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Abstract

Observing social/physical distancing norms between humans has become an indispensable

precaution to slow down the transmission of COVID-19. We present a novel method to auto-

matically detect pairs of humans in a crowded scenario who are not maintaining social dis-

tancing, i.e. about 2 meters of space between them using an autonomous mobile robot and

existing CCTV (Closed-Circuit TeleVision) cameras. The robot is equipped with commodity

sensors, namely an RGB-D (Red Green Blue—Depth) camera and a 2-D lidar to detect

social distancing breaches within their sensing range and navigate towards the location of

the breach. Moreover, it discreetly alerts the relevant people to move apart by using a

mounted display. In addition, we also equip the robot with a thermal camera that transmits

thermal images to security/healthcare personnel who monitors COVID symptoms such as a

fever. In indoor scenarios, we integrate the mobile robot setup with a static wall-mounted

CCTV camera to further improve the number of social distancing breaches detected, accu-

rately pursuing walking groups of people etc. We highlight the performance benefits of our

robot + CCTV approach in different static and dynamic indoor scenarios.

Introduction

The COVID-19 (COrona VIrus Disease-19) pandemic has caused significant loss of life

around the world due to its high infection rate. One of the best ways to prevent contracting

COVID-19 is to avoid being exposed to the SARS-CoV-2 virus. Organizations such as the Cen-

ters for Disease Control and Prevention (CDC) have recommended many guidelines including

maintaining social or physical distancing, wearing masks or other facial coverings, and fre-

quent hand washing to reduce the chances of contracting or spreading the virus. Broadly,

social distancing refers to the measures taken to reduce the frequency of people coming into

contact with others, particularly by maintaining at least 2 meters (6 feet) of physical distance

between individuals. Several groups have simulated the spread of the virus and shown that

social distancing can significantly reduce the total number of infection cases [1–6].
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Since social distancing is a fundamental method to tackle any pandemic, it is crucial to

develop technologies to help detect scenarios where such rules are not being followed, so that

appropriate counter-measures can be employed. These actions could also help with collecting

data about people who have come in contact with an infected person (contact tracing) [6].

Such technologies would also be general enough to help tackle the next pandemic with relative

ease.

A comprehensive survey of all the technologies that can be used to detect if social distancing

norms are followed properly is given in [6]. This includes a discussion of the pros and cons of

technologies such as WiFi (WIreless FIdelity), Zigbee, RFID (Radio Frequency Identification),

Cellular, Bluetooth, Computer Vision, AI (Artificial Intelligence), etc. However, many of these

technologies require new static, indoor infrastructure such as WiFi routers, Bluetooth mod-

ules, central RFID hubs, etc or people to wear detectable tags. Technologies such as WiFi and

Bluetooth require people to connect to them using wearable devices or smartphones for track-

ing. This limits their usage for tracking crowds and social distancing norms in general envi-

ronments or public places, and may hinder the use of any kind of counter-measures.

Recently, there have also been several vision-based methods that use deep learning [7, 8] to

detect social distancing breaches. A large-scale social distancing monitoring system using net-

worked cameras has also been proposed [9]. Solutions based on semi-autonomous and auton-

omous robots [10] are also becoming popular. For instance, in [11], a quadruped robot with

multiple on-board cameras and a 3-D lidar is used to enforce social distancing in outdoor

crowds using sound-based alerts. Our work is complementary to these methods and also helps

react to social distancing violations.

Another important component of our work is robot navigation amongst humans and other

obstacles, which requires excellent collision avoidance capabilities. The problem of collision-

free navigation has been extensively studied in robotics and related areas. Recently, some

promising methods for navigation using noisy sensor data based on Deep Reinforcement

Learning (DRL) methods [12, 13] have emerged. These methods produce better empirical

results when compared to traditional methods [14–16].

Methods such as [17] train a decentralized collision avoidance policy by using raw data

from a 2-D lidar, the robot’s odometry, and the relative goal location. Other works have devel-

oped learning-based policies that implicitly fuse data from multiple perception sensors to han-

dle occluded spaces [18] and to better handle the Freezing Robot Problem (FRP) [19]. Other

hybrid learning and model-based methods include [20], which predicts the pedestrian move-

ment through optical flow estimation. In this work, we use Frozone [21], a state-of-the-art

hybrid collision avoidance method, which is a combination of a DRL-based method and a

model-based method (refer Frozone subsection).

Main results

We present a method for employing a vision-guided COVID Surveillance robot (CS-robot)

and wall-mounted CCTV cameras (if available) to monitor scenarios with low to medium-

density crowds to detect prolonged contact between individuals (Fig 1). We refer to such sce-

narios as social distancing breaches or just breaches in this work. Once a breach is detected, in

static scenarios, the robot prioritizes non-compliant groups of people based on their size,

autonomously navigates to the largest group and encourages them to follow the social distanc-

ing norms by displaying an alert message on a mounted screen. In dynamic scenarios, the

robot prioritizes attending to groups depending on their motions relative to the robot.

We use Frozone [21] for the robot to avoid collisions and autonomously navigate towards

non-compliant groups of people. CS-robot uses relatively inexpensive visual sensors such as an
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RGB-D camera and a 2-D lidar to provide inputs to Frozone for navigation, as well as to pedes-

trian detection and tracking algorithms which detect and classify pedestrians that violate social

distance constraints as non-compliant pedestrians.

In indoor scenarios, our method integrates CS-robot with a CCTV camera setup (if avail-

able) to further improve its breach detection accuracy and monitor a larger area for social dis-

tancing breaches. A thermal camera, mounted on the robot is used to wirelessly transmit

thermal images to healthcare personnel, which helps with symptom monitoring.

Our main contributions in this work are:

1. An automatic approach that can use a mobile wheeled robot system (CS-robot) and wall-

mounted CCTV cameras (if available) to detect breaches in social distancing norms. We

use a real-time method to estimate distances between people in images captured using an

RGB-D camera on the robot and RGB images captured by the CCTV camera. The robot

then enforces social distancing by navigating towards the groups of non-compliant people,

and encouraging them to maintain at least 2 meters of distance by displaying an alert mes-

sage discreetly on a mounted screen. Our overall system’s architecture allows the robot to

detect and enforce breaches regardless of the availability of CCTV cameras in indoor set-

tings. In the absence of CCTV cameras, we demonstrate that our robot monitoring system

is effective in detecting breaches and can enforce social distancing in all the cases where

breaches are detected. When a CCTV camera is available, the robot-CCTV hybrid setup sig-

nificantly increases the area being monitored and improves the accuracy of tracking and

navigating to dynamic non-compliant pedestrians. We demonstrate how simple techniques

Fig 1. CS-robot detecting social distancing breaches. Our robot detecting non-compliance to social distancing

norms, classifying non-compliant pedestrians into groups and autonomously navigating to the static group with the

most people in it (a group with 3 people in this scenario). The robot encourages the non-compliant pedestrians to

move apart and maintain at least 2 meters of social distance by displaying a message on the mounted screen. Our CS-

robot also captures thermal images of the scene and transmits them to appropriate security/healthcare personnel.

https://doi.org/10.1371/journal.pone.0259713.g001
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such as homography transformations could be used in the images from the CCTV camera

for distance estimation between people. This hybrid combination of static mounted cam-

eras and a mobile robot leads to the best results, and improves the number of breaches

detected and enforcements by up to 100%. Furthermore, our approach does not require the

humans to wear any tracking or wearable devices.

2. A novel method to classify non-compliant people into different groups, prioritize attending

to them based on whether they are static or dynamic, and compute a goal for the robot to

navigate towards the group. In static scenes, the goal is computed such that the robot

attends the largest group first. In dynamic scenes, the goal computation depends on the

motion of the groups relative to the robot. Our method intelligently locks on to a person in

a dynamic non-compliant group to more accurately pursue it. We also deploy appropriate

measures for privacy protection and de-identification.

We evaluate our method quantitatively in terms of accuracy of localizing a pedestrian in

both static and dynamic environments. We highlight the number of social distancing breaches

detected and attended, while using the different isolated components of our CCTV-robot

hybrid system. We also measure the time duration for which the robot can track a dynamic

pedestrian. Qualitatively, we highlight the trajectories of the robot pursuing dynamic pedestri-

ans when using only its RGB-D sensor as compared to when both the CCTV and RGB-D cam-

eras are used.

Methods

Background

In this section, we provide a brief overview of the pedestrian detection and tracking method

and the collision avoidance scheme that we use. We also describe our criteria for a social dis-

tancing breach.

Pedestrian detection and tracking. For detecting and tracking pedestrians, we use the

work done in [22] based on Yolov3 (You Only Look Once version 3) [23], which achieves a

good balance between speed and tracking accuracy. The input to the tracking scheme is an

RGB image (from an RGB-D or an available CCTV camera) and the output is a set of corner

coordinates of the bounding boxes (denoted as B) for all the pedestrians detected in the image.

Yolov3 also outputs a unique ID for every person in the RGB image, which remains con-

stant as long as the person remains in the camera’s FOV (Field Of View). Based on a person’s

bounding box locations in two images, and the time interval between the two images, a per-

son’s walking speed and direction (and therefore the walking vector) can be trivially estimated.

Frozone. To navigate a robot towards a goal in the presence of humans, we use Frozone

[21], a state-of-the-art collision avoidance method that uses an RGB-D camera to track and

predict the future positions and orientations of pedestrians relative to the robot. For these

computations, Frozone uses the outputs from the pedestrian detection and tracking module.

When navigating among humans, Frozone minimizes the occurrence of the robot halting/

freezing, as it severely affects its navigation and causes obtrusion to the humans around it.

The main goal of Frozone is to avoid a space called the Potential Freezing Zone (PFZ),

where the robot has a high probability of freezing and being obtrusive to pedestrians after a

time interval Δt. It is constructed as,

PFZ ¼ ConvexHullðp̂pedi Þ; i 2 1; 2; . . . ;K: ð1Þ

Where p̂pedi is the predicted future position of the ith pedestrian, and K is the total number of

pedestrians that might cause the robot to halt/freeze. ConvexHull() denotes the convex hull
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function. If the robot is heading towards a PFZ while proceeding towards its goal, Frozone

computes a deviation angle to avoid it.

Criteria for social distancing breach. We mainly focus on detecting scenarios where

individuals do not maintain a distance of at least 2 meters from others for a given period of
time. We choose to detect this scenario because it is a fundamental social distancing norm dur-

ing all stages of a pandemic, even as people begin to use public spaces and restrictions are

lifted. An important challenge is to avoid detecting two or more people passing each other as a

breach, even if the distance between them was less than 2 meters for a few moments (see Fig

2a).

Breach detection

In this section, we first explain the architecture of our robot and CCTV setup and the relation-

ship between all the sensors used in the system. We then describe how our method effectively

detects a social distancing breach. We refer to people who violate social distancing norms as

non-compliant pedestrians. We then describe how we classify non-compliant pedestrians into

groups and compute the goal for the robot’s navigation for static and dynamic scenarios. Our

overall system architecture is shown in Fig 3.

System architecture. Our overall system architecture is shown in Fig 3. Our architecture

contains three cameras: 1. RGB-D camera on-board the robot, 2. CCTV camera mounted on

the wall (if available), and 3. Thermal camera on-board the robot. The images from the

RGB-D (green arrows) and CCTV cameras (blue dashed arrows in Fig 3) are used as inputs to

various modules such as pedestrian tracking, homography, and eventually social distance esti-

mation. The data represented by the green arrows is required, whereas the data represented by

the blue arrows is optional for the overall operation of the system. The thermal image (red line

in Fig 3) is analyzed by the pedestrian detection and tracking module, and the outputs are sent

only to security or healthcare personnel to monitor symptoms of the tracked people (see Ther-

mal Camera section). It is not used for social distance estimation or aiding the robot in

navigation.

The architecture is designed in a way that the robot can detect social distancing breaches

and navigate to non-compliant groups independent of the availability of the CCTV camera

Fig 2. Criteria for a social distancing breach. (a): Our criteria used to detect whether two pedestrians violate the

social distance constraint. The pedestrians are represented as circles in two different scenarios. The increasing size of

the circles denotes the passage of time. The green circles represent time instants when the pedestrians maintained> 2

meters distance, and the red circles represent instants when they were closer than 2 meters. Top: Two pedestrians

passing each other. This scenario is not reported as a breach since the duration of the breach is short. Bottom: Two

pedestrians meeting and walking together. This scenario is reported as a breach of social distancing norms. (b): A top-

down view of how non-compliant pedestrians (denoted as red circles) are classified into groups. The numbers beside

the circles represent the IDs of the pedestrians outputted by Yolov3. The compliant pedestrians (green circles) are not

classified into groups as the robot does not have to encourage them to maintain the appropriate social distance.

https://doi.org/10.1371/journal.pone.0259713.g002
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using only its on-board RGB-D camera. In the presence of a CCTV camera, the architecture

uses its images to more effectively detect non-compliant groups in a larger sensing region with

a global perspective and guide the robot.

We detect breach scenarios based on the criteria previously mentioned. The robot’s on-

board RGB-D camera and the CCTV camera setup (whenever available) continuously monitor

the states of individuals within their sensing range. At any instant, breaches could be detected

by the robot’s RGB-D camera and/or the CCTV camera.

Social distance estimation using RGB-D camera. At any time instant t, we first localize a

person detected in the RGB image relative to the robot by using the depth image It. The depth

image is calibrated to be the same shape as the RGB image. Every pixel in It contains the prox-

imity of an object at that location of the image.

First, the detection bounding boxes from the RGB image passed through the pedestrian

tracking method are superimposed over the depth image (Fig 4). Next, the minimum 10% of

the pixel values inside the bounding box BP are averaged to obtain the mean distance (dProb) of a

pedestrian P relative to the robot. Denoting the centroid of the bounding box BP as ½xBPcen; y
BP
cen�,

the angular displacement c
P
rob of the pedestrian relative to a coordinate frame attached to the

robot (with X-axis and Y-axis pointing in the forward and left directions of the robot, respec-

tively) can be computed as:

c
P
rob ¼

w
2
� xBPcen
w

0

@

1

A � FOVRGBD: ð2Þ

Fig 3. Overall system architecture. Overall architecture of social distance monitoring using CS-robot: The main components include: (i) Pedestrian tracking and

localization; (ii) Pairwise distance estimation between pedestrians; (iii) Classifying pedestrians into groups; (iv) Computing a goal for the robot based on whether the

group is static or dynamic; (v) Using a hybrid collision avoidance method to navigate towards the goal; (vi) Displaying an alert message to the non-compliant

pedestrians to encourage them to move apart; (vii) Thermal image and bounding boxes of detected people are transmitted to security/healthcare personnel.

https://doi.org/10.1371/journal.pone.0259713.g003
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Here FOVRGBD is the field of view angle of the RGB-D camera and w is the width of the

depth image. We note that c
P
rob 2 ½� FOVRGBD=2; FOVRGBD=2�. The pedestrian’s position with

respect to the robot is then calculated as ½xProb y
P
rob� ¼ d

P
rob � ½cos c

P
rob sin c

P
rob]. To estimate the

distances between a pair of pedestrians, say Pa and Pb, we use the Euclidean distance function

given by,

distðPa; PbÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxParob � x
Pb
robÞ

2
þ ðyParob � y

Pb
robÞ

2
:

q
ð3Þ

Social distance estimation using a CCTV camera. Although the RGB-D camera is

mobile, it is limited by a low FOV and sensing range. A breach occurring outside its sensing

range will not be reported. Therefore, we utilize an existing CCTV camera setup in indoor

Fig 4. Pedestrian localization using RGB-D camera. Left: Two pedestrians detected in the RGB image of the robot’s RGB-D camera with the bounding box centroids

marked in pink and green. Right: The same bounding boxes superimposed over the depth image from the RGB-D camera. The pedestrians are localized and the

distance between them is estimated by the method detailed above.

https://doi.org/10.1371/journal.pone.0259713.g004

Fig 5. Homography and coordinate frames. a. The angled view of the homography rectangle marked in red and corners numbered from the

CCTV camera. The green dots mark the points corresponding to a person’s feet in this view. b. The top view of the homography rectangle after

transformation and the origin of the top view coordinate system is marked as otop. The coordinates of the feet points are also transformed using

the homography matrix. c. A map of the robot’s environment with free space denoted in gray and obstacles denoted in black with a coordinate

frame at origin omap. The homography rectangle is marked in red and the ground plane coordinate system is shown with the origin ognd.

https://doi.org/10.1371/journal.pone.0259713.g005

PLOS ONE Detecting and enforcing social distancing using robots

PLOS ONE | https://doi.org/10.1371/journal.pone.0259713 December 1, 2021 7 / 20

https://doi.org/10.1371/journal.pone.0259713.g004
https://doi.org/10.1371/journal.pone.0259713.g005
https://doi.org/10.1371/journal.pone.0259713


settings to widen the scope for detecting breaches. Pedestrian detection and tracking are done

as described in the Background section. We estimate distances between individuals as follows.

Homography. All CCTV cameras are mounted such that they provide an angled view of the

ground plane. However, to accurately calculate the distance between any two people on the

ground, a top view of the ground plane is preferable. To obtain the top view, we apply a homo-

graphy transformation to four points on the ground plane in the angled view that form the cor-

ners of the maximum-area rectangle that can fit within the FOV of the CCTV camera (see Fig

5a and 5b) as,

½xcorn;top ycorn;top 1�
T
¼ M � ½xcorn;ang ycorn;ang 1�

T
: ð4Þ

Here, xcorn,ang and ycorn,ang denote the pixel coordinates of one of the four points in the angled

CCTV view image. We call the rectangle in the top view, the homography rectangle. xcorn,top

and ycorn,top denote the same point in the transformed top view, and M is the scaled homogra-

phy matrix which is computed using standard OpenCV (Open Source Computer Vision

Library) functions.

Distance estimation between pedestrians. We localize each detected pedestrian within the

homography rectangle as follows. We first obtain a point corresponding to the feet of a pedes-

trian P (denoted as [xPfeet;ang; y
P
feet;ang]) by averaging the coordinates of the bottom left and the

bottom right corners of the bounding box of the pedestrian (see Fig 5a) in the angled CCTV

view. This point is then transformed to the top view using Eq 4 as ½xPfeet;top; y
P
feet;top�

T
¼

M � ½xPfeet;ang; y
P
feet;ang �

T
(see Fig 5b).

The distance between any two pedestrians Pa and Pb is first calculated by using Eq 3 with

the coordinates [xPafeet;top; y
Pa
feet;top] and [xPbfeet;top; y

Pb
feet;top] which is then scaled by an appropriate factor

S to obtain the real-world distance between the pedestrians. The scaling factor is found by

measuring the number of pixels in the image that constitute 1 meter in the real-world.

If the real-world distance estimated from the RGB-D or the CCTV camera images between

a pair of pedestrians is less than 2m for a period of time T, a breach is reported for that pair.

This process is continued in a pairwise manner and a list of all the pairs of non-compliant

pedestrian IDs is then obtained.

Enforcing social distancing

Once breaches are detected, either by the RGB-D camera or the CCTV camera or both, the

robot must first prioritize them, and compute a goal location in the vicinity of the top-priority

breach relative to itself. It must then navigate towards this goal and encourage the non-compli-

ant pedestrians to move apart by displaying an alert message discreetly. We detail the steps

involved in the following sections.

Classifying people into groups. In social scenarios, people naturally tend to walk or stand

in groups. We define a group as a set of non-compliant people who are closer than 2 meters

from each other (see Fig 2b). We assume that if the robot reaches the vicinity of a group, it can

alert everyone in that group to observe social distancing. In addition, when there are multiple

groups of non-compliant people, the robot can prioritize approaching different groups based

on whether they are static or dynamic. We classify non-compliant people into groups based on

Algorithm 1.

Algorithm 1: Non-Compliant Group Classification.
Input: A list nonCompPairs of length Sinput
Output: A list grpList
1: nonCompPairs  List of pedestrian ID pairs breaching social
distancing
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2: grpList  nonCompPairs [0]
3: for i from 1 to Sinput do
4: counter  0
5: for j from 0 to len(grpList) do
6: intersection  grpList[j] \ nonCompPairs[i]
7: if intersection 6¼ ; then
8: grpList[j]  grpList[j] [ grpList[i]
9: else
10: counter  counter + 1
11: end if
12: end for
13: if counter == len(grpList) then
14: grpList.append(nonCompPairs[i])
15: end if
16: end for

In Algorithm 1, nonCompPairs is a list that contains the IDs of all the pairs of non-compli-

ant pedestrians obtained in the Breach Detection section. grpList is a list of groups where each

group contains the IDs of people who have been assigned to it.

Locked pedestrian. To navigate towards a non-compliant group of people, the RGB-D or

the CCTV camera must be able to track at least one member of that group to compute a goal

in its vicinity. Our method locks on to a person with the least probability of exiting the FOV of

either the RGB-D or the CCTV camera (depending on which camera detected the group).

This person is called the locked pedestrian, and their ID is updated as people’s positions change

in the cameras’ FOVs. The person whose bounding box centroid has the least lateral distance

from the center of the image is chosen as the locked pedestrian. The condition is,

xBlp;icen �
w
2
¼ min

P2IGi

xBPcen �
w
2
; ð5Þ

where IGi
is the set of IDs for the detected pedestrians and Blpi denotes the bounding box of

the locked pedestrian in the ith non-compliant group inside the FOV.

Prioritizing groups in different scenarios. When multiple static and dynamic non-com-

pliant groups are present, our method prioritizes attending to them based on whether the

groups are (i) entirely or partially static, or (ii) entirely dynamic.

Entirely or partially static groups. When all or some of the groups within the FOV are static,

our method prioritizes attending to each static group by sorting them in the non-increasing

order of the number of people in group. Our method then computes a goal to which the robot

will navigate based on the locked pedestrian’s location in each group.

If only the RGB-D is in use, the robot localizes the locked pedestrian in the highest priority

group relative to itself using Eq 2). That is, ½xgoal;rob ygoal;rob� ¼ d
lp
rob � ½cos c

lp
rob sin c

lp
rob�

T
.

Where, [xgoal,rob ygoal,rob] is the goal location relative to the robot, dlpavg and c
lp
rob are the aver-

age distance and angular displacement of a locked pedestrian from the robot respectively.

If a CCTV camera is available, the goal computation for the robot requires homogeneous

transformations between three coordinate frames: 1. the top-view image obtained after homo-

graphy, 2. the ground plane, and 3. a map of the environment in which the robot is localized.

These three coordinates with origins otop, ognd and omap respectively are shown in Fig 5b and

5c. A detailed explanation of our goal calculation can be found in [24]. We provide the final

result here:

½xgoal;rob ygoal;rob� ¼ ½x
lp
feet;map y

lp
feet;map�

T
� ½xrob;map yrob;map�

T
: ð6Þ
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Where xrob,map, yrob,map and xlpfeet;map, y
lp
feet;map are the X and Y coordinates of the robot and the

locked pedestrian’s feet in the map coordinate frame, respectively.

Dynamic groups. When all the groups in the FOV are dynamic, we use an optimization for-

mulation to compute a goal to attend to the greatest number of people before they move away. We

first differentiate the groups that are moving closer to and away from the robot by checking if,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx̂ lprobÞ
2
þ ðŷlprobÞ

2

q

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxlprobÞ
2
þ ðylprobÞ

2

q

;

½x̂lprob ŷ
lp
rob�

T
¼ ½xlprob y

lp
rob�

T
þ vlprobDt

ð7Þ

where ½xlprob y
lp
rob� and ½x̂lprob ŷ

lp
rob� denote the current position and position after a small time interval

Δt of a locked pedestrian of a group relative to the robot. vlprob is the estimated walking vector of

the locked pedestrian relative to the robot (as explained in the pedestrian detection section). For

all the groups that satisfy this condition, we compute the robot’s goal as,

½xgoal;rob ygoal;rob� ¼ argmin
x;y

XN

i¼1

distð½x; y�; ½~xlprob; ~y
lp
rob�Þ ð8Þ

where N is the number of groups that satisfy the condition in Eq 7. This goal is a common point

from which all the groups moving towards the robot can be alerted. We note that this formula-

tion is effective for a small number of groups within the FOV, which we assume is the case when

pandemic restrictions are in place. When N = 1, the robot actively pursues the group to alert

them to maintain social distancing.

Multiple groups, lawnmower inspection and alerting. If the same group is detected in

both cameras, the goal computed using the CCTV camera is used to guide the robot. The

robot uses a display mounted on it to convey a message encouraging social distancing dis-

creetly, once it reaches a group. To improve the effectiveness of the integrated robot and

CCTV system in detecting new non-compliant groups of pedestrians, the robot inspects the

blind spots of the CCTV camera continuously by following the well-known lawnmower strat-

egy. In addition, the lawnmower strategy guarantees that 100% of an environment can be cov-

ered by navigating to a few fixed waypoints, although it does not guarantee an increase in the

number of breaches detected.

Thermal camera and privacy

As mentioned before, we use the thermal camera exclusively for COVID-19 symptom monitor-

ing. We use our pedestrian detection scheme to detect and track people in the thermal images

(see Fig 6) and the results are then sent to appropriate security or healthcare personnel who

check for COVID-19 symptoms such as a fever. Such a system would be useful in places where

people’s temperatures are already measured by security/healthcare personnel such as airports,

hospitals etc. Monitoring people’s temperatures remotely reduces the risk of the security/health-

care personnel contracting the coronavirus while also protecting people’s privacy. In addition,

we ensure that our algorithms do not use any identifiable information such as facial features.

Ethics and privacy

All the evaluations in the following section were conducted based on an IRB (Institutional

Review Board) approval by the University of Maryland Institutional Review Board Office (IRB

#1608506–1). We followed acceptable privacy preserving guidelines in protecting people’s pri-

vate health information. In particular, we ensure the following: no identifiable information
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(such as face) of a person is detected, nor stored on any server. Thermal image data is collected

only for knowing if a person with symptoms has been in a certain region so appropriate coun-

termeasures can be employed. It is not linked to the person’s age, gender, name, race, ethnicity

etc. We also use standard de-identification methods such as visual image redaction for faces,

gesture and gait data. The University of Maryland Institutional Review Board Office waived

the need for verbal or written consent for our study since we do not map people’s trajectories

to any of their personal information. The individuals pictured in Figs 1 and 6 and Supporting

information files (S1 Video) have provided written informed consent (as outlined in PLOS

consent form) to publish their image alongside the manuscript.

Results and discussion

In this section, we elaborate on our method’s implementation on a robot, explain the evalua-

tion scenarios and the metrics used to evaluate it and analyze its effectiveness and limitations.

Implementation

We implement our method on a Turtlebot 2 robot customized with additional aluminium

rods to attach a 15-inch screen to display messages to the non-compliant pedestrians. We limit

the robot’s maximum linear and angular velocities to 0.65 m/s and 1 rad/s respectively. The

pedestrian detection and tracking algorithm is executed on a laptop with an Intel i9 8th gener-

ation CPU and an Nvidia RTX2080 GPU mounted on the robot. We use an Intel RealSense

(with 70˚ FOV) RGB-D camera to sense pedestrians and a Hokuyo 2-D lidar (240˚ FOV) to

sense other environmental obstacles. To emulate a CCTV camera setup, we used an RGB cam-

era with a 1080p resolution mounted at an elevation of 4 meters, and a sensing region of

4m × 4m. We use a desktop machine with an Intel Xeon 3.6GHz × 8 processor, Nvidia Titan

Fig 6. Thermal camera images. Thermal images generated by the thermal camera that is wirelessly transmitted to appropriate

security/healthcare personnel. The temperature signatures of the people remain constant irrespective of their orientations. We

intentionally have a human in the loop to monitor people’s temperature signatures, and we do not perform any form of facial

recognition on people to protect their privacy. Pedestrians are detected on the thermal image to aid the personnel responsible for

monitoring the area.

https://doi.org/10.1371/journal.pone.0259713.g006

PLOS ONE Detecting and enforcing social distancing using robots

PLOS ONE | https://doi.org/10.1371/journal.pone.0259713 December 1, 2021 11 / 20

https://doi.org/10.1371/journal.pone.0259713.g006
https://doi.org/10.1371/journal.pone.0259713


GPU and 32GB RAM to track pedestrians in the images from the CCTV camera. We use a

FLIR C3 thermal camera to generate the temperature signatures of the robot’s surroundings.

Evaluation scenarios

For our evaluations, we consider an indoor environment with a wall-mounted CCTV camera

with a rectangular sensing region of 4 meters by 4 meters (see Fig 5c). The robot is made to

operate (either be static, execute lawnmower exploration or autonomously navigate to a non-

compliant group) outside the CCTV’s sensing region. The environment can have static or

dynamic obstacles other than the humans. We sample the environment uniformly and obtain

40 locations where people can stand while creating scenario 1 and 2. Twenty of these locations

are inside the CCTV’s sensing region and when the robot is static, approximately 10 sampled

locations are within the RGB-D camera’s sensing region.

• Scenario 1: One person stands in different locations in the sensing range of the RGB-D cam-

era and CCTV camera. The person is allowed to orient themselves in any random direction

at the location they stand.

• Scenario 2: Two people stand together (< 2 meters distance between them) in one of the 40

uniformly sampled locations in the environment. The people can individually be facing in

any arbitrary orientation. They could be standing side by side without occluding each other

or one person could occlude the other in various degrees (see Table 1). The robot could

either be static or executing the lawnmower exploration routine.

• Scenario 3: A person walks 5 meters in a direction that is perpendicular to the orientation of

the robot. The person walks with different speeds for different trials. The robot is static and

is only allowed to rotate in place. The CCTV camera is not used in this scenario.

Table 1. Comparison of breach detection and enforcement.

Case 1: Static robot no occlusions

Metric CCTV-only Robot-only Robot-CCTV Hybrid

Number of breaches detected 20 10 30

Number of enforcements NA 10 30

Case 2: Static robot with 50% occlusion

Number of breaches detected 20 7 27

Number of enforcements NA 7 27

Case 3: Static robot with >50% occlusion

Number of breaches detected 20 3 23

Number of enforcements NA 3 23

Case 4: Lawnmower exploration with 50% occlusions

Number of breaches detected 20 20 40

Number of enforcements NA 20 40

Case 5: Lawnmower exploration with >50% occlusions

Number of breaches detected 20 20 40

Number of enforcements NA 20 40

Comparison of three configurations in terms of detecting breaches in social distancing norms when two pedestrians

are static in any one of 40 points in a laboratory setting. We observe that CCTV+robot configuration has the most

number of breaches detected even when the robot is static and outside the CCTV’s sensing range. When the robot is

following lawnmower waypoints outside of the CCTV’s FOV, it can detect a breach in any of the 20 locations that

could not be detected by the CCTV camera, even with high levels of occlusion.

https://doi.org/10.1371/journal.pone.0259713.t001
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• Scenario 4: A certain number of people walk in random directions in the environment for a

period of 60 seconds. The number of people could vary between two and six. They could

walk alone or as a group with someone else for the entirety of the 60 seconds. The constraints

in this scenario are that the number of non-compliant groups (people walking together)

remains constant, and the members of one group do not interact or join another group. The

robot executes the lawnmower exploration routine, and the CCTV camera is used to detect

breaches.

• Scenario 5: Two people walk as a group in a random direction in the environment. Their

trajectories could be smooth or have sudden sharp turns. The robot is allowed to be fully

mobile and pursue the walking group. The CCTV is used to detect the group and guide the

robot to pursue the non-compliant group.

Quantitative metrics

We use the following metrics to evaluate our method.

1. Accuracy of pedestrian localization: It refers to the difference between the ground truth

location of a pedestrian and the location estimated using our method when using an

RGB-D or a CCTV camera.

2. Number of breaches detected: The number of locations in an environment (with or with-

out occlusions) at which a social distancing breach can be detected, given a total number of

locations uniformly sampled from the environment.

3. Number of enforcements: The number of times the robot attended to a breach once it was

detected (with or without occlusions).

4. Tracking duration for a mobile pedestrian: The time for which the robot can track a walk-

ing pedestrian. Longer tracking duration translates to more accurate goal computation and

pursuit when dealing with one or more dynamic groups.

5. Breach detection accuracy: This metric is defined by the following equation,

Breach detection accuracy ¼

PT
i¼1

Number of breaches detectedi
Actual number of breachesi

T
;

ð9Þ

where T is the total number of seconds for which the experiment is conducted, and i is an

index denoting every second until T seconds.

Metrics 1 is used for evaluation in scenario 1. Metrics 2, and 3 are used for evaluation in sce-

nario 2. Metric 4 is used for evaluation in scenario 3, and metric 5 is used with scenario 4.

Analysis

We elaborate our observations and the inferences drawn from our experiments conducted in

the different scenarios previously described, using the aforementioned metrics.

Accuracy of pedestrian localization. In scenario 1, we compare the ground truth loca-

tions with the estimated pedestrian location (metric 1) while using 1. the robot’s RGB-D cam-

era, and 2. the CCTV setup. The plots are shown in Fig 7, with the ground truth locations

plotted as blue circles and the estimated locations plotted as red circles. The plot in Fig 7a

shows the pedestrian being localized relative to the robot coordinate frame (see the section on

breach detection). Fig 7b shows a pedestrian being localized in the ground coordinate frame
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with origin ognd, which corresponds to corner point 1 of the homography rectangle on the

ground (see Fig 5c).

We observe in Fig 7a that when a pedestrian is located closer than 2.5 meters from the

robot and along the robot’s X-axis, the localization estimates closely match the ground truth.

The difference between ground truth and the estimate increases further away from the robot.

This is primarily because the robot localizes a pedestrian using the minimum 10% of the pixels

within his/her’s bounding box, whereas the ground truth is measured as a point on the

ground.

Furthermore, the orientation of the pedestrian relative to the RGB-D camera also affects the

their bounding box’s size and centroid, and therefore the localization estimate. However, since

the maximum error between the ground truth and estimated values is within 0.3 meters, its

effect on the social distance calculation and goal selection for the robot is within an acceptable

limit. The accuracy can also be improved with higher FOV depth cameras in the future.

From Fig 7b we see a trend similar to the plot in Fig 7a. The farther away a person is from

the origin (ognd), the greater the error between the ground truth and the pedestrian’s estimated

location. This is due to the approximations in the homography in obtaining the top view from

the angled CCTV view, which carries forward to computing [xPafeet;top; y
Pa
feet;top] (see explanations

in pedestrian localization using CCTV camera). However, the maximum error between the

estimates and ground truths is again within 0.25 meters. Since a pedestrian’s location is esti-

mated by the point corresponding to his/her feet, errors due to the pedestrian’s orientation are

less frequent. The average error in the distance estimation between pedestrians is* 0.1

meters.

Breach detection and enforcement. In scenario 2, we compare the performance differ-

ences in detecting a social distancing breach and enforcing for three configurations: 1. CCTV

only, 2. Robot only, and 3. Robot-CCTV hybrid system. Scenario 2 emulates social settings

where people could be sitting or standing and interacting with each other in public spaces.

The enforcement capabilities of these systems when people are walking vary extensively.

They depend on the initial orientation of the robot (and its sensors) and the peoples’ walking

directions and speeds. Therefore, for quantitative comparison, we first standardize our detec-

tion and enforcement tests in static settings. We quantify the breach detection capabilities in

Fig 7. Localization accuracy results. Plots of ground truth (blue dots) versus estimated pedestrian localization (red dots) when using the robot’s RealSense

camera and the static CCTV camera with more FOVs. a. The estimates from the RealSense camera tend to have slightly higher errors because we localize

pedestrians using averaged proximity values within their detection bounding boxes, which is affected by the size of the bounding boxes. b. Localization using the

data from the CCTV camera is more accurate as it tracks a person’s feet. This method is not affected by a person’s orientation. We observe that in both cases, the

localization errors are within the acceptable range of 0.3 meters.

https://doi.org/10.1371/journal.pone.0259713.g007
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dynamic settings in the breach detection accuracy section. We qualitatively analyze the detec-

tion and pursuit of walking pedestrians in the CCTV-guided walking locked pedestrian pursuit

section.

The results are shown in Table 1. The CCTV-only configuration is capable of detecting

breaches which occur in the 20 sampled locations which are within its FOV. It can also handle

occlusions (even> 50%) between pedestrians and detect breaches better due to its global view

of the environment. We observed that even with the partial visibility of a person’s limbs, the

breach detection was accurately performed. The random orientations of the people also do not

affect the breach detection’s accuracy. We note that this system already improves over current

CCTV systems where a human manually has to detect such breaches and initiates countermea-

sures. However, there is no scope for automatically enforcing social distancing at the location

of the breaches.

The robot-only configuration detects fewer breaches than the CCTV setup when the robot

is static (due to the RGB-D camera’s low FOV). Additionally, occlusions severely affect the

robot’s number of detections when it is static, especially when a person is occluded by more

than 50%. However, when the robot is moving along a lawnmower trajectory outside the

CCTV’s FOV, it detects the social distancing breaches that could be at any of the 20 locations

regardless of occlusions. This is because the robot’s RGB-D camera eventually obtains an

unoccluded view as it moves.

We also test the robot-only system’s ability to detect breaches and alert pedestrians in non-

laboratory indoor scenes such as lobbies, narrow corridors, etc. These different environments

vary in terms of lighting conditions (which affects pedestrian and breach detection) and the

available free space for the robot to move. We observe that our system is robust under changes

in all the aforementioned factors (see S1 Video).

The robot-CCTV hybrid configuration provides the best performance of the three configu-

rations in terms of detecting novel breaches at the most locations when the robot is static. This

is because, when the robot is outside the sensing region of the CCTV camera, the hybrid con-

figuration monitors the largest area in the environment. When the robot is mobile, continu-

ously following a lawnmower path, social distancing breaches in all 40 locations can be

detected. This configuration also provides better tracking capabilities when a pedestrian is

walking (see subsequent sections). We also note that, when people are static, the robot attends

to 100% of the detected breaches while avoiding all the obstacles in the environment.

Breach detection accuracy with multiple walking pedestrians. We measure the breach

detection accuracy (metric 5) of the robot-CCTV hybrid system in scenario 4 with multiple

walking pedestrians. The number of walking pedestrians is varied between two to six for differ-

ent trials of the experiment and in each trial, the number of breaches is kept constant. Each

trial is recorded for 60 seconds (i.e., T = 60 in Eq 9) and is repeated for five times and the

results are averaged. The results are shown in Table 2. The numbers in the parenthesis in the

first column indicate how the total number of pedestrians is split into non-compliant groups

as they walk.

The breach detection accuracy is a measure of the difference between the number of

detected breaches versus the actual number of breaches over a period of time. We observe that

for our robot-CCTV hybrid, it is always above 88%, indicating that our method accurately

detects the actual number of non-compliant groups. We observed that the detection accuracy

was typically affected when the pedestrians moved into blind spots between the sensing regions

of the CCTV camera and the robot’s RGB-D camera. Another factor which affected the results

was the robot’s pose due to the lawnmower trajectory relative to the pedestrians when they

were walking in random directions.
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The size of each non-compliant group also affected the overall results (as observed from

rows four and six in Table 2). Breaches by bigger groups of people are easier to detect. This is

because a breach could be recorded even if a subset of all the group members is visible to the

cameras. Moreover, such groups also have a lower chance of being completely occluded by

objects in the environment. However, the orientations and the walking speeds of the pedestri-

ans did not affect the breach detection accuracy. Overall, we observe that our robot-CCTV

hybrid is effective in accurately detecting the actual number of social distancing breaches in

the environment.

Computation time and complexity for breach detection. We recorded the computation

times for detecting breaches with the increase in the number of pedestrians in the environment

(scenario 4). To evaluate the computation times when more people than six people are present,

we use human shaped cardboard cutouts (to have up to 13 pedestrians). We compare the com-

putation times to detect breaches on the laptop mounted on the robot and the desktop which

processes the CCTV images (see Implementation section for their specifications). The breach

detection implementations for the two cameras are different as explained in the Methods sec-

tion and the Implementation section. The results are shown in Fig 8.

We observe that the computation time increases non-linearly with the increase in the num-

ber of detected pedestrians. This follows from observing algorithm 1, which has a worst case

time complexity of Oðn2Þ, where n is the number of detected pedestrians. On average, due to

the RGB-D camera’s limited FOV and sensing range, the robot-mounted laptop does not

detect more than seven pedestrians simultaneously. The CCTV’s larger sensing region allows

tens of pedestrians to be detected. For both these cases, from the graph in Fig 8, we observe

that the breach detection time is around 0.16 seconds. This is well within the acceptable rate

for the robot to enforce social distancing norms even with dynamic pedestrians.

We also observed that since pedestrian and breach detection were not affected by the orien-

tations and velocities of the pedestrians, the time complexity also does not depend on those

factors.

RGB-D pedestrian tracking duration. In this experiment, we observe the effects of our

robot’s angular motion on the duration for which it can track walking pedestrians using only

its onboard RGB-D sensor with low FOV. We evaluate the pedestrian tracking time metric in

scenario 3. We vary the maximum angular velocity of the robot to measure the differences in

tracking performance (Table 3).

Table 2. The percentage of breaches detected by the robot-CCTV hybrid setup with different numbers of walking

pedestrians.

Total number of

pedestrians

Number of non-compliant groups at

any instant

Breach detection accuracy (for Robot-

CCTV Hybrid)

2 1 89%

3 (2 + 1) 1 88%

4 (2 + 2) 2 89.50%

5 (2 + 3) 2 93%

6 (2 + 2 + 2) 3 89.33%

6 (3 + 3) 2 96.50%

The table shows the effectiveness of the robot-CCTV hybrid system in accurately detecting the actual number of

social distancing breaches in the environment over a period of 60 seconds. Each trial is repeated five times and the

results are averaged. The first column indicates the total number of pedestrians and how they are split while walking

(eg. 2 + 1 indicates two people walking together and one person walking alone). The high breach detection accuracy

denotes that our method and setup are effective in detecting the correct number of breaches in the environment.

https://doi.org/10.1371/journal.pone.0259713.t002
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As expected, we observe that the greater the maximum angular velocity of the robot, the

better it can track a fast-moving pedestrian. However, for high walking speeds (� 0.75m/s)
even a very high maximum angular speed (1 rad/s) is insufficient to track a person for the ideal

time that the person needs to be tracked (shown in gray in Table 3). This justifies the need for

integrating with existing CCTV camera setup for better tracking capabilities.

Fig 8. Graphs of our breach detection’s computation time versus the number of detected pedestrians. The graph

shows the computation times while running our breach detection implementations for the RGB-D camera on a robot-

mounted laptop, and the wall-mounted CCTV camera on a desktop (see Implementation section for specifications).

The values were recorded while evaluating in scenario 4 with added human shaped cardboard cutouts to get the total

number of detected pedestrians to be 13. We observe that based on the FOV and sensing regions of the two cameras,

the corresponding computation times in the laptop and desktop are satisfactory.

https://doi.org/10.1371/journal.pone.0259713.g008

Table 3. Tracking duration with varying pedestrian velocities.

Case 1: Maximum Robot Angular Velocity = 0.5 rad/sec

Pedestrian Velocity (m/sec) Tracking time (sec)

0.25 20 (20)

0.5 6.59 (10)

0.75 3.15 (6:67)

1 2.95 (5)

Case 2: Maximum Robot Angular Velocity = 0.75 rad/sec

0.25 20 (20)

0.5 10 (10)

0.75 3.91 (6:67)

1 2.93 (5)

Case 3: Maximum Robot Angular Velocity = 1.0 rad/sec

0.25 20 (20)

0.5 10 (10)

0.75 6.58 (6:67)

1 2.77 (5)

The duration for which the robot tracks a walking pedestrian for different pedestrian walking speeds and maximum

angular velocities of the robot. The pedestrian walks 5 meters in a direction perpendicular to the robot’s orientation

and it has to rotate and track the walking pedestrian. The ideal time for which a pedestrian should be tracked is given

in the bracket beside the actual time. The robot can effectively track a pedestrian walking at up to 0.75 m/sec when its

angular velocity is 1 rad/sec.

https://doi.org/10.1371/journal.pone.0259713.t003
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CCTV-guided walking locked pedestrian pursuit. We qualitatively demonstrate how

our robot pursues two walking non-compliant pedestrians (scenario 5) by plotting their trajec-

tories in the cases where the RGB-D (see Fig 9a and 9b) or the CCTV camera (see Fig 9c and

9d) detects them. Fig 9a shows that when the pedestrians walk in a smooth trajectory without

sharp turns, the robot is able to successfully track them throughout their walk.

In Fig 9b, we observe that when the pedestrians make a sharp turn and manage to go out-

side the limited FOV of the RGB-D camera, the robot is unable to pursue him/her. The pedes-

trians were walking at speeds *0.75 m/sec. This issue is alleviated when the CCTV camera

tracks both the pedestrians instead of the RGB-D camera. Fig 9c and 9d show that the robot is

able to track the pedestrians more closely and accurately with the goal data computed using

the CCTV’s localization. In addition, sudden and sharp turns by the pedestrians are handled

with ease, and pedestrians moving at speeds * 0.75 m/sec can be tracked and pursued, which

was not possible with the robot- only configuration. When the pedestrians move out of the

CCTV camera’s FOV (black line in Fig 9c and 9d), the data from the robot’s RGB-D camera

helps pursue the two pedestrians immediately. However, the pedestrians’ sharp turns again

becomes a challenge to track.

Conclusion

We present a novel method to detect social distancing breaches in indoor scenes using simple

sensors such as RGB-D and CCTV cameras. We use a mobile robot to attend to the individuals

who are non-compliant with the social distancing norm and to encourage them to move apart

by displaying a message on a screen mounted on the robot. We demonstrate our method’s

effectiveness in localizing pedestrians, detecting breaches, and pursuing walking pedestrians.

We demonstrate that the CCTV+robot hybrid configuration outperforms configurations in

which only one of the two components is used for tracking and alerting non-compliant

pedestrians.

Our method has a few limitations. For instance, it does not distinguish between strangers

and people from the same household. Therefore, all individuals in an indoor environment are

encouraged to maintain a 6-foot distance from each other. Our current approach for issuing a

warning to violating pedestrians using a monitor has limitations, and we need to develop bet-

ter human-robot interaction approaches. As more such monitoring robots are used to check

for social distances or collect related data, this could also affect the behavior of pedestrians in

Fig 9. Improved pedestrian tracking using CCTV camera. Trajectories of two non-compliant pedestrians (in red) and the robot

pursuing them (in green) in the mapped environment shown in Fig 5c. The pink and blue colors denote the static obstacles in the

environment. a. The robot only uses its RGB-D camera to track the pedestrian and pursues the pedestrians successfully when they

move in a smooth trajectory. b. The robot’s RGB-D camera is unable to track the pedestrians when they make a sudden sharp turn.

c. When the CCTV camera is used to track the pedestrians, the robot follows their trajectories more closely. d. Pedestrians making

sharp and sudden turns can also be tracked. The black line denotes the point at which the pedestrians leave the CCTV camera’s

FOV, and the RGB-D camera tracks the pedestrians from this point. Sharp turns in d again become a challenge.

https://doi.org/10.1371/journal.pone.0259713.g009
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different settings. We need to perform more studies on the social impact of such robots. Due

to COVID restrictions, we have only been able to evaluate the performance of the CS-robot in

our low to medium density indoor settings. Eventually, we want to evaluate the robot’s perfor-

mance in crowded public settings and outdoor scenarios.

We also need to design better techniques to improve the enforcement of social distancing

by using better human-robot interaction methods. Improved exploration techniques to mini-

mize the loss of detecting breaches could also be addressed in our future work. We would also

like to develop methods for detecting if the people in the robot’s surroundings are wearing

masks. Specifically, we would like to formulate methods that are robust to changes in the pose

of people’s bodies and heads.

Supporting information

S1 Video. Video with real-world demonstrations. The attached supporting video shows how

our robot detects and enforces social distancing breaches using its on-board RGB-D camera,

and using an assistive CCTV camera in a laboratory setting. It also demonstrates our robot

executing lawnmower trajectories to explore its environment and detect new non-compliant

groups (both static and dynamic) and pursue them until they observe the social distancing

norms.
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