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Abstract: The mechanistic target of Rapamycin (mTOR) is a ubiquitously-conserved serine/threonine
kinase, which has a central function in integrating growth signals and orchestrating their physiologic
effects on cellular level. mTOR is the core component of differently composed signaling complexes
that differ in protein composition and molecular targets. Newly identified classes of mTOR inhibitors
are being developed to block autoimmune diseases and transplant rejections but also to treat obesity,
diabetes, and different types of cancer. Therefore, the selective and context-dependent inhibition of
mTOR activity itself might come into the focus as molecular target to prevent severe diseases and
possibly to extend life span. This review provides a general introduction to the molecular composition
and physiologic function of mTOR complexes as part of the Special Issue “2018 Select Papers by Cells’
Editorial Board Members”.
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1. Assembly of the mTOR Signaling Complexes TORC1 and TORC2

The coordination of cell growth, cell size, organ shape and body plan is largely controlled by
one serine/threonine kinase, the mechanistic target of Rapamycin (mTOR), which is, historically,
also known as a mammalian target of rapamycin [1]. It has been described as an atypical protein
kinase, because it is closely related to the phosphatidylinositol 3-kinase (PI3K) family of lipid kinases
and represents the founding member of the small family of PI3K-related kinases (PIKK) [2]. Its name is
based on the experimental approach that lead to the discovery of the two yeast proteins Tor1 and Tor2,
which were found in a screen with the anti-fungal, bacterial macrolite rapamycin in Saccharomyces
cerevisiae [3]. Rapamycin acts as an immunosuppressant in mammals and is used as prevention against
the rejection of organ transplants. The name is derived from the fact that it was isolated for the first
time from the bacterium Streptomyces hygroscopicus found on Easter Island (Rapa Nui) [4,5].

Mammals exhibit one mTOR protein, which represents the core component of two multi-subunit
complexes. The TOR complex 1 (TORC1) integrates signals that sense the availability of amino acids,
oxygen, growth factors as well as the cellular energy or stress levels (Figure 1). As a result, TORC1
promotes cell growth via its support of protein biosynthesis, cell cycle and cellular metabolism as well
as the inhibition of autophagy. The TOR complex 2 (TORC2) functions mainly in the organization of
the cytoskeleton [6,7] (Figure 1). The activity of TORC1 can be blocked by Rapamycin via an indirect
mechanism. In this case, rapamycin forms an inhibitory complex by binding to the TOR-associated
immunophilin FKBP12 (FK506 binding protein 12 kDa) [8,9]. TORC2 is rapamycin-insensitive.
The binding site for Rapamycin-bound FKB12, the FRB domain (Figure 2), in mTOR is blocked by
the TORC2-specific protein Avo3 in S. cerevisiae [10] and the mSIN1-RICTOR unit in mammals [11,12].
However, in mammalian systems it was shown that a long-term exposure to rapamycin abrogates
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mTORC2 signaling as a secondary effect. The rapamycin-associated mTOR may not be able to recycle
from TORC1 in order to be incorporated into new TORC2 complexes [13,14].
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Figure 1. Cellular functions of TORC1 and TORC2. Growth factors activate both TORC1 and TORC2.
Moreover, TORC1 integrates information concerning oxygen concentration, amino acid availability
and changing energy levels, while it is inhibited by cellular stress and rapamycin. TORC1 supports
translation, cell cycle, and cellular metabolism, while it inhibits autophagy. TORC2 controls cellular
metabolism and cytoskeleton dynamics.

The core complex of TORC1 consists of mTOR, RAPTOR (regulatory protein with mTOR) and
mLST8 (mammalian lethal with Sec13 protein 8) [15–17] (Figure 2). RAPTOR binds to the HEAT
repeat region in the amino-terminal half of mTOR. It functions as substrate adaptor, because it binds
to the TOS (TOR signaling) motif that is present in several TORC1 substrates. Moreover, it is also
involved in the correct lysosomal targeting of TORC1 [18,19]. Due to its important role, RAPTOR is the
target of the endogenous negative-regulator protein PRAS40 (proline-rich AKT substrate of 40 kDa),
which is together with DEPTOR (DEP domain containing mTOR interacting protein) [20–22] one of
the two negative regulators of mTOR activity. mLST8 binds to the kinase domain of mTOR and is
thought to support mTOR activity by stabilizing the kinase activation loop [23–25]. Therefore, it has
been suggested that the mTOR and mLST8 hetero-dimer represents the core complex of TORC1 [26].
Several structural studies with mammalian and yeast TORC1 have addressed the composition of
the complex as well as the inhibition mode used by Rapamycin to inhibit mTOR activity. Cryo-EM
data have revealed that TORC1 forms a 1 mDa ‘lozenge’-shaped dimer. The contact sites that form
the dimerization interface comprise the interaction between the HEAT domains of the two mTOR
molecules as well as the association of mTOR of the first monomer-part with the RAPTOR of the
second part [26–28]. The work with crystal structures has revealed that the FRB domain of mTOR
is directly involved in the interaction with mTOR substrates. This kinase-substrate interaction is
blocked when rapamycin-FKB12 binds to the FRB domain. Therefore, FRB functions as a gatekeeper,
as FRB-bound rapamycin-FKBP12 inhibits mTOR activity by directly blocking substrate recruitment
and restricting active-site access [24,29]. The TTT (TEL2-TTI1-TTI2)-complex functions as a chaperone
for several PIKK family members and is also important as assembly factor and scaffold that stabilize
TORC1 [30,31].

TORC2 also contains the constituents mTOR, mLST8, DEPTOR as well as the associated
TTT-complex [30,32]. In contrast to TORC1, the adaptor protein RAPTOR is replaced by RICTOR
(rapamycin insensitive companion of mTOR) as HEAT-domain binding module of TORC2 [20,33–35].
Moreover, RICTOR also binds to the regulatory factors PROTOR1/2 [36–38] and mSIN1 [39–41].
A recently published structures of the mammalian TORC2 reveal that mSIN1-RICTOR are located close
to the FRB-domain of mTOR and, therefore, mediate the rapamycin-insensitivity of TORC2 [11,12].



Cells 2019, 8, 18 3 of 23

Cells 2018, 7 FOR PEER REVIEW  3 of 22 

 

 

Figure 2. Composition of mTOR-complexes. The functional domains of the mTOR protein are 

depicted in the center. The binding factors present in both TORC1 and TORC2 are shown in boxes 

(TTT, DEPTOR, mLST8). The TORC1-specific factors are shown in ovals on top of the figure 

(RAPTOR, PRAS40, FKBP12-rapamycin), while the TORC2-specific factors are shown at the bottom 

(RICTOR, PROTOR1/2, mSIN1). 

The mTOR pathway is well conserved from yeast to man and, therefore, can be regarded as a 

major growth regulator in virtually all eukaryotic cells. S. cerevisiae has also two distinct mTOR-

containing complexes (Table 1). In this case, TORC1 can contain either Tor1 or Tor2, while TORC2 

contains Tor2 only. Moreover, homologs of RAPTOR (Kog1), mLST8 (Lst8), RICTOR (Avo3), as well 

as mSIN1 (Avo1) have been described for yeast. However, several additional complex constituents 

and regulating factors are specific for mammals or yeast (Table 1), based on the different 

requirements in the sensing of the vastly different environmental conditions that are relevant for 

unicellular and multicellular organisms [42,43]. 

  

Figure 2. Composition of mTOR-complexes. The functional domains of the mTOR protein are depicted
in the center. The binding factors present in both TORC1 and TORC2 are shown in boxes (TTT,
DEPTOR, mLST8). The TORC1-specific factors are shown in ovals on top of the figure (RAPTOR,
PRAS40, FKBP12-rapamycin), while the TORC2-specific factors are shown at the bottom (RICTOR,
PROTOR1/2, mSIN1).

The mTOR pathway is well conserved from yeast to man and, therefore, can be regarded as a major
growth regulator in virtually all eukaryotic cells. S. cerevisiae has also two distinct mTOR-containing
complexes (Table 1). In this case, TORC1 can contain either Tor1 or Tor2, while TORC2 contains Tor2
only. Moreover, homologs of RAPTOR (Kog1), mLST8 (Lst8), RICTOR (Avo3), as well as mSIN1 (Avo1)
have been described for yeast. However, several additional complex constituents and regulating
factors are specific for mammals or yeast (Table 1), based on the different requirements in the sensing
of the vastly different environmental conditions that are relevant for unicellular and multicellular
organisms [42,43].

Table 1. Function and evolutionary conservation of TOR complex constituents. The table lists the
constituents of TORC1 and TORC2 in different species and describes their molecular function. Common
factors are in green, while unique factors are in red.

H. sapiens S. cerevisiae D. melanogaster C. elegans Function

TORC1 mTOR Tor1, Tor2 TOR1 TOR Serine/threonine kinase

TEL2, TTI1, TTI2 Tel2, Tti1, Tti2 Tel2, Tti1, Tti2 clk-2 Assembly and stability
mLST8 Lst8 Lst8 lst-8 Core complex

DEPTOR - - - mTOR inhibitor
RAPTOR Kog1 Raptor daf-15 Localization; substrate binding
FKBP12 Fpr1 FKBP12 fkbp-2 PPlase; binds rapamycin
PRAS40 - - - mTOR inhibitor

- Tco89 - - unknown

TORC2 mTOR Tor2 TOR TOR Serine/threonine kinase

TEL2, TTI1, TTI2 Tel2, Tti1, Tti2 Tel2, Tti1, Tti2 clk-2 Assembly and stability
mLST8 Lst8 Lst8 lst-8 Activator of TORC2 kinase activity

DEPTOR - - - mTOR inhibitor

RICTOR Avo3 Rictor rict-15 Interaction with substrates; blocks
FKBP12/Rapa

PROTOR Bit61, Bit2 - - Increase of SGK1 activation
mSIN1 Avo1 Sin1 sinh-1 Interaction with SGK1

- Avo2 - - Cytoskeleton regulation
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2. Upstream Factors: Integration of Environmental Signals

In general, TORC1 supports anabolism-linked reaction pathways. Therefore, the presence of
enough energy equivalents and molecular building blocks within the cell stimulates TORC1 activity,
which then promotes cellular growth. In contrast, inhibiting factors should signal the contrary
information during fasting or cellular stress, namely the lack of enough resources required for further
cell growth and proliferation, resulting in a block of TORC1 activity. This is the basic form that also more
divergent and complex signaling TOR pathways are related to. Upstream signaling factors include
growth indicators, energy level, oxygen status, DNA homeostasis, and amino acid concentrations
(Figure 3).
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Figure 3. Upstream factors of the TOR pathway. The most important factors required for the signal
integration of different stimuli by TORC1 and TORC2 are shown. Factors that enhance TOR activity
are shown in squares, while those that hamper TOR activity are shown in circles. Dashed lines: effect
mediated via additional proteins that are not depicted in the figure.

Most growth factors that stimulate TORC1 are blocked by the tuberous sclerosis complex
(TSC). TSC is a trimeric complex that comprises TSC1, TSC2 and TBC1D7 (TBC 1 domain family
member 7) [44]. TSC2 functions as a GTPase activating protein (GAP), which is structurally stabilized
and enzymatically stimulated by TSC1 and TBC1D7 [44–46]. TSC acts as GAP for the small GTPase
RHEB (RAS homolog enriched in brain). On its own, the GTP-bound form of RHEB directly interacts
with the catalytic domain of mTOR and, therefore, activates TORC1 [21,47–49]. In general, GTPases
bind their interaction partners in the GTP-bound form. The stimulation of the GTPase activity by a GAP
protein results in the hydrolysis of GTP and dissociation of the GTPase from the interacting partners,
which ends the physiologic signaling output of the GTPase [50]. Here, TSC stimulates the GTPase
activity of RHEB and, therefore, inactivates it, resulting in a downregulation of the RHEB-dependent
support of TORC1 function.

On the other hand, TSC itself can be inactivated, when an upregulation of TORC1 signaling
is again required. This relieve of the TSC-dependent inhibition of TORC1 is mediated via different
growth factor pathways. The TSC2 subunit is phosphorylated and inactivated by the kinase AKT1 (Ak
strain transforming 1), which was stimulated by the insulin/insulin-like growth factor-1 (IGF-1)
pathway [51–53]. Moreover, AKT1 can also directly phosphorylate and inactivate the negative
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regulatory TORC1 subunit PRAS40 [21]. TSC2 can also be phosphorylated by the MAP kinase
ERK (extracellular signal-regulated kinase), which had been activated via the receptor tyrosine
kinase-dependent RAS pathway [54,55]. In summary, in many cases growth factors activate TORC1 by
inhibiting the TORC1-negative regulator TSC.

In the context of the influence of the energy and oxygen status in TORC1 signaling, the central
enzyme is the AMP-activated protein kinase (AMPK). It is activated during intracellular or environmental
stress conditions that are caused by low ATP levels, DNA damage, or hypoxia. Therefore, AMPK
acts as a metabolic regulator under stress conditions when cell growth is not favorable and should
be limited.

The tumor suppressor LKB1 (liver kinase B1) is activated during energy stress, resulting in the
phosphorylation and activation of AMPK [56]. Subsequently, AMPK can inhibit TORC1 indirectly
by phosphorylating and activating TSC2 [57,58]. It also acts on TORC1 directly by phosphorylating
and inactivating RAPTOR [59]. AMPK is indirectly activated during hypoxia, which is caused by the
decreasing ATP-level [60]. Moreover, an additional layer of TORC1 inhibition is specifically mediated
by the hypoxia-induced REDD1 (regulated in DNA damage and development 1), which binds and
activates TSC [60,61].

The DNA damage-response is related to the cellular stress pathways. TORC1 is thought to be
inhibited via the induction of p53 target genes, including the AMPK regulatory subunit (AMPKβ),
PTEN and TSC2, resulting in an increase in TSC activity and therefore TORC1 inhibition [62].

TORC1 activation is tightly coupled to diet-induced changes in amino acid concentrations, because
amino acids are not only essential building blocks of proteins, but also sources of energy and carbon for
many other metabolic pathways [25]. Moreover, recent work from the fungus Neurospora crassa shows
that a RAGULATOR-like protein is involved in amino acid sensing, as well as in the regulation of the
circadian clock, strongly suggesting a coordinated link between circadian rhythms and TOR-dependent
metabolism [63].

The RAG GTPase complex plays a central role in amino acid-based activation of TORC1 [64,65].
The RAG core complex consists of an obligate GTPase heterodimer, which can be formed by different
combinations of either RAG A or RAG B with either RAG C or RAG D [66,67]. The RAG complex is
bound to the lysosomal membrane through the pentameric RAGULATOR (LAMTOR) complex [68,69].
Upon stimulation with amino acids, the RAG proteins are converted into their GTP-bound state,
which enables them to recruit TORC1 to the lysosome via an interaction with the RAPTOR subunit.
Thisassembly also allows the interaction of TORC1 to lysosomal RHEB. This explains why both RHEB
and RAG have to be activated in order to start TORC1 signaling and why both growth factors as well
as amino acids have to be present for full activation of TORC1.

TORC1 senses cytosolic as well as intra-lysosomal amino acids via different mechanisms.
The lysosomal amino acid transporter SLC38A9 functions as an arginine sensor for TORC1 [70–73].
SLC38A9 interacts with the v-ATPase associated RAGULATOR complex, which then functions
as a guanine-nucleotide exchange factor (GEF) and therefore as activator of the RAG GTPase
complex [68,74].

Cytosolic amino acids, as demonstrated for arginine and leucine, are sensed by TORC1 through
the dynamic interplay of the GATOR1 and GATOR2 complexes [75]. The GATOR1 complex is
tethered to the lysosomal membrane by the KICSTOR complex. GATOR1 functions as a GAP for
the RAG A/B GTPases and, therefore, as an inhibitor of TORC1 [76,77]. In contrast, the GATOR2
complex acts as a positive regulator of TORC1. It does so by binding and inhibiting GATOR1
at the lysosome [75]. GATOR2 itself is blocked by CASTOR1 and SESTRIN2 under amino acid
deprivation [78,79]. The association of arginine with CASTOR1 prevents the interaction of CASTOR1
with GATOR2. Similarly, leucine blocks the interaction of SESTRIN2 with GATOR2. Therefore,
CASTOR1 functions as arginine sensor, while SESTRIN2 acts as leucine sensor in the context of TORC1
signaling [80–84]. Thus, both arginine and leucine stimulate TORC1 activity at least in part by releasing
inhibitors from GATOR2, establishing GATOR2 as a central node in the sensing of amino acids by
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TORC1 [25]. However, there are also GATOR2-independent amino acid sensing modes. Glutamine is
sensed via the RAG-related ARF family GTPases [85]. Another example is the FOLLICULIN-FNIP2
complex, which acts as a GAP for RAG C/D. RAG C/D is an unusual GTPase dimer, as it binds TORC1
not in its GTP-, but in its GDP-bound form [86]. Therefore, FOLLICULIN-FNIP2 acts as an amino
acid-dependent positive regulator of TORC1 [86–88].

TORC2 is mainly regulated by the insulin/PI3K signaling pathway [25]. The presence of insulin
and the downstream formation of the signaling lipid PtdIns(3,4,5)P3 (PIP3) activates TORC2. The
TORC2 subunit mSIN1 exhibits the phosphoinositide-binding PH-domain, which is required for the
insulin-dependent regulation of TORC2. The PH-domain of mSIN1 inhibits the catalytic activity of
TORC2 in the absence of insulin [89]. Moreover, mSIN1 can be phosphorylated and activated by AKT1.
This interdependence is an example for the existence of a positive-feedback loop. Partial activation of
AKT1 promotes the activation of TORC2, which results in a phosphorylation of AKT1 by TORC2 [90].

Interestingly enough, TORC2 signaling can be inhibited by TORC1. GRB10, which is a negative
regulator of insulin/IGF-1 receptor signaling upstream of AKT1, is phosphorylated and activated by
TORC1 [91,92]. GRB10 disrupts the interaction of the insulin receptor with the downstream insulin
receptor substrate 1 (IRS1). Moreover, IRS1 can be phosphorylated and inactivated by the TORC1
target S6K1, which results in a negative feedback loop of both TORC1 and TORC2 signaling [93].

3. Downstream Factors of mTOR Signaling

TORC1 has a central role in controlling the balance of anabolism and catabolism in response to
environmental conditions [32]. Since one of the main functions of TORC1 is to support cell growth,
it also regulates the increased production of the required proteins, lipids and nucleotides. In line with
this, it downregulates catabolic pathways like autophagy. In general, TORC1 regulates many of these
processes via phosphorylation of translation-linked proteins (Figure 4).
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by phosphorylation, while supportive factors are stimulated by TORC1. Factors directly involved in
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Protein biosynthesis is promoted by TORC1 mainly through the direct phosphorylation of two
key effectors, namely the ribosomal protein S6 kinase 1 (S6K1) and the eukaryotic translation Initiation
factor 4B (eIF4E) binding protein (4EBP) [94].

S6K1 is a serine/threonine protein kinase that phosphorylates and activates eIF4B, which functions
as a positive regulator of the 5’ cap binding eIF4F complex, as well as several other substrates
that promote mRNA translation initiation [95]. Another S6K1 target is the eIF4B-inhibitor PDCD4.
The phosphorylation by S6K1 results in the proteasomal degradation of PDCD4 [96]. While translation
is supported by S6K1, it is inhibited by 4EBP, which binds the translation initiation factor eIF4E in order
to prevent the assembly of the eIF4F complex. Like S6K1, 4EBP is also a direct target of TORC1. In this
case the phosphorylation results in an inhibition of the target, as phosphorylated 4EBP dissociates
from eIF4E and, therefore, allows the 5’ cap-dependent translation to occur [97,98]. Therefore, many
pathways are regulated by TORC1 on translational level. While acute inhibition of TORC1 moderately
downregulates mRNA translation in general, mRNAs containing the TOP (5’ terminal oligopyrimidine)
or TOP-like motifs are affected in particular [99,100].

Since growing cells require sufficient amounts of lipids for the extension of their membranes,
TORC1 promotes de novo lipid synthesis. TORC1 activates the sterol responsive element
binding protein (SREBP) transcription factors, which control the expression of genes involved in
lipogenesis [101]. Normally, low sterol levels activate SREBP. However, TORC1 signaling can also
support SREBP independently of sterol levels via two distinct mechanisms: TORC1 activates S6K1,
which then mobilizes SREBP [102], or alternatively, TORC1 phosphorylates and inactivates the
SREBP-inhibitor LIPIN1 [103]. Growing and proliferating cells rely on an enhanced biosynthesis
of nucleotides. TORC1 supports this process as well as the biogenesis of ribosomes [104,105].
Purine synthesis is supported by TORC1 via the phosphorylation of the activating transcription
factor 4 (AFT4), which then mediates the expression of the enzyme methylenetetrahydrofolate
dehydrogenase 2 (MTHFD2) as a central component of the mitochondrial tetrahydrofolate cycle
that provides one-carbon units for this process [106]. Pyrimidine synthesis is promoted by TORC1
via S6K1, which phosphorylates and activates the carbamoyl-phosphate synthetase (CAD), a critical
component of the de novo pyrimidine synthesis pathway [107,108].

Cellular growth is supported by TORC1 by the facilitation of the incorporation of nutrients
into new biomass. This requires a TORC1-dependent shift in glucose metabolism from oxidative
phosphorylation to glycolysis. TORC1 enhances the translation of the transcription factor HIF1a,
which is involved in the expression of several glycolytic enzymes such as phosphofructokinase
(PFK) [102]. Moreover, TORC1-dependent activation of SREBP results in an enhanced influx of glucose
to the oxidative part of the pentose phosphate pathway. This pathway utilizes glucose in order to
generate NADPH and, depending on the environmental fine tuning, either glycolysis intermediates or
pentoses for nucleotide synthesis [109].

In contrast, TORC1 suppresses protein turnover mainly via the inhibition of autophagy. This is
accomplished via posttranslational modification of autophagy key factors required for the formation
of the autophagosome. ULK1 and ATG13 are early acting factors that are required for the initiation
of autophagy and which are therefore phosphorylated and inhibited by TORC1 [110–112]. ULK1,
for instance, is phosphorylated by TORC1 under conditions when enough nutrients are available.
This inhibiting phosphorylation prevents the binding of ULK1 to and the activation by AMPK [111].
TORC1 inhibits autophagy also via transcription control. Under nutrient replete conditions, TORC1
phosphorylates the transcription factor EB (TFEB) and thereby blocks its nuclear translocation and
therefore inhibits expression of genes for lysosomal and autophagosomal biogenesis [113–115].

The ubiquitin-proteasome system (UPS) is the other important pathway for protein turnover in
the cell. Proteins that should be degraded are selectively marked by ubiquitination, which functions
as recognition signal for the 26S proteasome. The different observations of the involvement do
not fit into one coherent model yet. Acute TORC1 inhibition by rapamycin promotes proteolysis
via ERK5 [116,117] in order to gain free amino acids for TOR1 re-activation, while prolonged
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TORC1 activation also seems to trigger an increased protein turnover via the transcription factor
erythroid-derived 2-related factor 1 (NRF1) [118–120] in order to balance the increased rate of
protein synthesis.

TORC2 controls cellular function and proliferation via the phosphorylation of several members
of the AGC (PKA/PKG/PKC) family of protein kinases. Especially, members of the PKC
subfamily, which regulate various aspects of cytoskeletal remodeling and cell migration, are TORC2
targets [33,34,121–123], like e.g., PKCδ, which has a central role in the upregulation of β1 integrin
levels [124] (Figure 5). Another target of the AGC-kinase family is SGK (serum and glucocorticoid
kinase), which regulates ion transport as well as cell survival, e.g., via the stabilization of the E3 ligase
MDM2, which then blocks pro-apoptotic signaling by ubiquitinating p53 [125,126].Cells 2018, 7 FOR PEER REVIEW  9 of 22 
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Figure 5. Downstream effectors of TORC2. The direct phosphorylation of the depicted kinases by
TORC2 results in their activation. Factors that interfere with the aims of TORC2 (circles, hexagon)
function are inactivated by phosphorylation, while supportive factors (squares) downstream of the
TORC2 are stimulated by phosphorylation.

AKT1, which is a key effector of insulin/PI3K signaling [127], is phosphorylated and activated
by TORC2 (Figures 3 and 5). AKT1 supports cell survival, cell growth and proliferation via the
phosphorylation and inactivation of several key factors, like the FOXO1/3a transcription factors or the
TORC1 inhibitor TSC2 [40,128].

4. mTOR Activity Is a Metabolic Marker for the Potential Survival of Cancer Cells

Hyperactivation of TORC1 is linked to carcinogenesis via different mechanisms. Potential upstream
factors are the tuberous sclerosis genes TSC1 and TSC2. Inherited mutations can cause autosomal-dominant
hamartomas [129,130] and lymphangioleiomyomatosis [131]. Another important factor in this context
is mutated and inactivated p53, which is in its active form a well described tumor-suppressor
that downregulates cell division [132–134]. p53 acts against TORC1 by transactivating its negative
regulators AMPK and TSC2 [62].

The downstream effects of mTOR in carcinogenesis are linked to the activation of a signaling
network that enhances glycolysis via the upregulated expression of pyruvate kinase [135]. Pyruvate
kinase (isoenzyme M2) is a well-described mediator of the so-called Warburg effect. The Warburg
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effect is a central metabolic characteristic of cancer cells that rely mostly on cytosolic substrate-level
phosphorylation during anaerobic glycolysis and less on mitochondrial oxidative phosphorylation for
ATP production [136,137]. Therefore, the survival of tumor cells under hypoxic conditions relies on
a HIFa-dependent upregulation of glycolytic gene expression, resulting in energy production under
nearly anaerobic glycolysis conditions [138,139]. Another important glycolytic enzyme is hexokinase
isoform II (HK II), which is upregulated in several malignant tumors. The synthesis of HK II is
stimulated by TORC1 via HIF1a in the presence of glucose and insulin, allowing the support of
anaerobic glycolysis in cancer cells. However, under conditions when this pathway is hampered, e.g.,
under glucose deprivation or in insulin-resistant cells, HK II can bind directly to TORC1 and inhibit
its function. As a result, the TORC1-mediated block of autophagy is relieved and the cells can use
nutrients recycled from the lysosome, e.g., for gluconeogenesis [140,141].

The role of autophagy in health and disease has been described as a double-edged sword [142,143].
One the on hand, it enables tumor cell survival under stress conditions, while on the other hand it
protects healthy cells against oncogenic transformation. Therefore, another downstream effect of
TORC1 signaling in promoting carcinogenesis is based on its inhibition of autophagy [110,144].
In general, autophagy protects healthy cells by lowering the risk of genomic mutation via the
removal of damaged ROS-producing organelles, like mitochondria and peroxisomes [145–147]. Recent
meta-analyses strongly indicate that the defined and controlled inhibition of mTOR activity reduces
the incidence of a variety of cancers [148,149].

In summary, TORC1 raises the possibility for the oncogenic transformation of cells via the
inhibition of autophagy and it supports the survival of cancer cells via the promotion of glycolysis.

TORC2 activation has been shown to support tumor growth in combination with a loss of function
of PTEN (phosphatase and tensin homolog), which antagonizes PI3K signaling [150]. Especially the
support of lipogenesis by TORC2 has been shown to be associated with steatosis and certain kinds of
cancers [151,152].

5. Involvement of mTOR Activity in Obesity and Diabetes

Enhanced activation of TORC1 and increased downstream signaling has been implicated in
important metabolic diseases, such as obesity and diabetes. Prolonged activation of the mTOR
signaling pathway in liver and skeletal muscle of obese rats suggested a possible role of mTOR in
obesity-linked insulin resistance [153]. Moreover, TORC1 contributes to amino acid-induced insulin
resistance via its direct target S6K1. Phosphorylated and activated S6K1 as well as phosphorylated and
inactivated IRS1 can be detected in hyperaminoacidemia and postprandial hyperinsulinemia [154].
In principle, insulin activates TORC1 signaling via AKT1. After a threshold of TORC1 activity is
reached, IRS1 is phosphorylated and inactivated, which finally downregulates insulin sensitivity in a
negative feedback loop [155].

The activity of TORC1 has been shown to be required for the differentiation of adipocytes in
mice and humans [156,157]. Interestingly, this effect was shown to be time- and context-dependent.
While short-term inhibition of TORC1 by rapamycin causes TORC2-mediated insulin resistance [13,158],
the long-term blockade of TORC1 was reported to reduce high-fat diet-induced obesity in mice [159,160].

These findings are important in the context of type 2 diabetes, which is characterized by insulin
resistance in the expanding adipose tissue of obesity. The downregulation of the FOXO1 transcription
factor, which is a TORC2 target, mimics the insulin-resistant state of type 2 diabetes in human
primary adipocytes [161]. Moreover, TORC2 phosphorylates and stabilizes the ubiquitin-ligase
FBW8 (F-box/WD repeat containing protein 8), which then marks IRS1 for degradation, resulting in
insulin-resistance by prolonged TORC2 activation [93,162].

6. mTOR Signaling in Aging

The regulation of mTOR is a central factor during the aging process of diverse organisms.
The reduction of mTOR signaling has been demonstrated to extend lifespan in Caenorhabditis
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elegans [163], Drosophila melanogaster [164,165], Saccharomyces cerevisiae [166,167], as well as Mus
musculus [168]. Similarly, inhibition of proteins that are tightly associated with a positive signaling
output of mTOR, like RAGULATOR of C. elegans or S6K1 of mice [169], also results in extended
lifespan under the tested conditions. Therefore, mTOR is often regarded as the currently best studied
target for pharmacological treatment to extend lifespan [170–173]. Interestingly enough, the other
important factor that influences longevity is caloric restriction, which is defined as a reduction in
nutrient intake without incurring malnutrition. Different tested caloric restriction conditions do not
further extend lifespan in S. cerevisiae, C. elegans, or D. melanogaster when combined with a reduction
in mTOR signaling, which strongly suggests that both share overlapping mechanisms [164,166,174].
The pivotal mediator of the TORC1-dependent nutrient-signaling network underlying longevity is the
RNA polymerase III (POL III) [175], which is required for the synthesis of tRNAs needed for translation.

However, it seems the situation is more complex in mammals. Inhibition of mTOR was suggested
to reduce S6K1-dependent transcription and general mRNA translation, resulting in a lower level of
potential proteotoxic and oxidative stress on cellular level [169]. Moreover, downregulation of mTOR
could be beneficial against aging by lifting the mTOR-dependent block of autophagy. This would
allow a better clearance of protein aggregates or damaged organelles, which have been implicated in
age-related processes [176,177]. Finally, it is assumed that the attenuation of adult stem cells plays a
crucial role in aging, because the inhibition of mTOR pathways was shown to enhance the self-renewal
capacity of both intestinal and hematopoietic stem cells in M. musculus [178,179], as well as germline
stem cells in D. melanogaster [180].

The described observations have led to speculations that mTOR inhibition might extend lifespan
and delay age-associated diseases also in humans. However, prolonged treatment of humans with
Rapamycin leads to side effects such as immunosuppression and glucose intolerance. While the
potential anti-aging effects are related to TORC1, the negative metabolic side effects are mainly due to
the indirect inhibition of TORC2 after long time treatment. However, alternative dosing regiments of
rapamycin, as well as the invention alternative drugs against TORC1 are under development [181].

7. mTOR and Age-Related Diseases

Promising results were obtained with mTOR inhibitors in the context of certain age-related
diseases. Several therapeutic concepts for the treatment of neurodegenerative diseases are based
on the upregulation of autophagy via the inhibition of TORC1 in order to induce the removal of
harmful protein aggregates [182,183]. Pharmacological inhibition of TORC1 via Rapamycin or the
chemically-synthesized analogue Temsirolimus (CCI-779) were demonstrated to upregulate autophagy
in model cells for neurodegeneration [182]. A corresponding decrease in cytotoxicity was detected in
mouse, zebrafish, and Drosophila studies [184]. Publications about neurodegenerative diseases like
Alzheimer‘s disease (AD) suggest a promising treatment via the inhibition of TORC1 by rapamycin or
rapamycin-analogues like Temsirolimus, resulting in a stimulated autophagy [185–187].

For the treatment of Parkinson‘s disease (PD), several natural compounds, like curcumin derived
from the curry spice turmeric, were shown to downregulate mTOR signaling. As a consequence,
the elevated activity of autophagy cleared α-synuclein in animal and human cell models [188].
Curcumin is supposed to activate the protein phosphatase 2 and a calyculin A-sensitive phosphatase,
which target and inhibit AKT, mTOR, and certain downstream factors like 4E-BP1 [188–190].

Inhibitors of mTOR are also used for the treatment of cardiovascular diseases. The functional
role of mTOR in the cardiovascular system is context dependent. The mTOR complexes have been
described as essential regulators of cardiovascular embryonic development and are also required for
the postnatal preservation of cardiac structure and its adaptation to stress. This includes the cardiac
adaptation to mechanical stress, which limits cardiomyocyte death and contributes to the development
of compensatory hypertrophy. However, TORC1 activity in the heart during chronic stress has also
been shown to have multiple maladaptive effects, which results in the pathological hypertrophy [191].
The treatment of cardiac hypertrophy can be supported by mTOR inhibition. Rapamycin was shown
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to reduce cardiac hypertrophy and improve cardiac function in mice [192,193]. Moreover, inhibition
of mTOR signaling via AKT during eccentric hypertrophy was blocked by additional use of AKT
inhibitors [194].

Another cardiovascular topic linked to mTOR function is atherosclerosis. In order to reduce the
risk of atherosclerosis, inhibition of mTOR induces autophagy and depletes plaque macrophages.
However, because the roles of mTOR in lipogenesis and insulin signaling are also blocked, common side
effects of their use are dyslipidemia and insulin resistance, which are both risk factors for atherosclerosis.
In order to minimize these effects, which would lead to an increase of low-density lipoprotein
cholesterol levels, additional use of cholesterol lowering drugs is a recommended strategy [195–197].

8. Pharmacological Use of Different mTOR Inhibitor Families

After the discovery of Rapamycin, this macrolide compound was used as an antifungal drug
against infections with Aspergillus fumigatus, Candida albicans and Cryptococcus neoformans [198].
When the important functional role of mTOR became evident during the basic research work with
rapamycin, the combination of rapamycin with cyclosporine A was established as an important
immunosuppressant against transplant rejection because of the inhibition of T-cell proliferation [199].
Moreover, based on its cytostatic activity, rapamycin could be used as an anti-cancer agent. More
recently, rapamycin has also shown to contribute to the prevention of coronary artery restenosis [200]
as well as to the treatment of neurodegenerative diseases [201]. New inhibitors of mTOR are
being designed.

The so called first generation of mTOR inhibitors (Table 2) comprises the natural compound
rapamycin (generic name: Sirolimus) and its engineered derivates, the so called rapalogs [202].
They have in common that they also bind to FKBP12, but they are supposed to have context-dependent
and more favorable pharmacokinetic profile when compared to rapamycin.

Table 2. Pharmacological use of different mTOR inhibitor classes. The table displays the characteristics
of the corresponding inhibitor family and lists important examples.

First Generation

Target: TORC1 (binding to FKBP1)

Examples:

• Sirolimus (prophylaxis organ rejection)
• Temsirolimus (renal cell carcinoma)
• Everolimus (renal cell carcinoma)

Status:

FDA/EMEA approved for certain applications

Second Generation

Targets: TORC1,TORC2,PI3K (bind kinase domain)
Examples:

• NVP-BEZ235 (PI3K/TORC1/TORC2)
• PF-04691502 (PI3K/mTOR)
• OSI-027 (TORC1/TORC2)

Status:

Different preclinical and clinical stages

Third Generation

Targets: TORC1,TORC2
(bivalent binding to FRB domain and kinase domain)
Example:

• RapaLink-1

(rapamycin-FRB-binding compound linked to TORKi)
Status:
Preclinical research
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Temsirolimus (Torisel) is the prodrug of rapamycin and is often used against renal cell
carcinoma [149]. Everolimus is a rapalog that is used in transplantation medicine under the names
Zortress or Certican, as well as in oncology for general tumor under the names Afinitor or Biocon.

The second generation of inhibitors targets both TORC1 as well as TORC2 by competing with
ATP at the catalytic site of the mTOR kinase, which is present in both complexes [202,203]. Similar to
rapalogs, they can decrease protein translation and attenuate cell proliferation in several cancer cell
lines [204,205]. Along with the directly kinase-dependent functions of mTOR, the second generation
inhibitors also block the feedback activation of the PI3K and AKT signaling pathways. Therefore,
in addition to the optimized inhibition of TORC1 in rapamycin-resistant cell lines, these inhibitors
are thought to block TORC2 as well as interfere with the interplay with the PI3K and AKT [206,207].
Another approach is to target mTOR associated proteins, like the inhibition of RHEB by the small
molecule NR1, which inhibits TORC1-dependent phosphorylation of S6K1 [208].

The third generation of mTOR inhibitors is supposed to be used in cells that have developed a
resistance against both first- and second generation inhibitors [209]. Theses inhibitors are bivalent
molecules that exploit the juxtaposition of the corresponding two drug-binding pockets. RapaLink-1
consists of a rapamycin-FRB compound linked to the mTOR kinase inhibitor TORKi [210,211].
Therefore, exploitation of both the kinase domain as well as FRB domain of mTOR should
potentially inhibit mTOR-related dysfunctions in the context of tumor growth [210,212]. Moreover,
the methodological approach to design novel bivalent inhibitors could be applied to resistances in
other disease-relevant signaling pathways.

9. Conclusions

The PIKK-type kinase mTOR plays a central role as coordinator of cellular metabolism by
integrating distinct extracellular stimuli and intracellular signals for the initiation of a concerted
and adjusted response. Because of its crucial role in normal physiology, the dysregulation of
mTOR signaling is often associated with certain diseases as well as the molecular process of aging.
For example, its function in glucose and lipid metabolism links it to the occurrence of obesity and
diabetes, while its function in promoting cell proliferation and inhibiting autophagy often associates
it with tumor formation. Therefore, several key factor in the downregulation of mTOR signaling,
like the TSC complex, have been described as tumor suppressors. A better understanding of the
different TORC1 and TORC2 signaling pathways will be of importance for the further development of
drugs that modulate mTOR functions. This could involve two basic strategies. The first concerns the
identification and characterization of further cross-talk between different mTOR-dependent pathways
and their effectors. Moreover, it will be beneficial to be able to discriminate different pathway-selective
domains in mTOR itself or in individual complex components that could be targeted selectively by
then pathway-specific drugs. With this information as a prerequisite, the second approach based
on clinically-oriented research will pursue the search for the synergistic combination of distinct
drugs that might modulate mTOR signaling by acting both on mTOR itself, as well as on individual
TORC1 or TORC2 effector proteins in addition. Moreover, it has to be taken into account that the
drug-dependent modulation of mTOR activity has to differ between acute and chronic disorders.
Therefore, the identification of candidate inhibitors with novel mechanisms of action as well as the
definition of prognostic and predictive biomarkers associated with different mTOR activity levels will
enable the chance on a new generation of effective and personalized disease treatment in the context
of a “bench-to-bedside” approach.
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