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Abstract: Endoplasmic reticulum (ER) aminopeptidases ERAP1 and ERAP2 (ERAPs) are 

essential for the maturation of a wide spectrum of proteins involved in various biological 

processes. In the ER, these enzymes work in concert to trim peptides for presentation on 

MHC class I molecules. Loss of ERAPs function substantially alters the repertoire of 

peptides presented by MHC class I molecules, critically affecting recognition of both NK 

and CD8+ T cells. In addition, these enzymes are involved in the modulation of 

inflammatory responses by promoting the shedding of several cytokine receptors, and in 

the regulation of both blood pressure and angiogenesis. Recent genome-wide association 

studies have identified common variants of ERAP1 and ERAP2 linked to several human 

diseases, ranging from viral infections to autoimmunity and cancer. More recently, 

inhibition of ER peptide trimming has been shown to play a key role in stimulating innate 

and adaptive anti-tumor immune responses, suggesting that inhibition of ERAPs might be 

exploited for the establishment of innovative therapeutic approaches against cancer. This 

review summarizes data currently available for ERAP enzymes in ER peptide trimming 

and in other immunological and non-immunological functions, paying attention to the 

emerging role played by these enzymes in human diseases. 
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1. Introduction 

The endoplasmic reticulum (ER) aminopeptidase 1 (ERAP1) and the closely related ER 

aminopeptidase ERAP2 are zinc-metallopeptidases of the oxytocinase M1 subfamily, which share 

consensus zinc-binding motifs essential for their enzymatic activity [1]. The human ERAP1 and 

ERAP2 genes are located on chromosome 5q15 in the opposite orientation, likely to share regulatory 

elements. Human ERAP2 has no analogues in rodents (e.g., mouse, rat, rabbit and guinea pig) and 

evolution studies suggest that it originates from a relatively recent duplication of ERAP1 [2]. These 

enzymes are normally present in many tissues and are strongly induced after stimulation with type I 

and type II interferons (IFNs) [3–6] and tumor necrosis factor-alpha (TNF-α) [7].  

ERAP enzymes trim amino acid residues from the NH2 terminus of polypeptides playing an 

important role in various biological processes (Figure 1). In the ER, ERAP1 and ERAP2 cleave 

precursors to generate or destroy MHC class I binding peptides [5,8,9]. ERAP1 has also been involved 

in regulation of innate immune and inflammatory responses by increasing the shedding of cytokine 

receptors [10–12]. In addition to these immunological functions, ERAP1 and ERAP2 have been 

implicated in the regulation of angiogenesis and blood pressure [6,13,14]. According to these 

multifunctional properties, ERAP1 is also termed endoplasmic reticulum aminopeptidase associated 

with antigen processing (ERAAP), adipocyte-derived leucine aminopeptidase (A-LAP), puromycin-

insensitive leucine-specific aminopeptidase (PILS-AP), or aminopeptidase regulating type I TNF 

receptor (TNFR1) shedding (ARTS-1), whereas ERAP2 is known as leukocyte-derived arginine 

aminopeptidase (L-RAP). The terms ERAP1 and ERAP2, approved by the Human Genome 

Organization Nomenclature Committee, will be used in this review.  

2. Immunological Functions of ER Aminopeptidases 

MHC class I binding peptides are generated by the antigen-processing pathway through a series of 

sequential steps [15]. In the first step, endogenous proteins are degraded in the cytosol through the 

proteasome, a multicatalytic complex that generates fragments with hydrophobic or positively charged 

COOH-terminal anchor residues. Most of these fragments are further processed by cytosolic 

aminopeptidases, tripeptidyl peptidase II [16–18], leucine aminopeptidase [19,20], bleomycin 

hydrolase and puromycin-sensitive aminopeptidase [21,22], or directly translocated into the ER lumen 

by the transporter associated with antigen processing (TAP), an ATP-driven transporter well adapted 

for the transfer of these precursor peptides [23]. In the ER, the NH2 terminus of these peptides is 

further trimmed by ER aminopeptidases, i.e., ERAP1 in mice and ERAP1 and ERAP2 in humans, to 

the proper length for binding to MHC class I molecules and presentation on the cell surface for 

recognition by NK cells and specific CD8+ T cells (Figure 1a) [5,8,9].  

2.1. Trimming of Antigenic Peptides by ER Aminopeptidases 

ERAP1 efficiently trims peptides of 9–16 amino acids, the length of peptides efficiently transported 

into the ER by TAP, but spares the longer ones [24]. Of note, its activity is substantially reduced for 

peptides with proline at position 2 (X-P-Xn) [5,25], or for peptides with a size of 8 or 9 amino acids, 

the optimal length for binding to MHC class I molecules [24]. ERAP1 shows a strong preference for 
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peptides with large hydrophobic COOH-terminal residues [24]. ERAP1 activity appears to be also 

affected by the nature of the internal residues of peptides. In particular, positions 2, 5 and 7 (with 

position 1 defined as the N-terminal residue of the peptide) were found to be the most important for the 

peptide sensitivity to ERAP1 degradation [26]. Based on the analogies with TAP and MHC class I 

preferences, Chang et al. proposed the “molecular ruler” model for ERAP1 [24], that suggests its role 

in facilitating antigen processing and presentation by trimming precursors transported by TAP to MHC 

class I binding peptides. 

Figure 1. Schematic representation of the multifunctional properties of endoplasmic 

reticulum (ER) aminopeptidase 1 (ERAP1) and ERAP2. ERAP1 and ERAP2 (ERAPs) are 

involved in a variety of biological processes including (a) the final trimming of peptides in 

the endoplasmic reticulum (ER) for presentation on MHC class I molecules; (b) shedding 

of several cytokine receptors; (c) post-natal angiogenesis; (d) regulation of blood pressure. 

For details see text. 

 

ERAP2 has been shown to cooperate with ERAP1 to trim a large variety of precursor peptides to 

generate mature epitopes for binding to MHC class I molecules [9]. ERAP2 was found to have distinct 

specificities for the N-terminal residue of the peptide substrates and to physically associate with 

ERAP1. This complex is expected to be more efficient than single enzymes in dealing the large number 

of precursor peptides. To date, there are few studies regarding ERAP2 function.  

The substantial contribution of ER peptide trimming to MHC class I antigen processing and 

presentation has been confirmed in mice lacking ERAP1 generated independently in four  
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laboratories [27–30]. Although loss of ERAP1 had a relatively modest effect on the cell surface 

expression of most MHC class I molecules (a reduction of 20–40% for Kb and Db class I molecules) [31], 

immunization of ERAP1−/− mice with wild-type (wt) cells or vice versa, resulted in potent CD8+
 
T cell 

responses, suggesting that loss of ERAP1 alters the peptide-MHC (pMHC) class I repertoire not only 

quantitatively but also qualitatively [27]. Analysis of the individual peptides displayed on the cell 

surface with a panel of peptide-specific CD8+ T cell hybridomas showed that ERAP1 deficiency left 

some peptides unaffected, whereas others were either absent or dramatically up-regulated [5,27–32]. 

Consistent with these findings, mass spectrometry analysis of natural and viral peptides processed in 

mice lacking ERAP1, revealed that ERAP1 deficiency causes a marked increase in the length of 

peptides normally presented by MHC class I molecules [33]. Thus, ERAP1 proteolysis determines the 

characteristic length, as well as the composition of MHC class I binding peptide in the ER. 

In addition to classical MHC class I molecules, ERAP1−/− mice also exhibited defects in the surface 

expression of nonclassical MHC class I molecules Qa-2 and Qa-1b, which serve as ligands in both the 

innate and adaptive immune responses [28]. Yan and collaborators found a significant reduction of the 

nonclassical class I molecules Qa-2 in ERAP1-deficient splenocytes and dendritic cells as compared 

with wt cells. Although ERAP1 did not significantly affect the surface expression of Qa-1 molecules, 

presentation of Qdm, an epitope derived from the signal sequence of classical MHC class I molecules, 

to Qa-1-restricted CTLs was impaired, suggesting that ERAP1 activity is required for the  

generation of this epitope. Thus, it is conceivable that reduced ERAP1 function may represent a  

rate-limiting step in presenting Qdm peptide to Qa-1b-restricted CD8+
 
T cells or NK cells expressing  

CD94/NKG2 receptors. 

More recently, a new naturally processed Qa-1b epitope (FL9) derived from the Fam49b protein, 

has been identified in cells lacking ERAP1 activity by Shastri and colleagues [34]. Unlike the  

Qa-1b-Qdm complex, Qa-1b-FL9 is an immunodominant ligand recognized by CD8+ T cells derived 

from wt mice immunized with ERAP1 deficient cells. The authors found an abundant fraction of CD8+ 

T cells specific for the Qa-1b-FL9 complex in naive wt mice able to proliferate and efficiently 

eliminate ERAP1-deficient cells. 

2.2. Cytokine Receptor Shedding 

In addition to antigen processing, ERAP1 has been shown to promote the cleavage of several 

cytokine cell surface receptors (Figure 1b) [10–12]. Cui et al. demonstrated that ERAP1 binds to the 

extracellular domain of the TNFR1, facilitating TNFR1 shedding through the formation of a 

TNFR1/ERAP1 complex. The authors showed that overexpression of ERAP1 produces soluble 

TNFR1 that competes with cell-surface TNF receptors, thereby attenuating TNFα bioactivity when the 

levels are elevated, and reconstituting TNFα when the levels have declined [10]. However, several 

evidences demonstrated that ERAP1 is not required to be catalytically active for this function. 

Coimmunoprecipitation experiments revealed that ERAP1 can bind to, but not cleave TNFR1. 

Moreover, ERAP1 does not possess endopeptidase activity and overexpression of ERAP1 catalytic 

mutants results in an increased TNFR1 shedding. Thus, ERAP1 does not directly catalyze TNFR1 

shedding, but may instead promote the activity of a TNFR1 sheddase. 
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Subsequently, the same authors showed that ERAP1 modulates the proteolytic cleavage of two 

other cytokine receptors, the type I IL-6 cytokine receptor (IL-6Rα) [12] and the type II IL-1 decoy 

receptor (IL-1RII) [11]. Based on these functions, ERAP1 has been proposed to play an important  

role in regulating innate and inflammatory immune responses by increasing the shedding of these  

cytokine receptors. 

3. Nonimmunological Functions of ER Aminopeptidases 

ERAP1 and ERAP2 are thought to play a role in the regulation of blood pressure through their 

involvement in the renin-angiotensin system (Figure 1d). In vitro studies using Chinese Hamster Ovary 

cells demonstrated that ERAP1 efficiently cleaves angiotensin II to angiotensin III and IV [14], while 

ERAP2 cleaves angiotensin III to angiotensin IV [6]. In the same system, both enzymes were shown to 

convert kallidin to bradykinin [6,14]. 

In addition, ERAP1 has been reported to control post-natal neo-angiogenesis, a physiological 

process involving the growth of new blood vessels from pre-existing microvessels, by regulating the 

proliferation and migration of endothelial cells (EC) (Figure 1c) [35–39]. Functional studies revealed 

that ERAP1 is expressed in ECs during differentiation in vitro and at the site of angiogenesis in vivo 

upon stimulation with vascular endothelial growth factor (VEGF) [35]. Suppression of ERAP1 

expression in ECs inhibited VEGF-stimulated proliferation, migration and vessel network formation in 

vitro and angiogenesis in vivo [35]. The authors also demonstrated that ERAP1 regulates VEGF-

stimulated G1/S transition during EC proliferation by binding to phosphatidylinositol-dependent 

kinase 1 (PDK1). Formation of the ERAP1-PDK1-S6 kinase complex resulted in activation of  

cyclin-dependent kinase (CDK) 4/6 by phosphorylated S6K that promotes G1/S-phase transition 

leading to EC proliferation [37]. It was also demonstrated that ERAP1 controls the spreading of ECs 

by activating endothelial integrins and focal adhesion kinase [36], increasing EC adhesion to the 

extracellular matrix via RhoA activation [38]. More recently, ERAP1 has also been shown to bind 

pigpen, a nuclear coiled body component protein involved in angiogenesis [39,40]. However, how 

pigpen interacts with ERAP1 to promote angiogenesis and whether pigpen is a substrate for ERAP1 

remain to be established.  

4. Alteration of ERAP Functions in Human Diseases 

ERAP1 and ERAP2 are highly polymorphic genes. Naturally occurring single nucleotide 

polymorphisms (SNPs) have been found to correlate with several pathological conditions [41–43]. 

Because of the role of these enzymes in MHC class I antigen presentation and in all other biological 

processes, it is conceivable that variations impairing the presentation of pathogen-derived peptides 

might lead to inadequate immune responses and development of disease. Recent studies that 

investigated the possible role of ER aminopeptidases in human diseases are summarized below. 

4.1. Hypertension 

By screening for 33 polymorphisms in the human ERAP1 gene, Yamamoto et al. identified the 

association of ERAP1 variant rs30187 (K528R) with essential hypertension and hypothesized that the 
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R528 form of ERAP1 was less active than the K528 form, leading to hypertension due to reduced 

bradykinin formation and/or lower inactivation of angiotensin II (Figure 1d) [43]. This variant was 

shown to reduce by 60% the efficiency of ERAP1 to cleave angiotensin II to angiotensin III and by 

70% to convert kallidin into bradykinin [44]. The ERAP1 rs30187 variant was also found to determine 

the degree of regression of left ventricular hypertrophy during anti-hypertensive treatment in patients 

with essential hypertension [45]. The same variant was also associated with haemolytic uremic 

syndrome (HUS), a disorder characterized by thrombotic microangiopathy frequently caused by 

gastrointestinal infections with Escherichia coli that produce verotoxins or Shiga toxins [42]. 

More recently, variants of ERAP1 and ERAP2 have been found to be associated with an increased 

risk of preeclampsia, a heritable pregnancy specific disorder characterized by new-onset hypertension 

and proteinuria [46,47]. Of note, ERAP2 expression was previously found altered in first trimester 

placentas of women prone to develop preeclampsia [48].  

4.2. Bacterial and Viral Infections 

The first evidence demonstrating that ERAP1 can act as a “susceptibility factor” for an infectious 

organism derived from the observation that ERAP1-deficient mice are not able to process the 

immunodominant decapeptide HF10 of Toxoplasma gondii and die from overwhelming infection when 

challenged with this pathogen [49]. 

ERAP1 plays an important role in immune response to viruses, either enhancing or reducing CD8+ 

T-cell responses to particular viral epitopes. ERAP1-deficient or wt mice infected with lymphocytic 

choriomeningitis virus (LCMV) showed profound differences in the frequency of CD8+ T cells 

specific for particular LCMV peptides [30]. In wt mice the magnitude of T-cell responses to different 

LCMV epitopes followed a hierarchy of immunodominance that is markedly changed in the  

ERAP1-deficient mice [30]. 

Draenert et al. reported the first evidence that escape mutations arising in flanking regions of a 

human immunodeficiency virus (HIV) epitope alter antigen processing mediated by ERAP1 [50]. The 

authors showed that in HLA-B57+-HIV infected individuals, immune selection pressure leads to a 

mutation from alanine to proline at residue 146 of HIV Gag protein immediately before the NH2 

terminus of a dominant HLA-B57-restricted CTL epitope. This mutation was found to prevent the 

NH2-terminal cleavage by ERAP1, resulting in decreased CTL responses [50]. Of note, it was 

demonstrated that antigen processing shapes CTL response hierarchies, and that HIV evolution 

modifies cleavage patterns influencing proteasomal cleavage and, hence, the likelihood of CTL 

responses toward all epitopes [51]. Interestingly, some variants in ERAP2 have been shown to confer 

resistance to HIV-1 infection possibly via the presentation of a distinctive peptide repertoire to CD8+ T 

cells [52]. 

Similarly, in cervical carcinoma induced by persistent infection and malignant transformation of the 

uterine cervical epithelium by human papillomavirus (HPV), increased cancer metastasis and 

decreased survival have been reported to be associated with several variants of ERAP1. In this case, 

down-regulation of ERAP1 may lead to the preferential loading and presentation of non  

tumor-associated or non HPV-associated peptides, thereby yielding a less immunogenic phenotype and 

facilitating tumor growth and progression [53]. 
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Recently, ERAP1 has been identified as a host target of human cytomegalovirus (HCMV) microRNA 

miR-US4–1, demonstrating a previously unknown miRNA-based immunoevasion strategy [54]. Viral 

miR-US4–1 interferes with MHC class I-mediated antigen presentation by targeting ERAP1, thereby 

influencing the production of many HCMV-derived antigenic peptides during viral infection, which 

results in immunoevasion of the recognition of viral antigen by CD8+
 T cells during the host immune 

response [54]. 

4.3. Autoimmune Diseases 

Recent genome-wide association studies (GWAS) have proven the importance of ERAP1 and 

ERAP2 genes in conferring susceptibility of individuals to different autoimmune diseases and their 

linkage with particular MHC class I alleles [41]. 

The first GWAS realized by the Wellcome Trust Case Control Consortium and the  

Austro-Anglo-American Spondylitis Consortium has revealed that 26% of the overall risk to develop 

ankylosing spondylitis (AS) is accounted for by ERAP1 [55]. The association between AS and ERAP1 

variants has been subsequently replicated in other GWAS and several case-control independent studies 

in Caucasian and Mongolian populations [56–59]. More recently the association with the variant 

rs30187 has been exclusively found in the cohort of HLA-B27-positive AS patients [60,61]. Of note, 

the disease-associated ERAP1 variant rs30187 (K528) had faster rate of trimming of peptide 

precursors than protective ERAP1 variant [60,62]. Taken together, these findings support a model in 

which aberrant peptide trimming by ERAP1 and, as consequence, impaired peptide presentation by 

HLA-B27 are involved in the AS pathogenesis [60]. 

Of note, the functional ERAP1 variant (rs30187) linked to AS, hypertension and HUS was 

associated with type 1 diabetes and multiple sclerosis [63,64]. No evidence for an interaction between 

ERAP1 and MHC class I was observed in diabetic patients [63]. Two other recent GWAS identified 

ERAP1 as a new psoriasis susceptibility locus and evidence of an interaction between HLA-C*06:02 

and ERAP1 was reported [65,66]. Both studied revealed that ERAP1 influences psoriasis susceptibility 

only in individuals carrying the HLA-C risk allele. A recent meta-analysis of six Crohn’s disease 

GWAS identified ERAP2 as one of the most interesting candidate genes [67]. 

4.4. Cancer 

The expression and tissue distribution of ERAP1 and ERAP2 have been evaluated in a large number 

of tumor cells of lymphoid and non-lymphoid origin compared to their normal counterparts [68–71]. We 

found that ERAP1 and ERAP2 were expressed in essentially all tumor cell lines examined (melanomas, 

leukemia-lymphomas and carcinomas of breast, colon, lung, chorion, skin, prostate, cervix, kidney and 

bladder) at highly variable levels and independently of each other [68]. MHC class I surface 

expression was significantly correlated with ERAP1, but not with ERAP2, suggesting that ERAP1 has 

a dominant role in the generation of MHC class I epitopes [68]. In a subsequent study, ERAP1 and 

ERAP2 were investigated in a large panel of surgically removed normal and neoplastic tissues. In 

approximately 150 neoplastic lesions, the expression of either or both enzymes was lost, acquired or 

retained as compared to the normal counterparts, depending on the tumor histotype [69].  

Down-regulation of ERAP1 and/or ERAP2 expression was mainly detected in ovary, breast and  
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lung carcinomas, whereas an up-regulation of these enzymes was observed in colon and thyroid  

carcinomas [69]. Of note, ERAP1 and MHC class I were co-ordinately expressed in normal and, to a 

lesser extent, neoplastic lesions. As expected, the altered expression of ERAPs results in abnormal cell 

surface expression of MHC class I molecules in tumor cell lines [68]. In the most aggressive type of 

neuroblastoma cells, ERAP1, ERAP2 as well as MHC class I molecules were expressed at very low 

levels as consequence of a poor constitutive NF-kB nuclear activity [7].  

In a recent study, heterogeneous expression of ERAP1 and ERAP2, ranging from high to very low 

levels, was detected in 28 melanoma cell lines as compared to primary melanocytes [70]. In most 

cases, expression of these genes was enhanced by IFN-γ treatment, suggesting that it is under control 

of regulatory mechanisms and that only in rare cases to abnormalities in their sequences [70]. 

Expression of ERAP1 has been detected in 64% of endometrial carcinomas and correlated  

with CA-125 levels, suggesting a role of this enzyme in endometrial cancer cell growth and  

differentiation [71–73]. The authors also showed that ERAP1 suppresses angiogenesis and endothelial 

cell migration in human endometrial carcinoma by regulating the angiotensin II concentration [72].  

As stated before, variants of ERAP1 have been associated with decreased survival in cervical 

carcinoma, with ERAP1 loss being an independent predictor for survival, possibly due to the role of 

ERAP1 as a key determinant of the repertoire of MHC class I-presented peptides [53,74]. 

All these findings suggest that aberrant expression of ERAP1 may contribute to escape from 

immune surveillance. To evaluate the relevance of the ER peptide trimming inhibition on 

tumorigenicity, we stably reduced ERAP1 expression in a murine T-cell lymphoma by  

ERAP1-targeted small interfering RNA. We demonstrated that interfering with ERAP1 expression 

ultimately leads to tumor rejection in syngeneic animals by boosting NK cell-, and subsequently  

T cell-mediated cytolysis (Figure 2) [75]. This rejection was mainly due to NK cell response and 

depends on the MHC class I peptides presented by ERAP1-silenced tumor cells, because replacement 

of the endogenous peptides with high-affinity peptides was sufficient to restore an NK protective effect 

of MHC class I through the NK inhibitory receptor Ly49C/I. In spite of the relatively modest impact 

on overall MHC class I expression, we demonstrated that ERAP1 inhibition was able to shift the 

balance between activating and inhibitory signals towards NK cell activation resulting in target cell 

killing [75]. Thus, this was the first demonstration that tampering with ERAP1 activity via reduction of 

its expression can result in increased tumor immunogenicity in vivo, and may represent a novel 

pathway for anti-cancer therapeutic exploitation. 
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Figure 2. ERAPs inhibition: a possible novel strategy for anticancer immunotherapy. 
Antigenic peptides are generated in the cytosol and further trimmed at the NH2-terminus in 

the endoplasmic reticulum (ER) by ERAP1 and ERAP2 (ERAPs) aminopeptidases before 

being loaded onto MHC class I molecules. Peptide-MHC (pMHC) class I complexes are 

presented on the plasma membrane to be recognized by T cell antigen receptor on  

CD8+ T cells and by inhibitory receptors on NK cells. In the absence of ERAPs, a distinct 

repertoire of unstable pMHC class I complexes is produced and exported to the plasma 

membrane. These unstable complexes are sufficiently conformed to present antigens to 

CD8+ T cells but not enough to inhibit NK cells resulting in tumor-cell killing. 

 

5. Conclusions 

In this review, we have briefly summarized the recent knowledge on the biology of ERAP1 and 

ERAP2 enzymes and their possible links to human diseases. 

In autoimmune diseases, association with HLA-class I risk alleles and their interaction with ERAP1 

implicates aberrant ER peptide trimming leading to altered peptide presentation as the pathogenic 

mechanism. Additional functional studies are necessary in order to provide evidence on how ERAPs 

variants can affect disease predisposition and pathogenesis. 

Loss of ERAP1 function has also been shown to substantially affect the presentation of epitopes by 

classical and nonclassical MHC class I molecules, probably contributing in some cases to the 

maintenance of chronic infection. In tumor cells, inhibition of ERAP1 expression has been shown to 

modify tumor immunogenicity by shifting the balance of activating and inhibitory signals towards NK 

cell activation resulting in target cell killing [75]. In contrast, the same mechanism was not shown in 

healthy cells lacking NK cell activating ligands such as splenocytes [34]. Based on these findings, it 

will be of interest to determine whether in humans, as previously shown in mice, manipulation of 

ERAPs could induce immune-mediated control of cancer. Thus, the possibility of targeting ERAPs 

through pharmacological or genetic modifications should be considered in order to provide novel  

anti-tumor immunotherapies. 
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