trans-
formation into an elongated, fibroblast-like morphol-
ogy’®. EMT is characterized by decreased expression of
epithelial cell junction proteins such as E-cadherin,
occludins, and claudins, and the upregulation of
mesenchymal adhesion genes encoding, for instance,
vimentin, fibronectin, and N-cadherin®’. Among these,
downregulation of E-cadherin expression results in the
destabilization of adherens junctions and is a primary
step for cancer metastasis. Therefore, we investigated
the relationship between PTPRB and E-cadherin
expression in CRC cells. Western blot analysis and
immunofluorescence analysis showed that PTPRB
overexpression induced higher vimentin expression and
lower E-cadherin protein expression, while PTPRB
knockdown resulted in an opposite effect on vimentin
and E-cadherin protein expression in CRC cells. These
results suggested that PTPRB plays a significant role in
regulating EMT.
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Fig. 5 a The expression level of Hif-1a in LOVO, HCT116, and HT29 cells was detected under hypoxic condition by RT-PCR. b, cThe wound recovery
ratio and number of invasive cells in LOVO, HCT116, and HT29 cells after incubation in normoxic conditions, hypoxic conditions, or hypoxic condition
+ PTPRB-siRNA transfection for 36 h. *P < 0.05,**P < 0.01, ***P < 0.001
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The regulation of epithelial and mesenchymal markers — (TWIST1/TWIST2)*, the zinc finger E-box binding
requires robust transcriptional machinery, consisting of homeobox (ZEB) family of transcription factors (ZEB1/
three major groups of transcription factors: the TWIST ~ ZEB2)*’, and the SNAIL family of zinc-finger transcrip-
family of basic helix-loop-helix transcription factors tion factors (SNAIL/SLUG). In this study, Twist]l siRNA
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was transfected into CRC cells to inhibit the EMT pro-
cess. The results showed that Twistl knockdown could
eliminate the enhanced capacity for migration and inva-
sion induced by PTPRB overexpression, suggesting that
EMT may be the mechanism underlying the capacity for
PTPRB to promote invasion.

In cancer cells, EMT is abnormally modulated by
extracellular stimuli derived from the tumor micro-
environment, for instance, inflammatory cytokines,
growth factors, as well as intratumoral physical stresses
such as hypoxia®*. Therefore, we further cultured CRC
cells in hypoxic conditions to induce EMT. We found that
PTPRB knockdown inhibited expression of EMT markers
even under hypoxic conditions. Altogether, these results
provide compelling evidence supporting the prometa-
static and pro-EMT function of PTPRB in CRC.

The in vitro experiments showed an antimetastasis role
of PTPRB knockdown in CRC, and thus prompted us to
evaluate its functions in tumor metastasis in vivo. The
results showed that stable knockdown of PTPRB led to a
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significant inhibition of metastasis in lung and rectocolon
in nude mice. Moreover, tumor sections from PTPRB
knockdown xenografts showed lower levels of vimentin
expression and upregulation of E-cadherin expression.
Finally, the RT-PCR assay revealed that PTPRB was sig-
nificantly upregulated in CRC tissues compared to adja-
cent nontumor tissues. Consistent with mRNA
expression, immunohistochemical analysis showed that
PTPRB was highly expressed in tumor tissues at the
protein level. But, survival analysis showed that there was
no significantly difference between low expression and
high expression of PTPRB. It may be that the number of
cases is not enough, or the meaning of cytoplasmic
nuclear protein expression may be different. Anyway,
these findings provide more comprehensive insight into
the value of PTPRB as a potential CRC therapy target.
In conclusion, our study shows that PTPRB is upregu-
lated in CRC. Functional data from both in vivo and
in vitro assays strongly support the inference that PTPRB
overexpression promotes the metastasis of CRC.
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Moreover, our study revealed the effect of PTPRB on
promoting EMT, as reflected in increased vimentin and
decreased E-cadherin expression potential, which pro-
vides a potential comprehensive mechanism by which
PTPRB may promote metastasis.

Materials and methods
Clinical specimen collection and cell culture

Samples from 100 patients undergoing CRC resection
were collected from Shanghai Outdo Biotech Company.
Informed consent was obtained from all patients, and the
experimental protocols agreed with local ethics commit-
tee regulations. Three CRC cell lines (LOVO, HCT116,
and HT29) were purchased from Cell Bank of Type
Culture Collection of Chinese Academy of Sciences,
Shanghai Institute of Cell Biology, Chinese Academy of
Sciences. LOVO and HT29 cells were cultured in 1640
complete medium supplemented with 10% fetal bovine
serum (FBS) while HCT116 cells were cultured in
McCoy’s 5A (Modified) Medium with 10% FBS at 37 °C in

Official journal of the Cell Death Differentiation Association

a humidified incubator with 5% CO,. Furthermore, the
hypoxic condition in a hyposic incubator is 5%CO,, 94%
N,, and 1%0O, at 37 °C.

Transfection assay

The cells were seeded in a six-well plate at 1 x 105.
When 80% confluence of cells, the siRNA (final con-
centration 100 nM, Ribobio, Guangzhou, China) or plas-
mid (2 ug, Hanbio, Shanghai, China) was transfected into
the cells with liposome lipo 2000 (Invitrogen, California,
USA). The lipo was diluted (5 pl/well) and the siRNA or
plasmid was diluted at the calculated concentration by
OPTIM-MEM (Gibco Company, Massachusetts, USA),
respectively, and then the two were mixed in a propor-
tional manner for 15 min. The cells were transfected by
the mixed medium in an incubator for 6-8 h and then
cultured in a normal culture medium. For in vivo study,
the siRNA proved effective in vitro was packaged into
lentivirus (Hanbio, Shanghai, China). In order to generate
stable transfected cell lines, puromycin and G418 were
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separately used to screen for lentivirus and plasmid
transfected cells. The survival cells were collected and
cultured. Western Blot was used to detect the transfection
efficiency. The siRNA sequences targeting PTPRB and
Twist 1 are listed as follows:

Twist 1,

Twistl-homo-1575 5 GGUGUCUAAAUGCAUUCAU
TT 3’

5" AUGAAUGCAUUUAGACACCTT 3’

Twistl-homo-810 5° GGUACAUCGACUUCCUCUA
TT 3’

5" UAGAGGAAGUCGAUGUACCTT 3’

Twistl-homo-780 5° GCAAGAUUCAGACCCUCAA
TT 3’

5" UUGAGGGUCUGAAUCUUGCTT 3’

PTPRB,

PTPRB-Homo-1817(human) 5 GCAGAACAUUUCCA
GACAATT 3’

5" UUGUCUGGAAAUGUUCUGCTT 3’ (For lentivirus
package)

PTPRB-Homo-2364(human) 5° CCAAGUGACUGACU
UGCAUTT 3’

5" AUGCAAGUCAGUCACUUGGTT 3’

PTPRB-Homo-3685(human) 5° GCAUCUGUCCAAG
GAGUAATT 3’

5" UUACUCCUUGGACAGAUGCTT 3’

Total RNA extraction and RT-PCR

Total RNA from cells and CRC tissues were extracted
using a TRIzol Total RNA extraction Kit (Invitrogen Co.),
and reverse-transcribed to c¢DNA using a TaqMan
Reverse Transcription Kit (Applied Biosystems). Quanti-
tative real-time PCR (qRT-PCR) analysis was performed
using a Takara SYBR Premix Ex Taq system (Applied
Biosystems). All experiments were performed in triplicate.
The nucleotide sequences of the primers used for qRT-
PCR (Shanghai Sangon Biological Engineering Technol-
ogy Services Co., Ltd) are as follows:

PTPRB,

Ptprb-F 5" CACAGAGATGCAATCTACTCGAGAC 3’

Ptprb-R 5" CAACAGAAATGGCTGGCACC 3’

Actin,

Actin-F 5 TGGCACCCAGCACAATGAA 3’

Actin-R 5" CTAAGTCATAGTCCGCCTAGAAGCA 3’

Vimentin,

VIM-F 5 TGAGTACCGGAGACAGGTGCAG 3’

VIM-R 5" TAGCAGCTTCAACGGCAAAGTTC 3’

E-cadherin,

E-cadherin-F 5" TACACTGCCCAGGAGCCAGA 3’

E-cadherin-R 5" TGGCACCAGTGTCCGGATTA 3’

Western blotting analysis

Protein from cells and tissues were lysed using RIPA
buffer (Beyotime, Jiangsu, China) supplemented with
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protease inhibitors PMSF (Beyotime). Total protein con-
centration was determined by the BCA assay. In all,
20-50 pg total protein was subjected to electrophoretic
separation in SDS-PAGE gel analysis, and then trans-
ferred to PVDF membranes at 350 mA for 90 min. Sub-
sequently, the membranes were blocked using 5% non-fat
milk in TBS supplemented with 0.1% Tween-20 for 1-2 h.
After washing three times, the membranes were incubated
with primary antibodies overnight at 4°C, and further
incubated with an appropriate secondary antibody for 2 h.
The expression levels of target proteins were visualized
using enhanced chemiluminescence.

Primary antibodies against PTPRB (1:1000), Vimentin
(1:1000), E-cadherin (1:1000), Goat antiRabbit HRP anti-
body, and Goat antiMouse HRP antibody were purchased
from Cell Signaling Technology (Beverly, MA, USA).

Tissue microarray and Immunohistochemistry

The expression level of PTPRB in tissue was determined
by tissue microarray (TMA). TMAs were assembled by
manual tissue punch. Different samples were drilled from
selected tissue areas and assembled into new paraffin
blocks. The histological cores are 2 mm in diameter and
4—6 mm in length. The immunohistochemistry stainings
were performed on 4 pm sections. The sections were
deparaffinized and rehydrated, then subjected to heat-
induced epitope retrieval. The activity of endogenous
peroxidase was quenched with 3% hydrogen peroxide, and
the sections were then blocked using 5% FBS in TBST.
After washing three times, the primary monoclonal anti-
body was added and sections were incubated overnight at
4°C. After incubation with HRP-conjugated secondary
antibodies for 1h at room temperature, protein expres-
sion was visualized using 3,3’-diaminobenzidine with
hematoxylin stain for contrast.

the standardization of the original experimental data:

1. Staining intensity score: 0 points (negative), 1 point
(14), 2 points (2+), 3 points (3+);

2. Staining positive rate score: 0 points (negative), 1
point (1-25%), 2 points (26—50%), 3 points
(51-75%), 4 points (76—100%);

3. Total score and grouping: The product of “staining
intensity score” and “staining positive rate score” is
grouped into total scores; <2 is divided into antibody
low expression group, >2 is divided into antibody
high expression group. (depending on the
distribution of data).

Wound healing assay

A total of 3x10° CRC cells were seeded in six-well
plates containing 2 ml culture medium. After achieving
80-90% confluence, an open wound was scratched into
the cell monolayer using 200 pl pipettes and the medium
was replaced with serum-free medium. The capacity of
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cell migration was determined as the percentage of
recovery following a 36 h incubation period.

Transwell invasion experiment

A total of 1 x105 CRC cells in 200 pl serum-free 1640
medium were distributed into the upper chambers of each
well (24-well insert; 8-mm pore size; Millipore, Billerica,
MA, USA) coated with Matrigel (BD Bioscience). Culture
medium supplemented with 10% FBS was added in the
lower chambers as a chemoattractant. After incubation
for 24h, cells remaining in the upper chambers were
wiped off, and the cells on the reverse aspect of the
Matrigel membrane were fixed with 4% paraformaldehyde
for 20 min. The number of invasive cells was recorded
after staining with 0.4% crystal violet.

Animal studies

BALB/c-nu male nude mice (age: 4—5 weeks; weight:
20-25 g) (Experimental Animal Center of Zhejiang Uni-
versity, Hangzhou, Zhejiang, China) were grouped into
Control, empty plasmid, sShRNA-PTPRB (lentivirus), and
PTPRB plasmid groups, with at least eight mice in each
group and approved by the Second Affiliated Zhejiang
Hospital, Zhejiang University of Medical Ethics Com-
mittee and the Medical Faculty Ethics Committee of the
Second Affiliated Zhejiang Hospital, Zhejiang University.
All experiments were performed in accordance with the
Guide for the Care and Use of Experimental Animals
guidelines and regulations. HCT116 cells or stable tran-
fected cells at the logarithmic phase of growth were col-
lected, counted and suspected by physiological saline
solution. Nude mice were injected with 0.2 ml cell sus-
pension (1.0 x 107 cells/ml) via tail vein. Six weeks later,
took photograph. Next, lung tissue was isolated, fixed in
10% formalin for HE staining.

Statistical analysis

All experimental data are presented as mean with SD.
The difference between two groups was analyzed using
unpaired Student’s t-test. Survival analysis curves were
plotted using the Kaplan—Meier method. P<0.05 was
considered to be statistically significant. Statistical analysis
was performed using SPSS 17.0 software (SPSS).
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