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Abstract

INTRODUCTION: Brain age gap (BAG), defined as the difference between MRI-

predicted ‘brain age’ andchronological age, can capture informationunderlyingvarious

neurological disorders.We investigated thepathophysiological significanceof theBAG

across neurodegenerative disorders.

METHODS:Wedeveloped a brain age estimator using structuralMRIs of healthy-aged

individuals from one cohort study. Subsequently, we applied this estimator to peo-

ple with Alzheimer’s disease spectra (AD) and Parkinson’s disease (PD) from another

cohort study.We investigated brain sources responsible forBAGs among these groups.
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RESULTS: Both AD and PD exhibited a positive BAG. Brain sources showed overlap-

ping, yet partially segregated, neuromorphological differences between these groups.

Furthermore, employing with t-distributed stochastic neighbor embedding on the

brain sources, we subclassified PD into two groups with and without cognitive

impairment.

DISCUSSION: Our findings suggest that brain age estimation becomes a clinically

relevant method for finely stratifying neurodegenerative disorders.
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Highlights

∙ Brain age estimated from structure MRI data was greater than chronological age in

patients with Alzheimer’s disease/mild cognitive impairment or Parkinson’s disease.

∙ Brain regions attributed to brain age estimation were located mainly in the fronto-

temporo-parietal cortices but not in themotor cortex or subcortical regions.

∙ Brain sources responsible for the brain age gaps revealed roughly overlapping,

yet partially segregated, neuromorphological differences between participants with

Alzheimer’s disease/mild cognitive impairment and Parkinson’s disease.

∙ Participants with Parkinson’s disease were subclassified into two groups (with and

without cognitive impairment) based on brain sources responsible for the brain age

gaps.

1 BACKGROUND

Brain MRIs of individuals with Alzheimer’s disease (AD) often appear

older than patients’ chronological age. Such a pathological change in

brain morphology occurs in addition to the normative neuromorpho-

logical changes that arise dynamically throughout the human lifespan.1

Technological advances have enabled the assessment of dynamic age-

related neuromorphological changes using MRI scans, which can be

non-invasively acquired from fetuses to centenarians to form large-

scale databases.1–3 The application of machine learning algorithms to

magnetic resonance imaging (MRI) features (e.g., cortical thickness,

gray matter volume) has enabled the development of a brain age

estimation (BAE) method, which is designed to estimate an individ-

ual’s chronological age from their brain MRI images.4,5 The difference

between brain age and chronological age is called the brain age gap

(BAG).

A positive BAG, which typically indexes excessive brain aging,

has been reported in people with cognitive decline6 and AD.7–12

Moreover, positive BAGs have also been reported in people with

Parkinson’s disease (PD)11,13,14 and neuropsychiatric disorders.15,16

Nevertheless, if disease-specific information can be extracted from

BAG-related neuromorphological features, BAE technology may fur-

therourunderstandingof neurodegenerativedisorders. Specifically, by

back-projecting the correlates of the BAG to the original feature space

in the brain, it may be possible to differentially attribute BAGs to var-

ious disorders, such as AD and PD. Such spatial characterization could

then be followed by the stratification or deep profiling of as yet uniden-

tified disease subgroups. This approachwould be particularly powerful

when combined with the BAE procedure because BAE removes the

effects of normative aging, which is a confounder of disease effects.

To gain deeper insight into the pathophysiology of AD and PD, we

investigated neuromorphological changes responsible for the BAG in

these diseases using two large MRI datasets. We built our BAE pre-

dictor using the dataset from the Tohoku Medical Megabank Brain

MRI (TMMbMRI) study,17 which is the largest community-based MRI

cohort in Japan. We applied the BAE predictor to the MRIs of peo-

ple with AD, PD, and healthy aging in the independent cohort, the

Parkinson’s and Alzheimer’s disease Dimensional Neuroimaging Initia-

tive (PADNI).18–20 We computed the BAG among these groups and

analyzed its relationship with clinical batteries. We further compared

the brain sources of the BAG across these groups. Through these

analyses, we tested the following hypotheses. First, the BAE method

would yield positive BAGs when applied to either AD or PD patients.

Second, the brain sources responsible for the BAG would reflect

distinct neuromorphological differences among healthy aging individ-

uals and patients with AD and PD. Finally, the BAG and its sources

convey some information about clinical symptoms such as cognitive

impairment.
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2 METHODS

2.1 Participants and MRI data acquisition

We recruited healthy individuals aged over 40 years from the

TMMbMRI study.17 Based on the inclusion and exclusion criteria,21 we

selected MRI data from 2707 adults aged over 40 years to build the

BAE model (see Table 1 and Figure S1 for the demographic data). All

participants were independent individuals who voluntarily agreed to

participate and were able to visit the study sites independently. For

individuals aged ≥ 65 years, those with a Mini-Mental State Examina-

tion (MMSE) score < 27 were excluded. The details of this content are

provided in Section 1 of Supporting Information.

The PADNI cohort comprises data acquired from participants aged

≥50years old across four sites in Japan: theNationalCentreofNeurol-

ogy and Psychiatry (NCNP), Kyoto University (KU), Kyoto Prefectural

University of Medicine (KPUM), and Fukushima Medical University

(FMU). We analyzed interim PADNI data acquired from 85 healthy

older adults (PADNI HA hereafter), 94 patients with PD, 13 patients

with AD, and 35 patients with mild cognitive impairment (MCI) (see

Table 1 and Figure S1 for the demographic data). The diagnoses of

AD/MCI and PD were conducted according to the National Insti-

tute on Aging-Alzheimer’s Association AD diagnostic guidelines22 and

the International Parkinson and Movement Disorder Society (MDS)

criteria,23 respectively. Due to the small numbers of participants, the

MCI and AD groups were combined because of the small numbers

of participants (AD/MCI hereafter). The details of this content are

provided in Section 1 of Supporting Information and Table S1.

T1-weighted 3D structural MRI data were obtained using a magne-

tization prepared-rapid gradient echo sequence in both the TMMbMRI

study and the PADNI cohort (according to the Brain/MINDS harmo-

nization protocol24). The detailed sequence parameters are listed in

Table 1.

All PADNI participants underwent a neuropsychological/clinical

battery, which comprised the clinical dementia rating (CDR), MMSE,

Montreal Cognitive Assessment-Japanese version (MoCA), immediate

recall (IR) and delayed recall (DR) of the logicalmemory (LM) and visual

reproduction (VR) subtests of the Wechsler Memory Scale-Revised

(WMS-R) and MDS sponsored revision of Unified Parkinson’s Disease

Rating Scale (MDS-UPDRS).

2.2 MRI data preprocessing

We used the recon-all command of FreeSurfer v6.0 to segment the

structural MRI data. The cerebral cortex was subdivided into 148

regions according to the Destrieux Atlas.25 The Aseg Atlas26 was used

to subdivide the subcortical structures into45 regions, fromwhichonly

subcortical gray matter volumes (ScV) were selected (i.e., 19 regions

listed in Table S2) and subjected to further analyses. All 167 MRI

features (cortical thickness for the 148 cortical regions and ScV for

the 19 subcortical gray matter regions) were fed into our BAE model

after correcting for scanner/site differences using combatting batch

effects when combining batches of gene expression microarray data

RESEARCH INCONTEXT

1. Systematic review: Magnetic resonance imaging (MRI)-

predicted age, known as brain age, is currently under

extensive investigation within the fields of neurology and

neuroscience. Previous studies have successfully esti-

mated brain age using machine learning techniques and

have reported an increase in the brain age gap across var-

ious neurological disorders. However, to the best of the

authors’ knowledge, the specific brain sources responsi-

ble for this gap have not yet been investigated. These

earlier studies are appropriately cited.

2. Interpretation: Our findings shed light on a pathophysio-

logical aspect of the brain age gap in neurodegenerative

diseases. The brain age gap may not only serve as a sup-

portive marker for a diagnosis but also hold potential

as a marker for clinical symptoms, particularly cognitive

impairment.

3. Future directions: The manuscript introduces new per-

spectives to brain age research. Investigating the brain

sources responsible for the brain age gap is beneficial

in the following aspects: (1) Research on the disease-

specific distribution of brain sources aids in diagnosing

and categorizing neurological disorders. (2) Exploring

the relationship between the brain age gap and clini-

cal symptoms. (3) Investigating potential causes for the

acceleration of brain aging.

(ComBat).27 We built a ComBat model (with age, sex, and group labels

as covariates to be preserved) to remove differences in imaging prop-

erties between the twin scanners used by the TMMbMRI study and the

various scanners used by the four PADNI sites.

2.3 Brain age estimation procedure

Weused apartial least squares regression (PLS)model to build theBAE

model using MRI features that typically have multiple collinearities. In

practice, we used Python version 3.8.2 (https://www.python.org/) and

scikit-learn version 1.1.1 (https://scikit-learn.org/stable/). A 10-fold

nested cross-validation (CV) schemewas used (Figure 1). Hyperparam-

eters were tuned in the inner loop, and estimation was performed in

the outer loop. The details of this content are provided in Section 2 of

Supporting Information.

The accuracy of the prediction was assessed by the mean absolute

error between predicted age and chronological age (MAE), coefficient

of determination (R2), and Spearman’s correlation coefficient (rho). An

estimation bias inherent to theBAEprocedurewas corrected using the

previously establishedmethod.28,29

We assessed the brain features that contributed to the BAE model

in the TMMbMRI dataset. From the BAE model using the entire

https://www.python.org/
https://scikit-learn.org/stable/
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TABLE 1 Profiles of study participants

Parameter TMMbMRI PADNI

HA HA PD AD/MCI

No. of participants 2707 (>40 yrs for Training)

2079 (≥50 yrs for Test)

85 (NCNP n= 52, KU

n= 23, KPUM n= 10,

FMU n= 0)

(CDR 0 n= 85)

94 (NCNP n= 35, KU n= 44,

KPUM n= 2, FMU n= 13)

(CDR 0 n= 61; 0.5 n= 27; 1

n= 5; 2 n= 1)

48 (NCNP n= 19, KU n= 8,

KPUM n= 16, FMU n= 5)

(CDR 0.5 n= 35; 1 n= 10; 2

n= 3)

Sex (male/female) 980/1727

vs. PADNI HA: χ2= 11.67, P=
6.3*10−4

47/38 49/45 17/31

χ2= 5.20, P= 0.07

Age (mean± SD yrs,

min–max)

58.2± 10.0, 40–80 (for Training)

62.6± 6.8, 50–80 (for Test)

66.7± 8.1, 50–80 67.7± 7.2, 50–80 72.0± 6.3, 55–80

Test vs. PADNI HA: t=−5.446, P=
5.73*10−8

F[2,224]= 8.3, P= 0.0003 (HA vs. PD: t=−0.86, P= 0.39; HA vs. AD/MCI: t=−3.91, P=
1.50*10−4; PD vs. AD/MCI: t=−3.52, P= 5.84*10−4)

MRI Sequence

parameters

32-channel head coil on twin 3-T

MRI scanners (Ingenia, Philips

Medical System, Netherlands)

repetition time= 11ms, echo

time= 5.2ms, inversion time=
1068.3ms, flip angle= 8◦ , matrix

size =368×368, and voxel size=
0.7 × 0.7 × 0.7mm

3-T Verio Dot/Skyra Fit scanner (Siemens, Erlangen, Germany) at NCNP

Skyra scanners (Siemens, Erlangen, Germany) at KU, KPUM, and FMU

repetition time= 2500ms, echo time= 2.18ms, inversion time= 1000ms, flip angle=
8◦ , matrix size = 320 × 300, and voxel size= 0.8× 0.8× 0.8mm

MMSE 28.8± 1.0 29.3± 1.1 27.9± 2.7 23.9± 5.2

Test vs. PADNI HA: t=−3.97, P=
7.6*10−5

F[2,223]= 50.04, P= 1.1× 10−18 (HA vs. PD: t= 4.33, P= 2.4*10−5, HA vs. AD/MCI:

t= 9.29, P= 4.5*10−16, PD vs. AD/MCI: t= 6.11, P= 9.4*10−9)

Note: Mild cognitive impairment (MCI, n = 35) and Alzheimer’s disease (AD, n = 13) were combined into AD/MCI due to the small number of participants in

each group.

Abbreviations: CDR, Clinical Dementia Rating Scale; FMU, Fukushima Medical University; HA, healthy older adults; KPUM, Kyoto Prefectural Univer-

sity of Medicine; KU, Kyoto University; MMSE, Mini-Mental State Examination; NCNP, National Centre of Neurology and Psychiatry; PADNI, Parkinson’s

and Alzheimer’s disease Dimensional Neuroimaging Initiative; PD, Parkinson’s disease; TMMbMRI, Tohoku Medical Megabank Brain Magnetic Resonance

Imaging study; mean± standard deviation.

TMMbMRI dataset, the weighted sum of the PLS components cho-

sen by the BAE model was back-projected onto each brain region for

visualization (i.e., the BAE sourcemap).

To test the generalizability of the TMMbMRI BAEmodel, we applied

the model to predict brain ages of the PADNI HA group using a 10-

fold CV (Figure 1). The number of components and weights of the PLS

model were retrained using the entire TMMbMRI dataset. We applied

the same BAE model to the PADNI PD and PADNI AD/MCI groups

and compared the BAG. The bias correction was applied to the PADNI

BAE. Hereafter, we describe the bias-corrected BAG unless otherwise

mentioned.

To assess the effect of gender on BAE, we applied the same proce-

dure separately to men and women, but we did not find a difference in

BAG between the two groups. We thus pooled the data from men and

women in further analyses (Section 2 of Supporting Information and

Table S3).

2.4 Brain age gap source analysis and
classification of disease labels

To assess the brain features that yielded the BAG, we extracted the

PLS components from the MRI data of the PADNI cohort. We per-

formed a regression analysis of the PLS components with age, which

yielded the residuals of the PLS components that produced the BAG.

The residuals were then back-projected onto the brain regions, which

resulted in BAG source vectors that corresponded to the 167 features.

The BAG source vectors in each brain region were standardized as z-

scores using the mean and variance computed from the TMMbMRI

data. These vectors are hereafter referred to as the BAG source.

We built classifiers to determine the group label of each PADNI

participant using the BAG source as the feature. The classifiers were

trained to discriminate between the following pair of group labels:

AD/MCI versus HA, and AD/MCI versus PD. We randomly selected

data from the pool of HA or PD datasets iteratively 100 times, so that

the dataset size of the HA or PD subsamples matched the dataset

size of the AD/MCI subsample. This avoided classification bias due to

unmatched sample sizes. A stratified 10-fold CV was performed for

validation. After the feature selection with the random forest classi-

fication, a linear support vector machine (SVM) was used to classify

these disease labels. We calculated the performance measures in each

iteration. The details of this content are provided in Section 3 of

Supporting Information.

To gain insight into the classification results using the BAG source,

we visualized the data structures of the BAG source. We reduced

the dimension of the BAG source using t-distributed stochastic
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F IGURE 1 Analysis pipelines and validation schemes of brain age estimation (BAE) (upper panels). The brain age estimation (BAE) model was
constructed using a partial least square regression (PLS) with a nested 10-fold cross-validation (CV).We used 167 features (cortical thickness and
subcortical volumes) extracted from T1-weighted (T1w)magnetic resonance imaging scans (MRIs) of cognitively unimpaired (Mini-Mental State
Examination [MMSE] score> 26), community-dwelling individuals in the TohokuMedicalMegabank BrainMRI (TMMbMRI) study.We usedMRIs
from individuals older than 40 years for hyperparameter tuning and training and applied the trained BAE to people aged≥50 years for
performance testing withmean absolute error (MAE) and R2, rho, and brain age gap (BAG) (lower panels). The TMMbMRI BAEwas applied to the
Parkinson’s and Alzheimer’s disease Dimensional Neuroimaging Initiative (PADNI) individuals (aged≥ 50 years), including healthy older adults
(HA), Alzheimer’s disease (AD), mild cognitive impairment (MCI), and Parkinson’s disease (PD), collected from four sites after ComBat
harmonization. Note thatMCI and ADwere combined and treated as a single group (AD/MCI) due to the small number of participants

neighbor embedding (t-SNE) with a perplexity value of 10 (Matlab

R2020a,Mathworks,USA) and subsequently compared the t-SNEplots

across the groups. For the reason stated later (Section3.4), in the t-SNE

space, we constructed a linear SVM classifier to differentiate between

AD/MCI andHAgroups, subsequently applying this classifier to the PD

group.

We projected the BAG source back onto the original brain regions

(i.e., the BAGattributionmap) and compared theBAGattributionmaps

among the groups. We first averaged the z-scores of the BAG source

across all the participants in each group. The averaged z-scores were

then converted into ascending rank order within each group to gener-

ate the BAG attributionmaps. This methodwas used to compare ranks

between group pairs, which allowed us to compare BAG attribution

maps between the groups.

2.5 Statistical analyses

A chi-squared test was used to compare the distribution of cate-

gories, such as sex, among groups. A one-way analysis of variance

(ANOVA) was used to compare the BAG among the PADNI groups, fol-

lowed by post hoc tests between groups usingHolm’s adjustment30 for

multiple comparisons. We used Spearman’s correlation (rho) between

the BAG and clinical and cognitive test scores of the PADNI cohort.

Classification performance was assessed by averaging the perfor-

mance metrics, including accuracy, recall, precision, F1 score, and

the area under the receiver operating characteristic curve (AUC).

We computed partial eta, Cohen’s d, and rho as a measure of the

effect size when applicable. We used Python version 3.8.2 for these

analyses.
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F IGURE 2 Brain age estimation (BAE) based on 2707 community-dwelling people in the TohokuMedicalMegabank BrainMRI (TMMbMRI)
study. (A) A plot of the brain age against the chronological age. Each dot represents an individual. The green line represents a regression line. The
participants aged 40–50 years are represented in light green. (B)Weighted sum of the partial least squares regression components of our BAE
model, back-projected onto brain regions (BAE sourcemap). Yellow- and blue-colored regions have a higher and lower contribution to BAE,
respectively

3 RESULTS

3.1 Brain age estimation in community-dwelling
people in the TMMbMRI

The optimal number of components was eight. The TMMbMRI BAE

model yielded an MAE of 4.95. R2 and the BAGs were 0.41 and

0.00 ± 5.26 after bias correction (Figure 2A). The BAE source map

(Figure 2B) indicated that the fronto-temporo-parietal association

cortices, especially the posterior cingulate cortex/precuneus, ventral

prefrontal cortex, and the lateral and medial temporal lobe (LTL/MTL)

were the major contributors to our BAE model, while the contribution

of the precentral and postcentral gyri, putamen, and cerebellum was

relatively small.

3.2 Generalization of the BAE model to the
PADNI cohort

The TMMbMRI-based BAE model yielded an MAE of 5.01 in the

PADNI HA. The BAG did not differ between the PADNI HA and the

TMMbMRI (Cohen’s d= 0.05, t=−0.42, P= 0.67). Othermeasures fol-

lowing bias correction showed that the TMMbMRI BAE model could

be generalized to the PADNI HA group reasonably well (Table 2 and

Figure 3).

3.3 Brain age gap in PADNI cohort individuals
with neurodegenerative disorders

We applied the BAE model to the PADNI PD and AD/MCI groups

(Table 2 and Figure 3). One-way ANOVA revealed differences in

the BAG among the PADNI HA, PD, and AD/MCI groups (partial

eta = 0.053, F(2, 224) = 6.212, P = 0.002). The AD/MCI group showed

TABLE 2 Results from the application of the TMMbMRI brain age
estimationmodel to the PADNI data

Parameter R2 Rho BAG

PADNI HA 0.60 0.84 0.24± 5.13

PADNI PD 0.56 0.85 1.47± 4.51

PADNI AD/MCI 0.13 0.72 3.32± 4.79

Note: Results of correlation analysis between chronological ages and esti-

mated brain ages.

Abbreviations: AD/MCI, Alzheimer’s disease/mild cognitive impairment;

BAG, brain age gap, mean ± standard deviation; HA, healthy older adults;

PADNI, Parkinson’s and Alzheimer’s disease Dimensional Neuroimaging

Initiative; PD, Parkinson’s disease; R2, coefficient of determination; rho,
correlation coefficient; TMMbMRI, TohokuMedicalMegabank BrainMRI.

a larger BAG than theHA group (Cohen’s d= 0.61, t= 3.376, P= 0.003,

significant after Holm’s adjustment). The AD/MCI group showed a

lower R2 compared to the other groups. The difference in BAG was

also significant between the PD and AD/MCI group (Cohen’s d = 0.40,

t = 2.253, P = 0.05), but not between the PD and HA group (Cohen’s

d= 0.25, t= 1.689, P= 0.09).

In the PADNI cohort, we found a correlation between the BAG

and all cognitive scores: MoCA (rho = −0.225, P = 0.001), WMS-

R LM-IR (rho = −0.277, P < 0.001), WMS-R LM-DR (rho = −0.262,
P < 0.001), WMS-R VR-IR (rho = −0.154, P = 0.021), and WMS-R VR-

DR (rho = −0.206, P = 0.002; Figure S2). However, we did not find a

significant correlation between the BAG and the MDS-UPDRS Part III

score (rho= 0.097, P= 0.153).

3.4 Disease classification using multivariate brain
age gap source features

The SVM classifier, based on multivariate BAG source features,

achieved a fair performance of 75%–80% for discriminating between
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F IGURE 3 Application of the brain age estimation (BAE)model of the TohokuMedicalMegabank BrainMRI (TMMbMRI) data to the dataset of
the Parkinson’s and Alzheimer’s disease Dimensional Neuroimaging Initiative (PADNI) cohort. Plots of the brain age against the chronological age
in (A) healthy older adults (HA), (B) Parkinson’s disease (PD), and (C) Alzheimer’s disease/mild cognitive impairment (AD/MCI). The green dotted
lines are the regression lines estimated by the TMMbMRI BAE. Solid lines are regression lines estimated by each group’s data. (D) Boxplots of the
brain age gaps were computed from each group’s data. Boxes represent the interquartile range of the 25th and 75th percentile.Whiskers
represent 1.5 times of the interquartile range. Each dot represents each person (A–D).

AD/MCI patients and HAs (accuracy = 0.756 ± 0.004, preci-

sion = 0.804 ± 0.005, recall = 0.704 ± 0.006, f1 = 0.735 ± 0.005,

and AUC = 0.810 ± 0.005). However, the SVM classifier showed a

modest performance of approximately 60% accuracy for differenti-

ating between AD/MCI and PD patients (accuracy = 0.591 ± 0.004,

precision = 0.594 ± 0.005, recall = 0.662 ± 0.006, f1 = 0.610 ± 0.005,

and AUC= 0.601± 0.006).

We conducted the t-SNE analysis to determine the data structure

of the BAG source. In the 2D t-SNE space (Figure 4A), although the

AD/MCI and HA data formed segregated clusters, the distribution of

the PD data waswidespread, overlapping the AD/MCI andHA clusters

(Figure 4B). Thus, we subdivided the PD group using the SVM classi-

fier built for classifying AD/MCI andHA individuals in the t-SNE space.

ThisAD/MCI-HAclassifier divided thePDpatients into two subgroups:

PD classified as AD/MCI (PDAD, n= 46) and PD classified asHA (PDHA,

n = 48). The difference in BAG was significant between the PDAD and

HAgroup (P=0.010), andbetween thePDAD andPDHA (P=0.010), but

not between the PDHA and HA group (P = 0.906). When we compared

the cognitive and clinical scores between the PD subgroups (Figure 4C

and Table S4), the PDAD group showed poorer cognitive performance

than the PDHA group (P= 0.036 for theMoCA; P< 0.001 for theWMS-

R LM-IR; P= 0.0017 for theWMS-R LM-DR; P= 0.117 for theWMS-R

VR-IR; P = 0.012 for the WMS-R VR-DR, significant except for the

VR-IR score). However, there was no significant difference in the CDR

(P=0.926), Hoehn andYahr Scale (P=0.853), andMDS-UPDRSPart III

score (P=0.926) between thePDAD andPDHA groups (after theHolm’s

adjustment). All effect sizes are presented in Table S4.

3.5 Brain regions contributing to the difference in
brain age gap

The rank-ordered BAG attribution map characterized the spatial dis-

tribution of brain regions affected by AD/MCI, PD, or both, beyond

normative aging (Figure 4D–F and Table S5). For the AD/MCI group,

excess cortical thinning beyond that observed in normative aging

was prominent in the LTL/MTL, followed by the frontal and pari-

etal association cortices and limbic regions. In the PDHA group, the

involvement of the subcortical, orbitofrontal, and ventral visual areas

was evident, while the similar age-disproportionate thinning (e.g.,

LTL/MTL) to the AD/MCI group was also observed. In the PDAD

patients, the pattern of cortical thinning resembled that in theAD/MCI

patients (Table S5). However, in the direct comparison between the

AD/MCI and PDAD groups, the AD/MCI was characterized by the

involvement of the orbitofrontal, medial frontal, cingulate and mid-

dle/inferior temporal regions, whereas the PDAD was characterized

by the involvement of the primary sensorimotor and visual cortices

(Figure 4D).
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F IGURE 4 The t-distributed stochastic neighbor embedding (t-SNE) analysis and difference of contribution of the cortical thickness and
subcortical volume. (A) 2D t-SNE plot of the brain age gap (BAG) source data in the Parkinson’s and Alzheimer’s disease Dimensional
Neuroimaging Initiative (PADNI) healthy older adults (HA), Parkinson’s disease (PD), and Alzheimer’s disease/mild cognitive impairment
(AD/MCI). (B) Probability density distribution of the AD/MCI, PD, andHA data. The probability density distribution was estimated from the 2D
t-SNE plot in (A) using the kernel density estimationmethod. (C) Violin plots of scores of the delayed recall of logical memory inWechslerMemory
Scale-Revised (WMS-R LM-DR) and International Parkinson andMovement Disorder Society (MDS) -sponsored revision of Unified Parkinson’s
Disease Rating Scale, Part III (MDS-UPDRS Part III) in HA, PD classified as HA (PDHA), PD classified as AD/MCI (PDHA), and AD/MCI. (D) Ranks of
BAG sources of the AD/MCI projected back onto each brain region (BAG attributionmap). Small numbers represent more severe involvement. (E)
BAG attributionmap of PDHA. (F) Across-group BAG attributionmap for AD/MCI and PDAD (AD—PDAD). Orange color represents more severe
involvement in AD/MCI while blue color in PDAD.

4 DISCUSSION

We developed an interpretable PLS-based BAE technology to assess

normative senescence-related brain atrophy. We found significantly

higher BAGs in the AD/MCI patients. BAGs were not significantly

higher in the PD patients than in the HAs. However, based on BAG

sources, PD patients were sub-grouped into two cognitively distinct

groups (i.e., PDAD and PDHA), and BAGswere significantly higher in the

PDAD than the HAs.

4.1 Toward interpretable brain age estimation

Despite advances in BAE technology,4,5 previous studies have sel-

dom offered interpretable information about the specific brain regions

that contribute to BAE. Recently, studies on deep learning-based BAE

have used saliency maps31–33 (generated using all MRI information,

including non-parenchymal structures) that are not directly linked to

neurobiological interpretations. Therefore, one of our primary aims

was to visualize regional information on cortical thickness and ScV,

which have been reported to best characterize the effects of aging.34

The BAE source map revealed thinning of the fronto-temporo-inferior

parietal association cortices, whereas the cortical thickness of the pri-

mary motor and sensory cortices and the ScV of the basal ganglia and

cerebellum were relatively preserved. Previous histological examina-

tions have demonstrated this contrast between age-related changes in

association cortices and primary cortices,35 supporting the plausibility

of our BAE sourcemap.

4.2 Utility of the brain age gap for
neurodegenerative disorders

Aging is the top risk factor formost neurodegenerative disorders Thus,

capturing the disease effects cannot be achieved without considering

the neurobiology of aging. Typically, age effects are removed using sta-

tistical models. However, this process not only removes age effects but

also disease effects, at least partially. In contrast, the BAE approach

removes only the effects of normative aging, while retaining the effects

of disease as BAG-related components. Therefore, this BAE approach

is considered effective for isolating the effects of neurodegenerative

disease from the effects of aging.

While the BAG was significantly higher in the AD/MCI group than

in the HA group, the BAG of the PADNI AD/MCI was mildly smaller

than that of AD/MCI patients reported in the literature.7–12,16,31,33,36

This may be because our AD/MCI group probably included a con-

tinuum from mild MCI to AD. Supporting this, the BAGs were more

variable in the AD/MCI group than in the other groups (Figure 3).

Because the BAG was closely associated with cognitive impairment

in our results, it is likely that the variance in cognitive impair-

ment accounts for this large variance of the BAGs in the AD/MCI

group.



YOSHINAGA ET AL. 9 of 11

The BAG was not significantly higher in the PD group than in the

HA group, while the BAG in the PD group was consistent with find-

ings reported in recent studies on PD.11,13,14 However, PD patients

classified as AD/MCI in the t-SNE space (PDAD) exhibited significantly

higherBAGs than both theHAandPDpatients classified asHA (PDHA).

Additionally, the PDAD demonstrated greater cognitive impairment

compared to the PDHA. Interestingly, there was no significant differ-

ence in the CDR between these groups. Therefore, the BAGmay serve

as a cognitivemarker in the diagnosis of PD subtypes.

The BAG was correlated with many cognitive scores but not with

the MDS-UPDRS score. An explanation is that cognitive decline was

predominantly influenced by neuromorphological changesmodeled by

BAE that were continuous to the changes underlying AD/MCI. In con-

trast, motor impairment is mainly affected by functional alterations,

including dopamine deficiency in normal aging37 and PD. Fromanother

perspective, the BAG might be less sensitive to the neuromorpho-

logical changes of PD because the BAE model weighted less on the

motor-related areas than the cognitive-related areas, as seen in the

BAG source map. Accordingly, structural alterations related to motor

symptoms in PD could be less reflected in the BAG. The BAG may

primarily serve as a metric for assessing systems involved more in cog-

nitive functions thanmotor impairments; however, we emphasize that,

if we analyzed the source of BAG, the BAE is useful also in detecting

parkinsonismandcognitivedisturbanceembedded in thePDspectrum.

4.3 Disease classification with BAG-related
information and attribution maps

Wedemonstrated that visualizing thedata structure of theBAGsource

would enhance our understanding of the mechanisms underlying the

overlap and segregation of AD and PD pathophysiology. Specifically,

by applying t-SNE to visualize the BAG sources, we found that PD

patients were subclassified into two groups: one overlapping with

AD/MCI (PDAD) and the other overlapping with healthy aging (PDHA).

The PDAD showed greater cognitive decline than PDHA, while no sig-

nificant difference in the Hoehn and Yahr Scale and MDS-UPDRS Part

III score. These results suggest that the BAG analysis can classify PD

patients into these clinically distinct subtypes that cannot be explained

by differences in disease progression: one subtype may represent PD

without cognitive impairment, while the other may represent PD with

cognitive impairment.38 Interestingly, the PD group exhibited more

consistent BAGs, while the distinct two clusters emerged based on the

BAG source, suggesting that different cortical thinning patterns can

exist within similar BAGs in PD. On the other hand, the AD/MCI group

is widely distributed within a single cluster in the t-SNE space. This

finding supports the notion that, in contrast to PD, both AD and MCI

are disorders that exist along a continuous spectrum39 with respect to

neuromorphological features.

We found a differential BAG source pattern between the AD/MCI

and PDAD groups. The BAG attribution map revealed greater thin-

ning of the primary sensorimotor area and visual cortices in the PDAD

compared to the AD/MCI. This finding is plausible given the motor

and visual symptoms in PD, and is consistent with previous stud-

ies on PD and DLB.40–43 On the other hand, the AD/MCI exhibited

greater thinning of the medial frontal, cingulate, and middle/inferior

temporal regions, which are closely associated with the default mode

network, a critical network in the pathophysiology of AD.44 These

findings suggest that the BAG source analysis has the potential to

extract neuromorphological changes specific to neurodegenerative

disorders.

4.4 Study limitations and future perspectives

We admit certain limitations in the definition of cohort participants,

particularlywith respect to the criteria for healthy participants and the

subclassification of MCI.45 We also emphasize the need for method-

ological refinements in our BAE model, including improvements to

the algorithms and consideration of additional potential factors. The

details are provided in Supporting Information.

5 CONCLUSIONS

The BAG is a useful summary indicator of brain states underlying

cognitive/behavioral decline in dementia syndrome and other neu-

ropsychiatric disorders. Furthermore, the BAG source analysis can

provide us with enriched spatial information with disease specificity.

We believe that the proposed approach could pave the way toward

applying large-scale data to the screening or diagnostic support of

neurodegenerative disorders.
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